Articles | Volume 15, issue 10
https://doi.org/10.5194/acp-15-5873-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-5873-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Turbulent structure and scaling of the inertial subrange in a stratocumulus-topped boundary layer observed by a Doppler lidar
Finnish Meteorological Institute, Atmospheric Research Centre of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
University of Helsinki, Department of Physics, P.O. Box 48, 00014, Helsinki, Finland
E. J. O'Connor
Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
University of Reading, Reading, UK
A. Hellsten
Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
A. Hirsikko
Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung: Troposphäre (IEK-8), Jülich, Germany
C. O'Dowd
School of Physics and Centre for Climate & Air Pollution Studies, Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland
H. Järvinen
University of Helsinki, Department of Physics, P.O. Box 48, 00014, Helsinki, Finland
P. Räisänen
Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
Viewed
Total article views: 3,107 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Sep 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,751 | 1,240 | 116 | 3,107 | 96 | 98 |
- HTML: 1,751
- PDF: 1,240
- XML: 116
- Total: 3,107
- BibTeX: 96
- EndNote: 98
Total article views: 2,413 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 May 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,401 | 923 | 89 | 2,413 | 73 | 78 |
- HTML: 1,401
- PDF: 923
- XML: 89
- Total: 2,413
- BibTeX: 73
- EndNote: 78
Total article views: 694 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Sep 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
350 | 317 | 27 | 694 | 23 | 20 |
- HTML: 350
- PDF: 317
- XML: 27
- Total: 694
- BibTeX: 23
- EndNote: 20
Cited
11 citations as recorded by crossref.
- U.S. East Coast Lidar Measurements Show Offshore Wind Turbines Will Encounter Very Low Atmospheric Turbulence N. Bodini et al. 10.1029/2019GL082636
- On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars P. Borque et al. 10.1002/2015JD024543
- Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign N. Bodini et al. 10.5194/amt-11-4291-2018
- Methodology for deriving the telescope focus function and its uncertainty for a heterodyne pulsed Doppler lidar P. Pentikäinen et al. 10.5194/amt-13-2849-2020
- Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations S. Kotthaus et al. 10.5194/amt-16-433-2023
- Evaluation of turbulence measurement techniques from a single Doppler lidar T. Bonin et al. 10.5194/amt-10-3021-2017
- The sensitivity of a mid-latitude maritime stratocumulus cloud to surface fluxes Y. Ren et al. 10.1016/j.atmosres.2023.106912
- Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign N. Wildmann et al. 10.5194/amt-12-6401-2019
- Spatial and temporal variability of turbulence dissipation rate in complex terrain N. Bodini et al. 10.5194/acp-19-4367-2019
- Assessing Transboundary‐Local Aerosols Interaction Over Complex Terrain Using a Doppler LiDAR Network T. Huang et al. 10.1029/2021GL093238
- Comparison of Convective Boundary Layer Characteristics from Aircraft and Wind Lidar Observations B. Adler et al. 10.1175/JTECH-D-18-0118.1
11 citations as recorded by crossref.
- U.S. East Coast Lidar Measurements Show Offshore Wind Turbines Will Encounter Very Low Atmospheric Turbulence N. Bodini et al. 10.1029/2019GL082636
- On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars P. Borque et al. 10.1002/2015JD024543
- Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign N. Bodini et al. 10.5194/amt-11-4291-2018
- Methodology for deriving the telescope focus function and its uncertainty for a heterodyne pulsed Doppler lidar P. Pentikäinen et al. 10.5194/amt-13-2849-2020
- Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations S. Kotthaus et al. 10.5194/amt-16-433-2023
- Evaluation of turbulence measurement techniques from a single Doppler lidar T. Bonin et al. 10.5194/amt-10-3021-2017
- The sensitivity of a mid-latitude maritime stratocumulus cloud to surface fluxes Y. Ren et al. 10.1016/j.atmosres.2023.106912
- Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign N. Wildmann et al. 10.5194/amt-12-6401-2019
- Spatial and temporal variability of turbulence dissipation rate in complex terrain N. Bodini et al. 10.5194/acp-19-4367-2019
- Assessing Transboundary‐Local Aerosols Interaction Over Complex Terrain Using a Doppler LiDAR Network T. Huang et al. 10.1029/2021GL093238
- Comparison of Convective Boundary Layer Characteristics from Aircraft and Wind Lidar Observations B. Adler et al. 10.1175/JTECH-D-18-0118.1
Saved (preprint)
Latest update: 21 Nov 2024
Altmetrics
Final-revised paper
Preprint