Articles | Volume 15, issue 5
https://doi.org/10.5194/acp-15-2805-2015
https://doi.org/10.5194/acp-15-2805-2015
Research article
 | 
10 Mar 2015
Research article |  | 10 Mar 2015

How emissions, climate, and land use change will impact mid-century air quality over the United States: a focus on effects at national parks

M. Val Martin, C. L. Heald, J.-F. Lamarque, S. Tilmes, L. K. Emmons, and B. A. Schichtel

Related authors

Effects of ozone–vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks
Mehliyar Sadiq, Amos P. K. Tai, Danica Lombardozzi, and Maria Val Martin
Atmos. Chem. Phys., 17, 3055–3066, https://doi.org/10.5194/acp-17-3055-2017,https://doi.org/10.5194/acp-17-3055-2017, 2017
Short summary
Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI)
Simone Tilmes, Jean-Francois Lamarque, Louisa K. Emmons, Doug E. Kinnison, Dan Marsh, Rolando R. Garcia, Anne K. Smith, Ryan R. Neely, Andrew Conley, Francis Vitt, Maria Val Martin, Hiroshi Tanimoto, Isobel Simpson, Don R. Blake, and Nicola Blake
Geosci. Model Dev., 9, 1853–1890, https://doi.org/10.5194/gmd-9-1853-2016,https://doi.org/10.5194/gmd-9-1853-2016, 2016
Short summary
A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models
R. Paugam, M. Wooster, S. Freitas, and M. Val Martin
Atmos. Chem. Phys., 16, 907–925, https://doi.org/10.5194/acp-16-907-2016,https://doi.org/10.5194/acp-16-907-2016, 2016
Short summary
Impact of 2050 climate change on North American wildfire: consequences for ozone air quality
X. Yue, L. J. Mickley, J. A. Logan, R. C. Hudman, M. V. Martin, and R. M. Yantosca
Atmos. Chem. Phys., 15, 10033–10055, https://doi.org/10.5194/acp-15-10033-2015,https://doi.org/10.5194/acp-15-10033-2015, 2015
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Regional and sectoral contributions of NOx and reactive carbon emission sources to global trends in tropospheric ozone during the 2000–2018 period
Aditya Nalam, Aura Lupaşcu, Tabish Ansari, and Tim Butler
Atmos. Chem. Phys., 25, 5287–5311, https://doi.org/10.5194/acp-25-5287-2025,https://doi.org/10.5194/acp-25-5287-2025, 2025
Short summary
Underappreciated contributions of biogenic volatile organic compounds from urban green spaces to ozone pollution
Haofan Wang, Yuejin Li, Yiming Liu, Xiao Lu, Yang Zhang, Qi Fan, Chong Shen, Senchao Lai, Yan Zhou, Tao Zhang, and Dingli Yue
Atmos. Chem. Phys., 25, 5233–5250, https://doi.org/10.5194/acp-25-5233-2025,https://doi.org/10.5194/acp-25-5233-2025, 2025
Short summary
Chemistry–climate feedback of atmospheric methane in a methane-emission-flux-driven chemistry–climate model
Laura Stecher, Franziska Winterstein, Patrick Jöckel, Michael Ponater, Mariano Mertens, and Martin Dameris
Atmos. Chem. Phys., 25, 5133–5158, https://doi.org/10.5194/acp-25-5133-2025,https://doi.org/10.5194/acp-25-5133-2025, 2025
Short summary
Surface ozone trend variability across the United States and the impact of heat waves (1990–2023)
Kai-Lan Chang, Brian C. McDonald, Colin Harkins, and Owen R. Cooper
Atmos. Chem. Phys., 25, 5101–5132, https://doi.org/10.5194/acp-25-5101-2025,https://doi.org/10.5194/acp-25-5101-2025, 2025
Short summary
Sensitivity of climate effects of hydrogen to leakage size, location, and chemical background
Ragnhild Bieltvedt Skeie, Marit Sandstad, Srinath Krishnan, Gunnar Myhre, and Maria Sand
Atmos. Chem. Phys., 25, 4929–4942, https://doi.org/10.5194/acp-25-4929-2025,https://doi.org/10.5194/acp-25-4929-2025, 2025
Short summary

Cited articles

Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved dust representation in the Community Atmosphere Model, J. Adv. Model. Earth Syst., 06, 541–570, https://doi.org/10.1002/2013MS000279, 2014.
Arbaugh, M. J., Miller, P. R., Carroll, J. J., Takemoto, B., and Procter, T.: Relationships of ozone exposure to pine injury in the Sierra Nevada and San Bernardino Mountains of California, USA, Environ. Pollut., 101, 291–301, https://doi.org/10.1016/S0269-7491(98)00027-X, 1998.
Avnery, S., Mauzerall, D. L., Liu, J., and Horowitz, L. W.: Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage, Atmos. Environ., 45, 2284–2296, 2011.
Doherty, R. M., Wild, O., Shindell, D. T., Zeng, G., MacKenzie, I. A., Collins, W. J., Fiore, A. M., Stevenson, D. S., Dentener, F. J., Schultz, M. G., Hess, P., Derwent, R. G., and Keating, T. J.: Impacts of climate change on surface ozone and intercontinental ozone pollution: A multi-model study, J. Geophys. Res. Atmos., 118, 3744–3763, https://doi.org/10.1002/jgrd.50266, 2013.
Download
Short summary
We present for the first time the relative effect of climate, emissions, and land use change on ozone and PM25 over the United States, focusing on the national parks. Air quality in 2050 will likely be dominated by emission patterns, but climate and land use changes alone can lead to a substantial increase in air pollution over most of the US, with important implications for O3 air quality, visibility and ecosystem health degradation in the national parks.
Share
Altmetrics
Final-revised paper
Preprint