Articles | Volume 25, issue 13
https://doi.org/10.5194/acp-25-7111-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-7111-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drivers of change in peak-season surface ozone concentrations and impacts on human health over the historical period (1850–2014)
Steven T. Turnock
CORRESPONDING AUTHOR
Met Office Hadley Centre, Exeter, UK
University of Leeds Met Office Strategic (LUMOS) Research Group, University of Leeds, Leeds, UK
Dimitris Akritidis
Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece
Larry Horowitz
NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
Mariano Mertens
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Andrea Pozzer
Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
Climate and Atmosphere Research Center, The Cyprus Institute, 1645 Nicosia, Cyprus
Carly L. Reddington
Institute for Climate and Atmospheric Science (ICAS), School of Earth and Environment, University of Leeds, Leeds, UK
Hantao Wang
Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
Putian Zhou
Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
Fiona O'Connor
Met Office Hadley Centre, Exeter, UK
Department of Mathematics and Statistics, Global Systems Institute, University of Exeter, Exeter, UK
Related authors
Zhenze Liu, Ke Li, Oliver Wild, Ruth M. Doherty, Fiona M. O’Connor, and Steven T. Turnock
EGUsphere, https://doi.org/10.5194/egusphere-2025-1250, https://doi.org/10.5194/egusphere-2025-1250, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our research aimed to enhance predictions of ozone levels in the atmosphere, a gas that influences air quality and climate. We used a computer model called UKESM1 to simulate ozone, but its estimates were often inaccurate. By applying deep learning, we improved the accuracy of these predictions. This advance helps us understand how ozone might shift as the climate warms. Better predictions are vital for shaping policies on air quality and climate.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Yixiong Lu, Tongwen Wu, Fang Zhang, and Xiaoge Xin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1059, https://doi.org/10.5194/egusphere-2025-1059, 2025
Short summary
Short summary
Aerosol cooling has been linked to the cold biases in CMIP6 models during the 1960–1990 period. We confirm the key role of sulfate burden and point out the essential contribution of sulfur removal processes. We define an Effective Sulfur Retention Timescale (ESRT) index to quantify sulfur deposition, which tends to be overestimated by CMIP6 models. The index can help to improve sulfur cycles and temperature responses in models more efficiently. The recommended value of ESRT is around 1 day.
Kirsty Jane Pringle, Richard Rigby, Steven Turnock, Carly Reddington, Meruyert Shayakhmetova, Malcolm Illingworth, Denis Barclay, Neil Chue Hong, Ed Hawkins, Douglas S. Hamilton, Ethan Brain, and James B. McQuaid
EGUsphere, https://doi.org/10.5194/egusphere-2024-3961, https://doi.org/10.5194/egusphere-2024-3961, 2025
Short summary
Short summary
The Air Quality Stripes images visualise historical changes in particulate matter air pollution in over 150 cities worldwide. The project celebrates significant improvements in air quality in regions like Europe, North America, and China, while highlighting the urgent need for action in areas such as Central Asia. Designed to raise awareness, it aims to inspire discussions about the critical impact of air pollution and the global inequalities it causes.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024, https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Short summary
We demonstrate that strong climate mitigation could improve air quality in Europe; however, less ambitious mitigation does not result in these co-benefits. We use a high-resolution atmospheric chemistry model. This allows us to demonstrate how this varies across European countries and analyse the underlying chemistry. This may help policy-facing researchers understand which sectors and regions need to be prioritised to achieve strong air quality co-benefits of climate mitigation.
Paul T. Griffiths, Laura J. Wilcox, Robert J. Allen, Vaishali Naik, Fiona M. O'Connor, Michael J. Prather, Alexander T. Archibald, Florence Brown, Makoto Deushi, William Collins, Stephanie Fiedler, Naga Oshima, Lee T. Murray, Christopher J. Smith, Steven T. Turnock, Duncan Watson-Parris, and Paul J. Young
EGUsphere, https://doi.org/10.5194/egusphere-2024-2528, https://doi.org/10.5194/egusphere-2024-2528, 2024
Short summary
Short summary
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) aimed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. In this paper, we review its contribution to AR6, and the wider understanding of the role of these species in climate and climate change. We identify remaining challenges concluding with recommendations aimed to improve the utility and uptake of climate model data to address the role of short-lived climate forcers in the Earth system.
Pierluigi Renan Guaita, Riccardo Marzuoli, Leiming Zhang, Steven Turnock, Gerbrand Koren, Oliver Wild, Paola Crippa, and Giacomo Alessandro Gerosa
EGUsphere, https://doi.org/10.5194/egusphere-2024-2573, https://doi.org/10.5194/egusphere-2024-2573, 2024
Preprint archived
Short summary
Short summary
This study assesses the global impact of tropospheric ozone on wheat crops in the 21st century under various climate scenarios. The research highlights that ozone damage to wheat varies by region and depends on both ozone levels and climate. Vulnerable regions include East Asia, Northern Europe, and the Southern and Eastern edges of the Tibetan Plateau. Our results emphasize the need of policies to reduce ozone levels and mitigate climate change to protect global food security.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024, https://doi.org/10.5194/gmd-17-2387-2024, 2024
Short summary
Short summary
Climate scientists want to better understand modern climate change. Thus, climate model experiments are performed and compared. The results of climate model experiments differ, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article gives insights into the challenges and outlines opportunities for further improving the understanding of climate change. It is based on views of a group of experts in atmospheric composition–climate interactions.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
Zhenze Liu, Oliver Wild, Ruth M. Doherty, Fiona M. O'Connor, and Steven T. Turnock
Atmos. Chem. Phys., 23, 13755–13768, https://doi.org/10.5194/acp-23-13755-2023, https://doi.org/10.5194/acp-23-13755-2023, 2023
Short summary
Short summary
We investigate the impact of net-zero policies on surface ozone pollution in China. A chemistry–climate model is used to simulate ozone changes driven by local and external emissions, methane, and warmer climates. A deep learning model is applied to generate more robust ozone projection, and we find that the benefits of net-zero policies may be overestimated with the chemistry–climate model. Nevertheless, it is clear that the policies can still substantially reduce ozone pollution in future.
Zixuan Jia, Carlos Ordóñez, Ruth M. Doherty, Oliver Wild, Steven T. Turnock, and Fiona M. O'Connor
Atmos. Chem. Phys., 23, 2829–2842, https://doi.org/10.5194/acp-23-2829-2023, https://doi.org/10.5194/acp-23-2829-2023, 2023
Short summary
Short summary
This study investigates the influence of the winter large-scale circulation on daily concentrations of PM2.5 and their sensitivity to emissions. The new proposed circulation index can effectively distinguish different levels of air pollution and explain changes in PM2.5 sensitivity to emissions from local and surrounding regions. We then project future changes in PM2.5 concentrations using this index and find an increase in PM2.5 concentrations over the region due to climate change.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Zhenze Liu, Ruth M. Doherty, Oliver Wild, Fiona M. O'Connor, and Steven T. Turnock
Atmos. Chem. Phys., 22, 12543–12557, https://doi.org/10.5194/acp-22-12543-2022, https://doi.org/10.5194/acp-22-12543-2022, 2022
Short summary
Short summary
Weaknesses in process representation in chemistry–climate models lead to biases in simulating surface ozone and to uncertainty in projections of future ozone change. We develop a deep learning model to demonstrate the feasibility of ozone bias correction and show its capability in providing improved assessments of the impacts of climate and emission changes on future air quality, along with valuable information to guide future model development.
Shipra Jain, Ruth M. Doherty, David Sexton, Steven Turnock, Chaofan Li, Zixuan Jia, Zongbo Shi, and Lin Pei
Atmos. Chem. Phys., 22, 7443–7460, https://doi.org/10.5194/acp-22-7443-2022, https://doi.org/10.5194/acp-22-7443-2022, 2022
Short summary
Short summary
We provide a range of future projections of winter haze and clear conditions over the North China Plain (NCP) using multiple simulations from a climate model for the high-emission scenario (RCP8.5). The frequency of haze conducive weather is likely to increase whereas the frequency of clear weather is likely to decrease in future. The total number of hazy days for a given winter can be as much as ˜3.5 times higher than the number of clear days over the NCP.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Henry Bowman, Steven Turnock, Susanne E. Bauer, Kostas Tsigaridis, Makoto Deushi, Naga Oshima, Fiona M. O'Connor, Larry Horowitz, Tongwen Wu, Jie Zhang, Dagmar Kubistin, and David D. Parrish
Atmos. Chem. Phys., 22, 3507–3524, https://doi.org/10.5194/acp-22-3507-2022, https://doi.org/10.5194/acp-22-3507-2022, 2022
Short summary
Short summary
A full understanding of ozone in the troposphere requires investigation of its temporal variability over all timescales. Model simulations show that the northern midlatitude ozone seasonal cycle shifted with industrial development (1850–2014), with an increasing magnitude and a later summer peak. That shift reached a maximum in the mid-1980s, followed by a reversal toward the preindustrial cycle. The few available observations, beginning in the 1970s, are consistent with the model simulations.
Zhenze Liu, Ruth M. Doherty, Oliver Wild, Fiona M. O'Connor, and Steven T. Turnock
Atmos. Chem. Phys., 22, 1209–1227, https://doi.org/10.5194/acp-22-1209-2022, https://doi.org/10.5194/acp-22-1209-2022, 2022
Short summary
Short summary
Tropospheric ozone is important to future air quality and climate, and changing emissions and climate influence ozone. We investigate the evolution of ozone and ozone sensitivity from the present day (2004–2014) to the future (2045–2055) and explore the main drivers of ozone changes from global and regional perspectives. This helps guide suitable emission control strategies to mitigate ozone pollution.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021, https://doi.org/10.5194/acp-21-18609-2021, 2021
Short summary
Short summary
The CMIP6 ESMs systematically underestimate TAS anomalies in the NH midlatitudes, especially from 1960 to 1990. The anomalous cooling is concurrent in time and space with anthropogenic SO2 emissions. The spurious drop in TAS is attributed to the overestimated aerosol concentrations. The aerosol forcing sensitivity cannot well explain the inter-model spread of PHC biases. And the cloud-amount term accounts for most of the inter-model spread in aerosol forcing sensitivity.
Catherine Hardacre, Jane P. Mulcahy, Richard J. Pope, Colin G. Jones, Steven T. Rumbold, Can Li, Colin Johnson, and Steven T. Turnock
Atmos. Chem. Phys., 21, 18465–18497, https://doi.org/10.5194/acp-21-18465-2021, https://doi.org/10.5194/acp-21-18465-2021, 2021
Short summary
Short summary
We investigate UKESM1's ability to represent the sulfur (S) cycle in the recent historical period. The S cycle is a key driver of historical radiative forcing. Earth system models such as UKESM1 should represent the S cycle well so that we can have confidence in their projections of future climate. We compare UKESM1 to observations of sulfur compounds, finding that the model generally performs well. We also identify areas for UKESM1’s development, focussing on how SO2 is removed from the air.
Anthony C. Jones, Adrian Hill, Samuel Remy, N. Luke Abraham, Mohit Dalvi, Catherine Hardacre, Alan J. Hewitt, Ben Johnson, Jane P. Mulcahy, and Steven T. Turnock
Atmos. Chem. Phys., 21, 15901–15927, https://doi.org/10.5194/acp-21-15901-2021, https://doi.org/10.5194/acp-21-15901-2021, 2021
Short summary
Short summary
Ammonium nitrate is hard to model because it forms and evaporates rapidly. One approach is to relate its equilibrium concentration to temperature, humidity, and the amount of nitric acid and ammonia gases. Using this approach, we limit the rate at which equilibrium is reached using various condensation rates in a climate model. We show that ammonium nitrate concentrations are highly sensitive to the condensation rate. Our results will help improve the representation of nitrate in climate models.
Liang Guo, Laura J. Wilcox, Massimo Bollasina, Steven T. Turnock, Marianne T. Lund, and Lixia Zhang
Atmos. Chem. Phys., 21, 15299–15308, https://doi.org/10.5194/acp-21-15299-2021, https://doi.org/10.5194/acp-21-15299-2021, 2021
Short summary
Short summary
Severe haze remains serious over Beijing despite emissions decreasing since 2008. Future haze changes in four scenarios are studied. The pattern conducive to haze weather increases with the atmospheric warming caused by the accumulation of greenhouse gases. However, the actual haze intensity, measured by either PM2.5 or optical depth, decreases with aerosol emissions. We show that only using the weather pattern index to predict the future change of Beijing haze is insufficient.
David D. Parrish, Richard G. Derwent, Steven T. Turnock, Fiona M. O'Connor, Johannes Staehelin, Susanne E. Bauer, Makoto Deushi, Naga Oshima, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 21, 9669–9679, https://doi.org/10.5194/acp-21-9669-2021, https://doi.org/10.5194/acp-21-9669-2021, 2021
Short summary
Short summary
The few ozone measurements made before the 1980s indicate that industrial development increased ozone concentrations by a factor of ~ 2 at northern midlatitudes, which are now larger than at southern midlatitudes. This difference was much smaller, and likely reversed, in the pre-industrial atmosphere. Earth system models find similar increases, but not higher pre-industrial ozone in the south. This disagreement may indicate that modeled natural ozone sources and/or deposition loss are inadequate.
Paul T. Griffiths, Lee T. Murray, Guang Zeng, Youngsub Matthew Shin, N. Luke Abraham, Alexander T. Archibald, Makoto Deushi, Louisa K. Emmons, Ian E. Galbally, Birgit Hassler, Larry W. Horowitz, James Keeble, Jane Liu, Omid Moeini, Vaishali Naik, Fiona M. O'Connor, Naga Oshima, David Tarasick, Simone Tilmes, Steven T. Turnock, Oliver Wild, Paul J. Young, and Prodromos Zanis
Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, https://doi.org/10.5194/acp-21-4187-2021, 2021
Short summary
Short summary
We analyse the CMIP6 Historical and future simulations for tropospheric ozone, a species which is important for many aspects of atmospheric chemistry. We show that the current generation of models agrees well with observations, being particularly successful in capturing trends in surface ozone and its vertical distribution in the troposphere. We analyse the factors that control ozone and show that they evolve over the period of the CMIP6 experiments.
Fiona M. O'Connor, N. Luke Abraham, Mohit Dalvi, Gerd A. Folberth, Paul T. Griffiths, Catherine Hardacre, Ben T. Johnson, Ron Kahana, James Keeble, Byeonghyeon Kim, Olaf Morgenstern, Jane P. Mulcahy, Mark Richardson, Eddy Robertson, Jeongbyn Seo, Sungbo Shim, João C. Teixeira, Steven T. Turnock, Jonny Williams, Andrew J. Wiltshire, Stephanie Woodward, and Guang Zeng
Atmos. Chem. Phys., 21, 1211–1243, https://doi.org/10.5194/acp-21-1211-2021, https://doi.org/10.5194/acp-21-1211-2021, 2021
Short summary
Short summary
This paper calculates how changes in emissions and/or concentrations of different atmospheric constituents since the pre-industrial era have altered the Earth's energy budget at the present day using a metric called effective radiative forcing. The impact of land use change is also assessed. We find that individual contributions do not add linearly, and different Earth system interactions can affect the magnitude of the calculated effective radiative forcing.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Robert J. Allen, Steven Turnock, Pierre Nabat, David Neubauer, Ulrike Lohmann, Dirk Olivié, Naga Oshima, Martine Michou, Tongwen Wu, Jie Zhang, Toshihiko Takemura, Michael Schulz, Kostas Tsigaridis, Susanne E. Bauer, Louisa Emmons, Larry Horowitz, Vaishali Naik, Twan van Noije, Tommi Bergman, Jean-Francois Lamarque, Prodromos Zanis, Ina Tegen, Daniel M. Westervelt, Philippe Le Sager, Peter Good, Sungbo Shim, Fiona O'Connor, Dimitris Akritidis, Aristeidis K. Georgoulias, Makoto Deushi, Lori T. Sentman, Jasmin G. John, Shinichiro Fujimori, and William J. Collins
Atmos. Chem. Phys., 20, 9641–9663, https://doi.org/10.5194/acp-20-9641-2020, https://doi.org/10.5194/acp-20-9641-2020, 2020
Jill S. Johnson, Leighton A. Regayre, Masaru Yoshioka, Kirsty J. Pringle, Steven T. Turnock, Jo Browse, David M. H. Sexton, John W. Rostron, Nick A. J. Schutgens, Daniel G. Partridge, Dantong Liu, James D. Allan, Hugh Coe, Aijun Ding, David D. Cohen, Armand Atanacio, Ville Vakkari, Eija Asmi, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 9491–9524, https://doi.org/10.5194/acp-20-9491-2020, https://doi.org/10.5194/acp-20-9491-2020, 2020
Short summary
Short summary
We use over 9000 monthly aggregated grid-box measurements of aerosol to constrain the uncertainty in the HadGEM3-UKCA climate model. Measurements of AOD, PM2.5, particle number concentrations, sulfate and organic mass concentrations are compared to 1 million
variantsof the model using an implausibility metric. Despite many compensating effects in the model, the procedure constrains the probability distributions of many parameters, and direct radiative forcing uncertainty is reduced by 34 %.
Alexander T. Archibald, Fiona M. O'Connor, Nathan Luke Abraham, Scott Archer-Nicholls, Martyn P. Chipperfield, Mohit Dalvi, Gerd A. Folberth, Fraser Dennison, Sandip S. Dhomse, Paul T. Griffiths, Catherine Hardacre, Alan J. Hewitt, Richard S. Hill, Colin E. Johnson, James Keeble, Marcus O. Köhler, Olaf Morgenstern, Jane P. Mulcahy, Carlos Ordóñez, Richard J. Pope, Steven T. Rumbold, Maria R. Russo, Nicholas H. Savage, Alistair Sellar, Marc Stringer, Steven T. Turnock, Oliver Wild, and Guang Zeng
Geosci. Model Dev., 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, https://doi.org/10.5194/gmd-13-1223-2020, 2020
Short summary
Short summary
Here we present a description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in the UK Earth System Model (UKESM1). UKCA StratTrop represents a substantial step forward compared to previous versions of UKCA. We show here that it is fully suited to the challenges of representing interactions in a coupled Earth system model and identify key areas and components for future development that will make it even better in the future.
Steven T. Turnock, Oliver Wild, Frank J. Dentener, Yanko Davila, Louisa K. Emmons, Johannes Flemming, Gerd A. Folberth, Daven K. Henze, Jan E. Jonson, Terry J. Keating, Sudo Kengo, Meiyun Lin, Marianne Lund, Simone Tilmes, and Fiona M. O'Connor
Atmos. Chem. Phys., 18, 8953–8978, https://doi.org/10.5194/acp-18-8953-2018, https://doi.org/10.5194/acp-18-8953-2018, 2018
Short summary
Short summary
A simple parameterisation was developed in this study to provide a rapid assessment of the impacts and uncertainties associated with future emission control strategies by predicting changes to surface ozone air quality and near-term climate forcing of ozone. Future emissions scenarios based on currently implemented legislation are shown to worsen surface ozone air quality and enhance near-term climate warming, with changes in methane becoming increasingly important in the future.
S. T. Turnock, D. V. Spracklen, K. S. Carslaw, G. W. Mann, M. T. Woodhouse, P. M. Forster, J. Haywood, C. E. Johnson, M. Dalvi, N. Bellouin, and A. Sanchez-Lorenzo
Atmos. Chem. Phys., 15, 9477–9500, https://doi.org/10.5194/acp-15-9477-2015, https://doi.org/10.5194/acp-15-9477-2015, 2015
Short summary
Short summary
We evaluate HadGEM3-UKCA over Europe for the period 1960-2009 against observations of aerosol mass and number, aerosol optical depth (AOD) and surface solar radiation (SSR). The model underestimates aerosol mass and number but is less biased if compared to AOD and SSR. Observed trends in aerosols are well simulated by the model and necessary for reproducing the observed increase in SSR since 1990. European all-sky top of atmosphere aerosol radiative forcing increased by > 3 Wm-2 from 1970 to 2009.
Beth Dingley, James A. Anstey, Marta Abalos, Carsten Abraham, Tommi Bergman, Lisa Bock, Sonya Fiddes, Birgit Hassler, Ryan J. Kramer, Fei Luo, Fiona M. O'Connor, Petr Šácha, Isla R. Simpson, Laura J. Wilcox, and Mark D. Zelinka
EGUsphere, https://doi.org/10.5194/egusphere-2025-3189, https://doi.org/10.5194/egusphere-2025-3189, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This manuscript defines as a list of variables and scientific opportunities which are requested from the CMIP7 Assessment Fast Track to address open atmospheric science questions. The list reflects the output of a large public community engagement effort, coordinated across autumn 2025 through to summer 2025.
Matthias Kohl, Christoph Brühl, Jennifer Schallock, Holger Tost, Patrick Jöckel, Adrian Jost, Steffen Beirle, Michael Höpfner, and Andrea Pozzer
Geosci. Model Dev., 18, 3985–4007, https://doi.org/10.5194/gmd-18-3985-2025, https://doi.org/10.5194/gmd-18-3985-2025, 2025
Short summary
Short summary
SO2 from explosive volcanic eruptions reaching the stratosphere can oxidize and form sulfur aerosols, potentially persisting for several years. We developed a new submodel, Explosive Volcanic ERuptions (EVER), that seamlessly includes stratospheric volcanic SO2 emissions in global numerical simulations based on a novel standard historical model setup, successfully evaluated with satellite observations. Sensitivity studies on the Nabro eruption in 2011 evaluate different emission methods.
Joao C. M. Teixeira, Chantelle Burton, Douglas I. Kelley, Gerd A. Folberth, Fiona M. O'Connor, Richard A. Betts, and Apostolos Voulgarakis
EGUsphere, https://doi.org/10.5194/egusphere-2025-3066, https://doi.org/10.5194/egusphere-2025-3066, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Burnt areas produced by wildfires around the world are decreasing, especially in tropical regions, but many climate models fail to show this trend. Our study looks at whether adding a measure of human development to a fire model could improve its representation of these processes. We found that including these factors helped the model better match observations in many regions. This shows that human activity plays a key role in shaping fire trends.
Zhenze Liu, Ke Li, Oliver Wild, Ruth M. Doherty, Fiona M. O’Connor, and Steven T. Turnock
EGUsphere, https://doi.org/10.5194/egusphere-2025-1250, https://doi.org/10.5194/egusphere-2025-1250, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our research aimed to enhance predictions of ozone levels in the atmosphere, a gas that influences air quality and climate. We used a computer model called UKESM1 to simulate ozone, but its estimates were often inaccurate. By applying deep learning, we improved the accuracy of these predictions. This advance helps us understand how ozone might shift as the climate warms. Better predictions are vital for shaping policies on air quality and climate.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025, https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model setup, are discussed, and the official recommendations for the project are presented.
Xinyang Li, Tuomo Nieminen, Rima Baalbaki, Putian Zhou, Pauli Paasonen, Risto Makkonen, Martha Arbayani Zaidan, Nina Sarnela, Chao Yan, Tuija Jokinen, Imre Salma, Máté Vörösmarty, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Lubna Dada
Aerosol Research, 3, 271–291, https://doi.org/10.5194/ar-3-271-2025, https://doi.org/10.5194/ar-3-271-2025, 2025
Short summary
Short summary
Particle formation rate is one of the key factors in studying the physical properties of aerosols. By developing powerful and simple semi-empirical particle formation rate models, we can predict particle formation rates and compare them with real-time measurements to aid in discovering hidden particle formation mechanisms as well as global simulations of particle population to fill the knowledge gap caused by the uncertainty in aerosol cooling effects on Earth's atmosphere.
Laura Stecher, Franziska Winterstein, Patrick Jöckel, Michael Ponater, Mariano Mertens, and Martin Dameris
Atmos. Chem. Phys., 25, 5133–5158, https://doi.org/10.5194/acp-25-5133-2025, https://doi.org/10.5194/acp-25-5133-2025, 2025
Short summary
Short summary
Methane, the second most important anthropogenic greenhouse gas, is chemically decomposed in the atmosphere. The chemical sink of atmospheric methane is not constant but depends on the temperature and on the abundance of its reaction partners. In this study, we use a global chemistry–climate model to assess the feedback of atmospheric methane induced by changes in the chemical sink in a warming climate and its implications for the chemical composition and the surface air temperature change.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Yixiong Lu, Tongwen Wu, Fang Zhang, and Xiaoge Xin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1059, https://doi.org/10.5194/egusphere-2025-1059, 2025
Short summary
Short summary
Aerosol cooling has been linked to the cold biases in CMIP6 models during the 1960–1990 period. We confirm the key role of sulfate burden and point out the essential contribution of sulfur removal processes. We define an Effective Sulfur Retention Timescale (ESRT) index to quantify sulfur deposition, which tends to be overestimated by CMIP6 models. The index can help to improve sulfur cycles and temperature responses in models more efficiently. The recommended value of ESRT is around 1 day.
Nic Surawski, Benedikt Steil, Christoph Brühl, Sergey Gromov, Klaus Klingmüller, Anna Martin, Andrea Pozzer, and Jos Lelieveld
EGUsphere, https://doi.org/10.5194/egusphere-2025-1559, https://doi.org/10.5194/egusphere-2025-1559, 2025
Short summary
Short summary
Hydrogen usage will likely increase to achieve net zero emission targets. We undertook calculations with an Earth system model using a high performance computer to explore hydrogen atmospheric dynamics. Simulations with the EMAC model yielded highly accurate results at global scale. Correctly representing hydroxyl radicals in the model is a critical requirement for predicting hydrogen concentrations well. Our hydrogen budget is also in very good agreement with bottom-up literature estimates.
Ryan Vella, Sergey Gromov, Clara M. Nussbaumer, Laura Stecher, Matthias Kohl, Samuel Ruhl, Holger Tost, Jos Lelieveld, and Andrea Pozzer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1800, https://doi.org/10.5194/egusphere-2025-1800, 2025
Short summary
Short summary
We evaluated how replacing forests with farmland and grazing areas affects atmospheric composition. Using a global climate-chemistry model, we found that deforestation reduces BVOCs, increases farming pollutants, and shifts ozone chemistry. These changes lead to a small cooling effect on the climate. Restoring natural vegetation could reverse some of these effects.
Linda Ort, Andrea Pozzer, Peter Hoor, Florian Obersteiner, Andreas Zahn, Thomas B. Ryerson, Chelsea R. Thompson, Jeff Peischl, Róisín Commane, Bruce Daube, Ilann Bourgeois, Jos Lelieveld, and Horst Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1477, https://doi.org/10.5194/egusphere-2025-1477, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study investigates the role of lightning emissions on the O3–CO ratio in the northern subtropics. We used in situ observations and a global circulation model to show an effect of up to 40 % onto the subtropical O3–CO ratio by tropical air masses transported via the Hadley cell. This influence of lightning emissions and its photochemistry has a global effect on trace and greenhouse gases and needs to be considered for global chemical distributions.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre S. H. Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurélien Chauvigné, Sébastien Conil, Marco Pandolfi, and Oriol Jorba
Atmos. Chem. Phys., 25, 2667–2694, https://doi.org/10.5194/acp-25-2667-2025, https://doi.org/10.5194/acp-25-2667-2025, 2025
Short summary
Short summary
Brown carbon (BrC) absorbs ultraviolet (UV) and visible light, influencing climate. This study explores BrC's imaginary refractive index (k) using data from 12 European sites. Residential emissions are a major organic aerosol (OA) source in winter, while secondary organic aerosol (SOA) dominates in summer. Source-specific k values were derived, improving model accuracy. The findings highlight BrC's climate impact and emphasize source-specific constraints in atmospheric models.
Xurong Wang, Alexandra P. Tsimpidi, Zhenqi Luo, Benedikt Steil, Andrea Pozzer, Jos Lelieveld, and Vlassis A. Karydis
EGUsphere, https://doi.org/10.5194/egusphere-2025-527, https://doi.org/10.5194/egusphere-2025-527, 2025
Short summary
Short summary
Ammonia (NH3) is an abundant alkaline gas and key precursor in particulate matter formation. While SO2 and NOx emissions have decreased, global NH3 emissions are stable or rising. This study investigates NH3 emission impacts on size-resolved aerosol composition and acidity using the EMAC model, analyzing three emission schemes. Sulphate-nitrate-ammonium aerosols in fine mode sizes are most sensitive to NH3 changes. Regional responses vary. NH3 buffers aerosol acidity, mitigating pH shifts.
Catherine Acquah, Laura Stecher, Mariano Mertens, and Patrick Jöckel
EGUsphere, https://doi.org/10.5194/egusphere-2025-294, https://doi.org/10.5194/egusphere-2025-294, 2025
Short summary
Short summary
Short-lived ozone precursor species influence the formation of ozone and also the atmospheric lifetime of methane. Our study assesses the effect of two widely used emission inventories of these species on ozone and the methane lifetime. Our results indicate tropospheric ozone and methane lifetime differences of around 4 % even though both emission inventories aim at representing present-day conditions. We further attribute the differences to emissions of individual sectors, e.g. land traffic.
Hossein Maazallahi, Foteini Stavropoulou, Samuel Jonson Sutanto, Michael Steiner, Dominik Brunner, Mariano Mertens, Patrick Jöckel, Antoon Visschedijk, Hugo Denier van der Gon, Stijn Dellaert, Nataly Velandia Salinas, Stefan Schwietzke, Daniel Zavala-Araiza, Sorin Ghemulet, Alexandru Pana, Magdalena Ardelean, Marius Corbu, Andreea Calcan, Stephen A. Conley, Mackenzie L. Smith, and Thomas Röckmann
Atmos. Chem. Phys., 25, 1497–1511, https://doi.org/10.5194/acp-25-1497-2025, https://doi.org/10.5194/acp-25-1497-2025, 2025
Short summary
Short summary
This article presents insights from airborne in situ measurements collected during the ROmanian Methane Emissions from Oil and gas (ROMEO) campaign supported by two models. Results reveal Romania's oil and gas methane emissions were significantly under-reported to the United Nations Framework Convention on Climate Change (UNFCCC) in 2019. A large underestimation was also found in the Emissions Database for Global Atmospheric Research (EDGAR) v7.0 for the study domain in the same year.
Mingxuan Wu, Hailong Wang, Zheng Lu, Xiaohong Liu, Huisheng Bian, David Cohen, Yan Feng, Mian Chin, Didier A. Hauglustaine, Vlassis A. Karydis, Marianne T. Lund, Gunnar Myhre, Andrea Pozzer, Michael Schulz, Ragnhild B. Skeie, Alexandra P. Tsimpidi, Svetlana G. Tsyro, and Shaocheng Xie
EGUsphere, https://doi.org/10.5194/egusphere-2025-235, https://doi.org/10.5194/egusphere-2025-235, 2025
Short summary
Short summary
A key challenge in simulating the lifecycle of nitrate aerosol in global climate models is to accurately represent mass size distribution of nitrate aerosol, which lacks sufficient observational constraints. We found that most climate models underestimate the mass fraction of fine-mode nitrate at surface in all regions. Our study highlights the importance of gas-aerosol partitioning parameterization and simulation of dust and sea salt in correctly simulating mass size distribution of nitrate.
Aishah I. Shittu, Kirsty J. Pringle, Stephen R. Arnold, Richard J. Pope, Ailish M. Graham, Carly Reddington, Richard Rigby, and James B. McQuaid
Atmos. Meas. Tech., 18, 817–828, https://doi.org/10.5194/amt-18-817-2025, https://doi.org/10.5194/amt-18-817-2025, 2025
Short summary
Short summary
The study highlighted the performance of Atmotube PRO sensor particulate matter (PM) data. The result showed inter-sensor variability among the Atmotube PRO sensor data. This study showed 62.5 % of the sensors used for the study exhibited greater precision in their PM2.5 measurements. The overall performance showed that sensors passed the base testing using 1 h averaged data and that a multiple linear regression model using relative humidity values improved the performance of the PM2.5 data.
Emma Sands, Ruth M. Doherty, Fiona M. O'Connor, Richard J. Pope, James Weber, and Daniel P. Grosvenor
EGUsphere, https://doi.org/10.5194/egusphere-2024-4014, https://doi.org/10.5194/egusphere-2024-4014, 2025
Short summary
Short summary
We use satellite observations to quantify isoprene, formaldehyde and aerosol optical depth biases in UKESM1.1 and their sensitivity to process representation. The more detailed chemistry mechanism is particularly impactful by decreasing the isoprene and formaldehyde biases and reducing aerosol formation. Other processes have strong regional impacts. The new processes affect the present-day aerosol direct radiative effect (+0.17 W m-2), with implications for land use change forcing studies.
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025, https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Short summary
This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry–climate–vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects.
Kirsty Jane Pringle, Richard Rigby, Steven Turnock, Carly Reddington, Meruyert Shayakhmetova, Malcolm Illingworth, Denis Barclay, Neil Chue Hong, Ed Hawkins, Douglas S. Hamilton, Ethan Brain, and James B. McQuaid
EGUsphere, https://doi.org/10.5194/egusphere-2024-3961, https://doi.org/10.5194/egusphere-2024-3961, 2025
Short summary
Short summary
The Air Quality Stripes images visualise historical changes in particulate matter air pollution in over 150 cities worldwide. The project celebrates significant improvements in air quality in regions like Europe, North America, and China, while highlighting the urgent need for action in areas such as Central Asia. Designed to raise awareness, it aims to inspire discussions about the critical impact of air pollution and the global inequalities it causes.
Petri Clusius, Metin Baykara, Carlton Xavier, Putian Zhou, Juniper Tyree, Benjamin Foreback, Mikko Äijälä, Frans Graeffe, Tuukka Petäjä, Markku Kulmala, Pauli Paasonen, Paul I. Palmer, and Michael Boy
EGUsphere, https://doi.org/10.5194/egusphere-2025-39, https://doi.org/10.5194/egusphere-2025-39, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Cloud condensation nuclei are necessary to form clouds, and their size distribution affects cloud properties and therefore Earth’s energy budget. This study modelled the origins of cloud condensation nuclei at SMEAR II, Hyytiälä, Finland, and found that primary emissions and new particle formation separately contribute to more than half of the condensation nuclei, but they suppress each other, leading to current concentrations. Largest condensation nuclei originated mostly from emissions.
Raphael Dreger, Timo Kirfel, Andrea Pozzer, Simon Rosanka, Rolf Sander, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-166, https://doi.org/10.5194/gmd-2024-166, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
Model simulations are essentials for understanding the interactions between atmospheric composition and weather. However, models including chemistry are very slow. Hence, any computation speedup of such models is important for advancing the understanding of interactions within the Earth System. In this study we analysed and optimized the time stepping for chemistry calculations. Our results show that atmospheric chemistry models could be run notably faster without any loss in the accuracy.
Sebastian H. M. Hickman, Makoto Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alexander T. Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3739, https://doi.org/10.5194/egusphere-2024-3739, 2025
Short summary
Short summary
Machine learning is being more widely used across environmental and climate science. This work reviews the use of machine learning in tropospheric ozone research, focusing on three main application areas in which significant progress has been made. Common challenges in using machine learning across the three areas are highlighted, and future directions for the field are indicated.
Hantao Wang, Kazuyuki Miyazaki, Haitong Zhe Sun, Zhen Qu, Xiang Liu, Antje Inness, Martin Schultz, Sabine Schröder, Marc Serre, and J. Jason West
EGUsphere, https://doi.org/10.5194/egusphere-2024-3723, https://doi.org/10.5194/egusphere-2024-3723, 2025
Short summary
Short summary
We compare six datasets of global ground-level ozone, developed using geostatistical, machine learning, or reanalysis methods. The datasets show important differences from one another in ozone magnitude, greater than 5 ppb, and trends, globally and regionally. Compared with measurements, performance varies among datasets, and most overestimate ozone, particularly at lower concentrations. These differences among datasets highlight uncertainties for applications to health and other impacts.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 24, 13503–13523, https://doi.org/10.5194/acp-24-13503-2024, https://doi.org/10.5194/acp-24-13503-2024, 2024
Short summary
Short summary
Anthropogenic emissions are a major source of precursors of tropospheric ozone. As ozone formation is highly non-linear, we apply a global–regional chemistry–climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. Our analysis shows that the contribution of European anthropogenic emissions largely increases during large ozone periods, indicating that emissions from these sectors drive ozone values.
William J. Collins, Fiona M. O'Connor, Connor R. Barker, Rachael E. Byrom, Sebastian D. Eastham, Øivind Hodnebrog, Patrick Jöckel, Eloise A. Marais, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble
EGUsphere, https://doi.org/10.5194/egusphere-2024-3698, https://doi.org/10.5194/egusphere-2024-3698, 2024
Short summary
Short summary
If reductions aren’t implemented to limit emissions of pollutants that produce ozone then we calculate that this will cause a warming of climate. We assess how the future warming from ozone is affected by changing meteorological variables such as clouds and atmospheric temperatures. We find that reductions in high cloud cover tend to slightly reduce the warming from ozone.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024, https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Short summary
This paper presents a new machine learning model that allows us to compute NO2 concentration profiles from satellite observations. A neural network was trained on synthetic data from the regional chemistry and transport model WRF-Chem. This is the first model of its kind. We present a thorough model validation study, covering various seasons and regions of the world.
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024, https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
Short summary
We quantified the contributions of land transport, shipping, and aviation emissions to tropospheric ozone; its radiative forcing; and the reductions of the methane lifetime using chemistry-climate model simulations. The contributions were analysed for the conditions of 2015 and for three projections for the year 2050. The results highlight the challenges of mitigating ozone formed by emissions of the transport sector, caused by the non-linearitiy of the ozone chemistry and the long lifetime.
Emma Sands, Richard J. Pope, Ruth M. Doherty, Fiona M. O'Connor, Chris Wilson, and Hugh Pumphrey
Atmos. Chem. Phys., 24, 11081–11102, https://doi.org/10.5194/acp-24-11081-2024, https://doi.org/10.5194/acp-24-11081-2024, 2024
Short summary
Short summary
Changes in vegetation alongside biomass burning impact regional atmospheric composition and air quality. Using satellite remote sensing, we find a clear linear relationship between forest cover and isoprene and a pronounced non-linear relationship between burned area and nitrogen dioxide in the southern Amazon, a region of substantial deforestation. These quantified relationships can be used for model evaluation and further exploration of biosphere-atmosphere interactions in Earth System Models.
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024, https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Short summary
We demonstrate that strong climate mitigation could improve air quality in Europe; however, less ambitious mitigation does not result in these co-benefits. We use a high-resolution atmospheric chemistry model. This allows us to demonstrate how this varies across European countries and analyse the underlying chemistry. This may help policy-facing researchers understand which sectors and regions need to be prioritised to achieve strong air quality co-benefits of climate mitigation.
Paul T. Griffiths, Laura J. Wilcox, Robert J. Allen, Vaishali Naik, Fiona M. O'Connor, Michael J. Prather, Alexander T. Archibald, Florence Brown, Makoto Deushi, William Collins, Stephanie Fiedler, Naga Oshima, Lee T. Murray, Christopher J. Smith, Steven T. Turnock, Duncan Watson-Parris, and Paul J. Young
EGUsphere, https://doi.org/10.5194/egusphere-2024-2528, https://doi.org/10.5194/egusphere-2024-2528, 2024
Short summary
Short summary
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) aimed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. In this paper, we review its contribution to AR6, and the wider understanding of the role of these species in climate and climate change. We identify remaining challenges concluding with recommendations aimed to improve the utility and uptake of climate model data to address the role of short-lived climate forcers in the Earth system.
Pierluigi Renan Guaita, Riccardo Marzuoli, Leiming Zhang, Steven Turnock, Gerbrand Koren, Oliver Wild, Paola Crippa, and Giacomo Alessandro Gerosa
EGUsphere, https://doi.org/10.5194/egusphere-2024-2573, https://doi.org/10.5194/egusphere-2024-2573, 2024
Preprint archived
Short summary
Short summary
This study assesses the global impact of tropospheric ozone on wheat crops in the 21st century under various climate scenarios. The research highlights that ozone damage to wheat varies by region and depends on both ozone levels and climate. Vulnerable regions include East Asia, Northern Europe, and the Southern and Eastern edges of the Tibetan Plateau. Our results emphasize the need of policies to reduce ozone levels and mitigate climate change to protect global food security.
Richard J. Pope, Fiona M. O'Connor, Mohit Dalvi, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Brice Barret, Eric Le Flochmoen, Anne Boynard, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, Catherine Wespes, and Richard Rigby
Atmos. Chem. Phys., 24, 9177–9195, https://doi.org/10.5194/acp-24-9177-2024, https://doi.org/10.5194/acp-24-9177-2024, 2024
Short summary
Short summary
Ozone is a potent air pollutant in the lower troposphere, with adverse impacts on human health. Satellite records of tropospheric ozone currently show large-scale inconsistencies in long-term trends. Our detailed study of the potential factors (e.g. satellite errors, where the satellite can observe ozone) potentially driving these inconsistencies found that, in North America, Europe, and East Asia, the underlying trends are typically small with large uncertainties.
Pantelis Georgiades, Matthias Kohl, Mihalis A. Nicolaou, Theodoros Christoudias, Andrea Pozzer, Constantine Dovrolis, and Jos Lelieveld
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-314, https://doi.org/10.5194/essd-2024-314, 2024
Manuscript not accepted for further review
Short summary
Short summary
This study maps global ultrafine particle (UFP) concentrations, pollutants known to affect health, using machine learning. By combining environmental and urban data, we predicted UFP levels at a fine 1 km resolution, highlighting areas of high exposure. Our results provide data for public health policies aimed at reducing air pollution impacts. This research bridges data gaps, offering a valuable tool for understanding and mitigating the health effects of UFP exposure.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024, https://doi.org/10.5194/gmd-17-2387-2024, 2024
Short summary
Short summary
Climate scientists want to better understand modern climate change. Thus, climate model experiments are performed and compared. The results of climate model experiments differ, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article gives insights into the challenges and outlines opportunities for further improving the understanding of climate change. It is based on views of a group of experts in atmospheric composition–climate interactions.
Simone Rodrigues, Glauber Cirino, Demerval Moreira, Andrea Pozzer, Rafael Palácios, Sung-Ching Lee, Breno Imbiriba, José Nogueira, Maria Isabel Vitorino, and George Vourlitis
Biogeosciences, 21, 843–868, https://doi.org/10.5194/bg-21-843-2024, https://doi.org/10.5194/bg-21-843-2024, 2024
Short summary
Short summary
The radiative effects of atmospheric particles are still unknown for a wide variety of species and types of vegetation present in Amazonian biomes. We examined the effects of aerosols on solar radiation and their impacts on photosynthesis in an area of semideciduous forest in the southern Amazon Basin. Under highly smoky-sky conditions, our results show substantial photosynthetic interruption (20–70 %), attributed specifically to the decrease in solar radiation and leaf canopy temperature.
Imran A. Girach, Narendra Ojha, Prabha R. Nair, Kandula V. Subrahmanyam, Neelakantan Koushik, Mohammed M. Nazeer, Nadimpally Kiran Kumar, Surendran Nair Suresh Babu, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 24, 1979–1995, https://doi.org/10.5194/acp-24-1979-2024, https://doi.org/10.5194/acp-24-1979-2024, 2024
Short summary
Short summary
We investigate surface ozone variability in East Antarctica based on measurements and EMAC global model simulations during austral summer. Nearly half of the surface ozone is found to be of stratospheric origin. The east coast of Antarctica acts as a stronger sink of ozone than surrounding regions. Photochemical loss of ozone is counterbalanced by downward transport of ozone. The study highlights the intertwined role of chemistry and dynamics in governing ozone variations over East Antarctica.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
Leon Kuhn, Steffen Beirle, Vinod Kumar, Sergey Osipov, Andrea Pozzer, Tim Bösch, Rajesh Kumar, and Thomas Wagner
Atmos. Chem. Phys., 24, 185–217, https://doi.org/10.5194/acp-24-185-2024, https://doi.org/10.5194/acp-24-185-2024, 2024
Short summary
Short summary
NO₂ is an important air pollutant. It was observed that the WRF-Chem model shows significant deviations in NO₂ abundance when compared to measurements. We use a 1-month simulation over central Europe to show that these deviations can be mostly resolved by reparameterization of the vertical mixing routine. In order to validate our results, they are compared to in situ, satellite, and MAX-DOAS measurements.
Meghna Soni, Rolf Sander, Lokesh K. Sahu, Domenico Taraborrelli, Pengfei Liu, Ankit Patel, Imran A. Girach, Andrea Pozzer, Sachin S. Gunthe, and Narendra Ojha
Atmos. Chem. Phys., 23, 15165–15180, https://doi.org/10.5194/acp-23-15165-2023, https://doi.org/10.5194/acp-23-15165-2023, 2023
Short summary
Short summary
The study presents the implementation of comprehensive multiphase chlorine chemistry in the box model CAABA/MECCA. Simulations for contrasting urban environments of Asia and Europe highlight the significant impacts of chlorine on atmospheric oxidation capacity and composition. Chemical processes governing the production and loss of chlorine-containing species has been discussed. The updated chemical mechanism will be useful to interpret field measurements and for future air quality studies.
Putian Zhou, Zhengyao Lu, Jukka-Pekka Keskinen, Qiong Zhang, Juha Lento, Jianpu Bian, Twan van Noije, Philippe Le Sager, Veli-Matti Kerminen, Markku Kulmala, Michael Boy, and Risto Makkonen
Clim. Past, 19, 2445–2462, https://doi.org/10.5194/cp-19-2445-2023, https://doi.org/10.5194/cp-19-2445-2023, 2023
Short summary
Short summary
A Green Sahara with enhanced rainfall and larger vegetation cover existed in northern Africa about 6000 years ago. Biosphere–atmosphere interactions are found to be critical to explaining this wet period. Based on modeled vegetation reconstruction data, we simulated dust emissions and aerosol formation, which are key factors in biosphere–atmosphere interactions. Our results also provide a benchmark of aerosol climatology for future paleo-climate simulation experiments.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Zhenze Liu, Oliver Wild, Ruth M. Doherty, Fiona M. O'Connor, and Steven T. Turnock
Atmos. Chem. Phys., 23, 13755–13768, https://doi.org/10.5194/acp-23-13755-2023, https://doi.org/10.5194/acp-23-13755-2023, 2023
Short summary
Short summary
We investigate the impact of net-zero policies on surface ozone pollution in China. A chemistry–climate model is used to simulate ozone changes driven by local and external emissions, methane, and warmer climates. A deep learning model is applied to generate more robust ozone projection, and we find that the benefits of net-zero policies may be overestimated with the chemistry–climate model. Nevertheless, it is clear that the policies can still substantially reduce ozone pollution in future.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Nicola J. Warwick, Alex T. Archibald, Paul T. Griffiths, James Keeble, Fiona M. O'Connor, John A. Pyle, and Keith P. Shine
Atmos. Chem. Phys., 23, 13451–13467, https://doi.org/10.5194/acp-23-13451-2023, https://doi.org/10.5194/acp-23-13451-2023, 2023
Short summary
Short summary
A chemistry–climate model has been used to explore the atmospheric response to changes in emissions of hydrogen and other species associated with a shift from fossil fuel to hydrogen use. Leakage of hydrogen results in indirect global warming, offsetting greenhouse gas emission reductions from reduced fossil fuel use. To maximise the benefit of hydrogen as an energy source, hydrogen leakage and emissions of methane, carbon monoxide and nitrogen oxides should be minimised.
Susanna Strada, Andrea Pozzer, Graziano Giuliani, Erika Coppola, Fabien Solmon, Xiaoyan Jiang, Alex Guenther, Efstratios Bourtsoukidis, Dominique Serça, Jonathan Williams, and Filippo Giorgi
Atmos. Chem. Phys., 23, 13301–13327, https://doi.org/10.5194/acp-23-13301-2023, https://doi.org/10.5194/acp-23-13301-2023, 2023
Short summary
Short summary
Water deficit modifies emissions of isoprene, an aromatic compound released by plants that influences the production of an air pollutant such as ozone. Numerical modelling shows that, during the warmest and driest summers, isoprene decreases between −20 and −60 % over the Euro-Mediterranean region, while near-surface ozone only diminishes by a few percent. Decreases in isoprene emissions not only happen under dry conditions, but also could occur after prolonged or repeated water deficits.
Matthias Kohl, Jos Lelieveld, Sourangsu Chowdhury, Sebastian Ehrhart, Disha Sharma, Yafang Cheng, Sachchida Nand Tripathi, Mathew Sebastian, Govindan Pandithurai, Hongli Wang, and Andrea Pozzer
Atmos. Chem. Phys., 23, 13191–13215, https://doi.org/10.5194/acp-23-13191-2023, https://doi.org/10.5194/acp-23-13191-2023, 2023
Short summary
Short summary
Knowledge on atmospheric ultrafine particles (UFPs) with a diameter smaller than 100 nm is crucial for public health and the hydrological cycle. We present a new global dataset of UFP concentrations at the Earth's surface derived with a comprehensive chemistry–climate model and evaluated with ground-based observations. The evaluation results are combined with high-resolution primary emissions to downscale UFP concentrations to an unprecedented horizontal resolution of 0.1° × 0.1°.
Clara M. Nussbaumer, Horst Fischer, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 23, 12651–12669, https://doi.org/10.5194/acp-23-12651-2023, https://doi.org/10.5194/acp-23-12651-2023, 2023
Short summary
Short summary
Ozone is a greenhouse gas and contributes to the earth’s radiative energy budget and therefore to global warming. This effect is the largest in the upper troposphere. In this study, we investigate the processes controlling ozone formation and the sensitivity to its precursors in the upper tropical troposphere based on model simulations by the ECHAM5/MESSy2 Atmospheric Chemistry (EMAC) model. We find that NO𝑥 emissions from lightning most importantly affect ozone chemistry at these altitudes.
Joao Carlos Martins Teixeira, Chantelle Burton, Douglas I. Kelly, Gerd A. Folberth, Fiona M. O'Connor, Richard A. Betts, and Apostolos Voulgarakis
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-136, https://doi.org/10.5194/bg-2023-136, 2023
Revised manuscript not accepted
Short summary
Short summary
Representing socio-economic impacts on fires is crucial to underpin the confidence in global fire models. Introducing these into INFERNO, reduces biases and improves the modelled burnt area (BA) trends when compared to observations. Including socio-economic factors in the representation of fires in Earth System Models is important for realistically simulating BA, quantifying trends in the recent past, and for understanding the main drivers of those at regional scales.
Yiqi Zheng, Larry W. Horowitz, Raymond Menzel, David J. Paynter, Vaishali Naik, Jingyi Li, and Jingqiu Mao
Atmos. Chem. Phys., 23, 8993–9007, https://doi.org/10.5194/acp-23-8993-2023, https://doi.org/10.5194/acp-23-8993-2023, 2023
Short summary
Short summary
Biogenic secondary organic aerosols (SOAs) account for a large fraction of fine aerosol at the global scale. Using long-term measurements and a climate model, we investigate anthropogenic impacts on biogenic SOA at both decadal and centennial timescales. Results show that despite reductions in biogenic precursor emissions, SOA has been strongly amplified by anthropogenic emissions since the preindustrial era and exerts a cooling radiative forcing.
Lukas Pichelstorfer, Pontus Roldin, Matti Rissanen, Noora Hyttinen, Olga Garmash, Carlton Xavier, Putian Zhou, Petri Clusius, Benjamin Foreback, Thomas Golin Almeida, Chenjuan Deng, Metin Baykara, Theo Kurten, and Michael Boy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1415, https://doi.org/10.5194/egusphere-2023-1415, 2023
Preprint archived
Short summary
Short summary
Secondary organic aerosols (SOA) form effectively from gaseous precursors via a process called autoxidation. While key chemical reaction types seem to be known, no general description of autoxidation chemistry exists. In the present work, we present a method to create autoxidation chemistry schemes for any atmospherically relevant hydrocarbon. We exemplarily investigate benzene and its potential to form aerosols. We found that autoxidation, under some conditions, can dominate the SOA formation.
Zaneta Hamryszczak, Dirk Dienhart, Bettina Brendel, Roland Rohloff, Daniel Marno, Monica Martinez, Hartwig Harder, Andrea Pozzer, Birger Bohn, Martin Zöger, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 23, 5929–5943, https://doi.org/10.5194/acp-23-5929-2023, https://doi.org/10.5194/acp-23-5929-2023, 2023
Short summary
Short summary
Hydrogen peroxide is a key contributor to the oxidative chemistry of the atmosphere through its link to the most prominent oxidants controlling its self-cleansing capacity, HOx. During the CAFE-Africa campaign, H2O2 was measured over the Atlantic Ocean and western Africa in August/September 2018. The study gives an overview of the distribution of H2O2 in the upper tropical troposphere and investigates the impact of convective processes in the Intertropical Convergence Zone on the budget of H2O2.
Glen Chua, Vaishali Naik, and Larry Wayne Horowitz
Atmos. Chem. Phys., 23, 4955–4975, https://doi.org/10.5194/acp-23-4955-2023, https://doi.org/10.5194/acp-23-4955-2023, 2023
Short summary
Short summary
The hydroxyl radical (OH) is an atmospheric
detergent, removing air pollutants and greenhouse gases like methane from the atmosphere. Thus, understanding how it is changing and responding to its various drivers is important for air quality and climate. We found that OH has increased by about 5 % globally from 1980 to 2014 in our model, mostly driven by increasing nitrogen oxide (NOx) emissions. This suggests potential climate tradeoffs from air quality policies solely targeting NOx emissions.
Robin N. Thor, Mariano Mertens, Sigrun Matthes, Mattia Righi, Johannes Hendricks, Sabine Brinkop, Phoebe Graf, Volker Grewe, Patrick Jöckel, and Steven Smith
Geosci. Model Dev., 16, 1459–1466, https://doi.org/10.5194/gmd-16-1459-2023, https://doi.org/10.5194/gmd-16-1459-2023, 2023
Short summary
Short summary
We report on an inconsistency in the latitudinal distribution of aviation emissions between two versions of a data product which is widely used by researchers. From the available documentation, we do not expect such an inconsistency. We run a chemistry–climate model to compute the effect of the inconsistency in emissions on atmospheric chemistry and radiation and find that the radiative forcing associated with aviation ozone is 7.6 % higher when using the less recent version of the data.
Zixuan Jia, Carlos Ordóñez, Ruth M. Doherty, Oliver Wild, Steven T. Turnock, and Fiona M. O'Connor
Atmos. Chem. Phys., 23, 2829–2842, https://doi.org/10.5194/acp-23-2829-2023, https://doi.org/10.5194/acp-23-2829-2023, 2023
Short summary
Short summary
This study investigates the influence of the winter large-scale circulation on daily concentrations of PM2.5 and their sensitivity to emissions. The new proposed circulation index can effectively distinguish different levels of air pollution and explain changes in PM2.5 sensitivity to emissions from local and surrounding regions. We then project future changes in PM2.5 concentrations using this index and find an increase in PM2.5 concentrations over the region due to climate change.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Mohamed Abdelkader, Georgiy Stenchikov, Andrea Pozzer, Holger Tost, and Jos Lelieveld
Atmos. Chem. Phys., 23, 471–500, https://doi.org/10.5194/acp-23-471-2023, https://doi.org/10.5194/acp-23-471-2023, 2023
Short summary
Short summary
We study the effect of injected volcanic ash, water vapor, and SO2 on the development of the volcanic cloud and the stratospheric aerosol optical depth (AOD). Both are sensitive to the initial injection height and to the aging of the volcanic ash shaped by heterogeneous chemistry coupled with the ozone cycle. The paper explains the large differences in AOD for different injection scenarios, which could improve the estimate of the radiative forcing of volcanic eruptions.
Dirk Dienhart, Bettina Brendel, John N. Crowley, Philipp G. Eger, Hartwig Harder, Monica Martinez, Andrea Pozzer, Roland Rohloff, Jan Schuladen, Sebastian Tauer, David Walter, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 23, 119–142, https://doi.org/10.5194/acp-23-119-2023, https://doi.org/10.5194/acp-23-119-2023, 2023
Short summary
Short summary
Formaldehyde and hydroperoxide measurements were performed in the marine boundary layer around the Arabian Peninsula and highlight the Suez Canal and Arabian (Persian) Gulf as a hotspot of photochemical air pollution. A comparison with the EMAC model shows that the formaldehyde results match within a factor of 2, while hydrogen peroxide was overestimated by more than a factor of 5, which revealed enhanced HOx (OH+HO2) radicals in the simulation and an underestimation of dry deposition velocites.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Petri Clusius, Carlton Xavier, Lukas Pichelstorfer, Putian Zhou, Tinja Olenius, Pontus Roldin, and Michael Boy
Geosci. Model Dev., 15, 7257–7286, https://doi.org/10.5194/gmd-15-7257-2022, https://doi.org/10.5194/gmd-15-7257-2022, 2022
Short summary
Short summary
Atmospheric chemistry and aerosol processes form a dynamic and sensitively balanced system, and solving problems regarding air quality or climate requires detailed modelling and coupling of the processes. The models involved are often very complex to use. We have addressed this problem with the new ARCA box model. It puts much of the current knowledge of the nano- and microscale aerosol dynamics and chemistry into usable software and has the potential to become a valuable tool in the community.
Zhenze Liu, Ruth M. Doherty, Oliver Wild, Fiona M. O'Connor, and Steven T. Turnock
Atmos. Chem. Phys., 22, 12543–12557, https://doi.org/10.5194/acp-22-12543-2022, https://doi.org/10.5194/acp-22-12543-2022, 2022
Short summary
Short summary
Weaknesses in process representation in chemistry–climate models lead to biases in simulating surface ozone and to uncertainty in projections of future ozone change. We develop a deep learning model to demonstrate the feasibility of ozone bias correction and show its capability in providing improved assessments of the impacts of climate and emission changes on future air quality, along with valuable information to guide future model development.
Mengze Li, Andrea Pozzer, Jos Lelieveld, and Jonathan Williams
Earth Syst. Sci. Data, 14, 4351–4364, https://doi.org/10.5194/essd-14-4351-2022, https://doi.org/10.5194/essd-14-4351-2022, 2022
Short summary
Short summary
We present a northern hemispheric airborne measurement dataset of atmospheric ethane, propane and methane and temporal trends for the time period 2006–2016 in the upper troposphere and lower stratosphere. The growth rates of ethane, methane, and propane in the upper troposphere are -2.24, 0.33, and -0.78 % yr-1, respectively, and in the lower stratosphere they are -3.27, 0.26, and -4.91 % yr-1, respectively, in 2006–2016.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Zaneta T. Hamryszczak, Andrea Pozzer, Florian Obersteiner, Birger Bohn, Benedikt Steil, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 22, 9483–9497, https://doi.org/10.5194/acp-22-9483-2022, https://doi.org/10.5194/acp-22-9483-2022, 2022
Short summary
Short summary
Hydrogen peroxide plays a pivotal role in the chemistry of the atmosphere. Together with organic hydroperoxides, it forms a reservoir for peroxy radicals, which are known to be the key contributors to the self-cleaning processes of the atmosphere. Hydroperoxides were measured over Europe during the BLUESKY campaign in May–June 2020. The paper gives an overview of the distribution of the species in the troposphere and investigates the impact of wet scavenging and deposition on the budget of H2O2.
Ovid O. Krüger, Bruna A. Holanda, Sourangsu Chowdhury, Andrea Pozzer, David Walter, Christopher Pöhlker, Maria Dolores Andrés Hernández, John P. Burrows, Christiane Voigt, Jos Lelieveld, Johannes Quaas, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 22, 8683–8699, https://doi.org/10.5194/acp-22-8683-2022, https://doi.org/10.5194/acp-22-8683-2022, 2022
Short summary
Short summary
The abrupt reduction in human activities during the first COVID-19 lockdown created unprecedented atmospheric conditions. We took the opportunity to quantify changes in black carbon (BC) as a major anthropogenic air pollutant. Therefore, we measured BC on board a research aircraft over Europe during the lockdown and compared the results to measurements from 2017. With model simulations we account for different weather conditions and find a lockdown-related decrease in BC of 41 %.
Shipra Jain, Ruth M. Doherty, David Sexton, Steven Turnock, Chaofan Li, Zixuan Jia, Zongbo Shi, and Lin Pei
Atmos. Chem. Phys., 22, 7443–7460, https://doi.org/10.5194/acp-22-7443-2022, https://doi.org/10.5194/acp-22-7443-2022, 2022
Short summary
Short summary
We provide a range of future projections of winter haze and clear conditions over the North China Plain (NCP) using multiple simulations from a climate model for the high-emission scenario (RCP8.5). The frequency of haze conducive weather is likely to increase whereas the frequency of clear weather is likely to decrease in future. The total number of hazy days for a given winter can be as much as ˜3.5 times higher than the number of clear days over the NCP.
Dimitris Akritidis, Andrea Pozzer, Johannes Flemming, Antje Inness, Philippe Nédélec, and Prodromos Zanis
Atmos. Chem. Phys., 22, 6275–6289, https://doi.org/10.5194/acp-22-6275-2022, https://doi.org/10.5194/acp-22-6275-2022, 2022
Short summary
Short summary
We perform a process-oriented evaluation of Copernicus Atmosphere Monitoring Service (CAMS) reanalysis (CAMSRA) O3 over Europe using WOUDC (World Ozone and Ultraviolet Radiation Data Centre) ozonesondes and IAGOS (In-service Aircraft for a Global Observing System) aircraft measurements. Chemical data assimilation assists CAMSRA to reproduce the observed O3 increases in the troposphere during the examined folding events, but it mostly results in O3 overestimation in the upper troposphere.
Clara M. Nussbaumer, Andrea Pozzer, Ivan Tadic, Lenard Röder, Florian Obersteiner, Hartwig Harder, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 22, 6151–6165, https://doi.org/10.5194/acp-22-6151-2022, https://doi.org/10.5194/acp-22-6151-2022, 2022
Short summary
Short summary
The European COVID-19 lockdowns have significantly reduced the emission of primary pollutants such as NOx, which impacts the tropospheric photochemical processes and the abundance of O3. In this study, we present how the lockdowns have affected tropospheric trace gases and ozone production based on in situ observations and modeling simulations. We additionally show that the chemical regime shifted from a transition point to a NOx limitation in the upper troposphere.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Wenyu Sun, Matias Berasategui, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 4969–4984, https://doi.org/10.5194/acp-22-4969-2022, https://doi.org/10.5194/acp-22-4969-2022, 2022
Short summary
Short summary
The reaction between OH and SO2 is a termolecular process that in the atmosphere results in the formation of H2SO4 and thus aerosols. We present the first temperature- and pressure-dependent measurements of the rate coefficients in N2. This is also the first study to examine the effects of water vapour on the kinetics of this reaction. Our results indicate the rate coefficient is larger than that recommended by evaluation panels, with deviations of up to 30 % in some parts of the atmosphere.
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
Henry Bowman, Steven Turnock, Susanne E. Bauer, Kostas Tsigaridis, Makoto Deushi, Naga Oshima, Fiona M. O'Connor, Larry Horowitz, Tongwen Wu, Jie Zhang, Dagmar Kubistin, and David D. Parrish
Atmos. Chem. Phys., 22, 3507–3524, https://doi.org/10.5194/acp-22-3507-2022, https://doi.org/10.5194/acp-22-3507-2022, 2022
Short summary
Short summary
A full understanding of ozone in the troposphere requires investigation of its temporal variability over all timescales. Model simulations show that the northern midlatitude ozone seasonal cycle shifted with industrial development (1850–2014), with an increasing magnitude and a later summer peak. That shift reached a maximum in the mid-1980s, followed by a reversal toward the preindustrial cycle. The few available observations, beginning in the 1970s, are consistent with the model simulations.
Zhenze Liu, Ruth M. Doherty, Oliver Wild, Fiona M. O'Connor, and Steven T. Turnock
Atmos. Chem. Phys., 22, 1209–1227, https://doi.org/10.5194/acp-22-1209-2022, https://doi.org/10.5194/acp-22-1209-2022, 2022
Short summary
Short summary
Tropospheric ozone is important to future air quality and climate, and changing emissions and climate influence ozone. We investigate the evolution of ozone and ozone sensitivity from the present day (2004–2014) to the future (2045–2055) and explore the main drivers of ozone changes from global and regional perspectives. This helps guide suitable emission control strategies to mitigate ozone pollution.
Guangjie Zheng, Hang Su, Siwen Wang, Andrea Pozzer, and Yafang Cheng
Atmos. Chem. Phys., 22, 47–63, https://doi.org/10.5194/acp-22-47-2022, https://doi.org/10.5194/acp-22-47-2022, 2022
Short summary
Short summary
The recently proposed multiphase buffer theory provides a framework to reconstruct long-term trends and spatial variations in aerosol pH, while non-ideality is a major limitation for its broad applications. Here we proposed a parameterization method to estimate the impact of non-ideality and validated it against long-term observations and global simulations. With this method, the multiphase buffer theory can reproduce well aerosol pH variations estimated by comprehensive thermodynamic models.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021, https://doi.org/10.5194/acp-21-18609-2021, 2021
Short summary
Short summary
The CMIP6 ESMs systematically underestimate TAS anomalies in the NH midlatitudes, especially from 1960 to 1990. The anomalous cooling is concurrent in time and space with anthropogenic SO2 emissions. The spurious drop in TAS is attributed to the overestimated aerosol concentrations. The aerosol forcing sensitivity cannot well explain the inter-model spread of PHC biases. And the cloud-amount term accounts for most of the inter-model spread in aerosol forcing sensitivity.
Catherine Hardacre, Jane P. Mulcahy, Richard J. Pope, Colin G. Jones, Steven T. Rumbold, Can Li, Colin Johnson, and Steven T. Turnock
Atmos. Chem. Phys., 21, 18465–18497, https://doi.org/10.5194/acp-21-18465-2021, https://doi.org/10.5194/acp-21-18465-2021, 2021
Short summary
Short summary
We investigate UKESM1's ability to represent the sulfur (S) cycle in the recent historical period. The S cycle is a key driver of historical radiative forcing. Earth system models such as UKESM1 should represent the S cycle well so that we can have confidence in their projections of future climate. We compare UKESM1 to observations of sulfur compounds, finding that the model generally performs well. We also identify areas for UKESM1’s development, focussing on how SO2 is removed from the air.
João C. Teixeira, Gerd A. Folberth, Fiona M. O'Connor, Nadine Unger, and Apostolos Voulgarakis
Geosci. Model Dev., 14, 6515–6539, https://doi.org/10.5194/gmd-14-6515-2021, https://doi.org/10.5194/gmd-14-6515-2021, 2021
Short summary
Short summary
Fire constitutes a key process in the Earth system, being driven by climate as well as affecting climate. However, studies on the effects of fires on atmospheric composition and climate have been limited to date. This work implements and assesses the coupling of an interactive fire model with atmospheric composition, comparing it to an offline approach. This approach shows good performance at a global scale. However, regional-scale limitations lead to a bias in modelling fire emissions.
Anthony C. Jones, Adrian Hill, Samuel Remy, N. Luke Abraham, Mohit Dalvi, Catherine Hardacre, Alan J. Hewitt, Ben Johnson, Jane P. Mulcahy, and Steven T. Turnock
Atmos. Chem. Phys., 21, 15901–15927, https://doi.org/10.5194/acp-21-15901-2021, https://doi.org/10.5194/acp-21-15901-2021, 2021
Short summary
Short summary
Ammonium nitrate is hard to model because it forms and evaporates rapidly. One approach is to relate its equilibrium concentration to temperature, humidity, and the amount of nitric acid and ammonia gases. Using this approach, we limit the rate at which equilibrium is reached using various condensation rates in a climate model. We show that ammonium nitrate concentrations are highly sensitive to the condensation rate. Our results will help improve the representation of nitrate in climate models.
Vlassis A. Karydis, Alexandra P. Tsimpidi, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 21, 14983–15001, https://doi.org/10.5194/acp-21-14983-2021, https://doi.org/10.5194/acp-21-14983-2021, 2021
Short summary
Short summary
Aerosol particle pH is well-buffered by alkaline compounds, notably NH3 and crustal elements. NH3 is found to supply remarkable buffering capacity on a global scale, from the polluted continents to the remote oceans. Potential future changes in agricultural NH3 must be accompanied by strong reductions of SO2 and NOx to avoid particles becoming highly acidic, with implications for human health (aerosol toxicity), ecosystems (acid deposition), clouds, and climate (aerosol hygroscopicity).
Liang Guo, Laura J. Wilcox, Massimo Bollasina, Steven T. Turnock, Marianne T. Lund, and Lixia Zhang
Atmos. Chem. Phys., 21, 15299–15308, https://doi.org/10.5194/acp-21-15299-2021, https://doi.org/10.5194/acp-21-15299-2021, 2021
Short summary
Short summary
Severe haze remains serious over Beijing despite emissions decreasing since 2008. Future haze changes in four scenarios are studied. The pattern conducive to haze weather increases with the atmospheric warming caused by the accumulation of greenhouse gases. However, the actual haze intensity, measured by either PM2.5 or optical depth, decreases with aerosol emissions. We show that only using the weather pattern index to predict the future change of Beijing haze is insufficient.
Andrea Pozzer
Geosci. Commun., 4, 453–460, https://doi.org/10.5194/gc-4-453-2021, https://doi.org/10.5194/gc-4-453-2021, 2021
Short summary
Short summary
In this paper we investigate the numbers of pages, references and references per page in open-access EGU journals. We showed that, while the number of references and number of pages have been constantly increasing in the period 2010–2020, the number of references per page did not change in the same period. Furthermore, all the journals showed a similar number of references per page, i.e. ~ 3.8 references per page.
Philipp G. Eger, Luc Vereecken, Rolf Sander, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Ville Vakkari, Tuukka Petäjä, Jos Lelieveld, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 21, 14333–14349, https://doi.org/10.5194/acp-21-14333-2021, https://doi.org/10.5194/acp-21-14333-2021, 2021
Short summary
Short summary
We determine the impact of pyruvic acid photolysis on the formation of acetaldehyde and peroxy radicals during summer and autumn in the Finnish boreal forest using a data-constrained box model. Our results are dependent on the chosen scenario in which the overall quantum yield and the photolysis products are varied. We highlight that pyruvic acid photolysis can be an important contributor to acetaldehyde and peroxy radical formation in remote, forested regions.
Zhuohui Lin, Yonghong Wang, Feixue Zheng, Ying Zhou, Yishuo Guo, Zemin Feng, Chang Li, Yusheng Zhang, Simo Hakala, Tommy Chan, Chao Yan, Kaspar R. Daellenbach, Biwu Chu, Lubna Dada, Juha Kangasluoma, Lei Yao, Xiaolong Fan, Wei Du, Jing Cai, Runlong Cai, Tom V. Kokkonen, Putian Zhou, Lili Wang, Tuukka Petäjä, Federico Bianchi, Veli-Matti Kerminen, Yongchun Liu, and Markku Kulmala
Atmos. Chem. Phys., 21, 12173–12187, https://doi.org/10.5194/acp-21-12173-2021, https://doi.org/10.5194/acp-21-12173-2021, 2021
Short summary
Short summary
We find that ammonium nitrate and aerosol water content contributed most during low mixing layer height conditions; this may further trigger enhanced formation of sulfate and organic aerosol via heterogeneous reactions. The results of this study contribute towards a more detailed understanding of the aerosol–chemistry–radiation–boundary layer feedback that is likely to be responsible for explosive aerosol mass growth events in urban Beijing.
Vinod Kumar, Julia Remmers, Steffen Beirle, Joachim Fallmann, Astrid Kerkweg, Jos Lelieveld, Mariano Mertens, Andrea Pozzer, Benedikt Steil, Marc Barra, Holger Tost, and Thomas Wagner
Atmos. Meas. Tech., 14, 5241–5269, https://doi.org/10.5194/amt-14-5241-2021, https://doi.org/10.5194/amt-14-5241-2021, 2021
Short summary
Short summary
We present high-resolution regional atmospheric chemistry model simulations focused around Germany. We highlight the importance of spatial resolution of the model itself as well as the input emissions inventory and short-scale temporal variability of emissions for simulations. We propose a consistent approach for evaluating the simulated vertical distribution of NO2 using MAX-DOAS measurements while also considering its spatial sensitivity volume and change in sensitivity within this volume.
Simon Rosanka, Bruno Franco, Lieven Clarisse, Pierre-François Coheur, Andrea Pozzer, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys., 21, 11257–11288, https://doi.org/10.5194/acp-21-11257-2021, https://doi.org/10.5194/acp-21-11257-2021, 2021
Short summary
Short summary
The strong El Niño in 2015 led to a particular dry season in Indonesia and favoured severe peatland fires. The smouldering conditions of these fires and the high carbon content of peat resulted in high volatile organic compound (VOC) emissions. By using a comprehensive atmospheric model, we show that these emissions have a significant impact on the tropospheric composition and oxidation capacity. These emissions are transported into to the lower stratosphere, resulting in a depletion of ozone.
Tamara Emmerichs, Bruno Franco, Catherine Wespes, Vinod Kumar, Andrea Pozzer, Simon Rosanka, and Domenico Taraborrelli
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-584, https://doi.org/10.5194/acp-2021-584, 2021
Revised manuscript not accepted
Short summary
Short summary
Near-surface ozone is a harmful air pollutant and it is strongly affected by radical reactions and surface-atmosphere exchanges which in turn are modulated, directly and indirectly, by weather. Understanding the impact of weather on ozone, and air quality, is thus important also in view of weather extremes. The inclusion of additional ozone-weather links in the global model yields a 2-fold reduction of the ozone bias towards satellite observations.
Zhenze Liu, Ruth M. Doherty, Oliver Wild, Michael Hollaway, and Fiona M. O’Connor
Atmos. Chem. Phys., 21, 10689–10706, https://doi.org/10.5194/acp-21-10689-2021, https://doi.org/10.5194/acp-21-10689-2021, 2021
Short summary
Short summary
Surface ozone (O3) has become the main cause of atmospheric pollution in the summertime in China since 2013. We find that 70 % reductions in NOx emissions are required to reduce O3 pollution in most of industrial regions of China, and controls in VOC emissions are very important. The new chemical scheme developed for a global chemistry–climate model not only captures the regional air pollution but also benefits the future studies of regional air-quality–climate interactions.
Ramiro Checa-Garcia, Yves Balkanski, Samuel Albani, Tommi Bergman, Ken Carslaw, Anne Cozic, Chris Dearden, Beatrice Marticorena, Martine Michou, Twan van Noije, Pierre Nabat, Fiona M. O'Connor, Dirk Olivié, Joseph M. Prospero, Philippe Le Sager, Michael Schulz, and Catherine Scott
Atmos. Chem. Phys., 21, 10295–10335, https://doi.org/10.5194/acp-21-10295-2021, https://doi.org/10.5194/acp-21-10295-2021, 2021
Short summary
Short summary
Thousands of tons of dust are emitted into the atmosphere every year, producing important impacts on the Earth system. However, current global climate models are not yet able to reproduce dust emissions, transport and depositions with the desirable accuracy. Our study analyses five different Earth system models to report aspects to be improved to reproduce better available observations, increase the consistency between models and therefore decrease the current uncertainties.
David D. Parrish, Richard G. Derwent, Steven T. Turnock, Fiona M. O'Connor, Johannes Staehelin, Susanne E. Bauer, Makoto Deushi, Naga Oshima, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 21, 9669–9679, https://doi.org/10.5194/acp-21-9669-2021, https://doi.org/10.5194/acp-21-9669-2021, 2021
Short summary
Short summary
The few ozone measurements made before the 1980s indicate that industrial development increased ozone concentrations by a factor of ~ 2 at northern midlatitudes, which are now larger than at southern midlatitudes. This difference was much smaller, and likely reversed, in the pre-industrial atmosphere. Earth system models find similar increases, but not higher pre-industrial ozone in the south. This disagreement may indicate that modeled natural ozone sources and/or deposition loss are inadequate.
Ivan Tadic, Clara M. Nussbaumer, Birger Bohn, Hartwig Harder, Daniel Marno, Monica Martinez, Florian Obersteiner, Uwe Parchatka, Andrea Pozzer, Roland Rohloff, Martin Zöger, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 8195–8211, https://doi.org/10.5194/acp-21-8195-2021, https://doi.org/10.5194/acp-21-8195-2021, 2021
Short summary
Short summary
Although mechanisms of tropospheric ozone (O3) formation are well understood, studies reporting on ozone formation derived from field measurements are challenging and remain sparse in number. We use airborne measurements to quantify nitric oxide (NO) and O3 distributions in the upper troposphere over the Atlantic Ocean and western Africa and compare our measurements to model simulations. Our results show that NO and ozone formation are greatest over the tropical areas of western Africa.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Paul T. Griffiths, Lee T. Murray, Guang Zeng, Youngsub Matthew Shin, N. Luke Abraham, Alexander T. Archibald, Makoto Deushi, Louisa K. Emmons, Ian E. Galbally, Birgit Hassler, Larry W. Horowitz, James Keeble, Jane Liu, Omid Moeini, Vaishali Naik, Fiona M. O'Connor, Naga Oshima, David Tarasick, Simone Tilmes, Steven T. Turnock, Oliver Wild, Paul J. Young, and Prodromos Zanis
Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, https://doi.org/10.5194/acp-21-4187-2021, 2021
Short summary
Short summary
We analyse the CMIP6 Historical and future simulations for tropospheric ozone, a species which is important for many aspects of atmospheric chemistry. We show that the current generation of models agrees well with observations, being particularly successful in capturing trends in surface ozone and its vertical distribution in the troposphere. We analyse the factors that control ozone and show that they evolve over the period of the CMIP6 experiments.
Jaydeep Singh, Narendra Singh, Narendra Ojha, Amit Sharma, Andrea Pozzer, Nadimpally Kiran Kumar, Kunjukrishnapillai Rajeev, Sachin S. Gunthe, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 1427–1443, https://doi.org/10.5194/gmd-14-1427-2021, https://doi.org/10.5194/gmd-14-1427-2021, 2021
Short summary
Short summary
Atmospheric models often have limitations in simulating the geographically complex and climatically important central Himalayan region. In this direction, we have performed regional modeling at high resolutions to improve the simulation of meteorology and dynamics through a better representation of the topography. The study has implications for further model applications to investigate the effects of anthropogenic pressure over the Himalaya.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021, https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
Short summary
Atmospheric pollutants from anthropogenic activities and biomass burning are usually regarded as ozone precursors. Monocyclic aromatics are no exception. Calculations with a comprehensive atmospheric model are consistent with this view but only for air masses close to pollution source regions. However, the same model predicts that aromatics, when transported to remote areas, may effectively destroy ozone. This loss of tropospheric ozone rivals the one attributed to bromine.
Kamalika Sengupta, Kirsty Pringle, Jill S. Johnson, Carly Reddington, Jo Browse, Catherine E. Scott, and Ken Carslaw
Atmos. Chem. Phys., 21, 2693–2723, https://doi.org/10.5194/acp-21-2693-2021, https://doi.org/10.5194/acp-21-2693-2021, 2021
Short summary
Short summary
Global models consistently underestimate atmospheric secondary organic aerosol (SOA), which has significant climatic implications. We use a perturbed parameter model ensemble and ground-based observations to reduce the uncertainty in modelling SOA formation from oxidation of volatile organic compounds. We identify plausible parameter spaces for the yields of extremely low-volatility, low-volatility, and semi-volatile organic compounds based on model–observation match for three key model outputs.
Trang Van Pham, Christian Steger, Burkhardt Rockel, Klaus Keuler, Ingo Kirchner, Mariano Mertens, Daniel Rieger, Günther Zängl, and Barbara Früh
Geosci. Model Dev., 14, 985–1005, https://doi.org/10.5194/gmd-14-985-2021, https://doi.org/10.5194/gmd-14-985-2021, 2021
Short summary
Short summary
A new regional climate model was prepared based on a weather forecast model. Slow processes of the climate system such as ocean state development and greenhouse gas emissions were implemented. A model infrastructure and evaluation tools were also prepared to facilitate long-term simulations and model evalution. The first ICON-CLM results were close to observations and comparable to those from COSMO-CLM, the recommended model being used at the Deutscher Wetterdienst and CLM Community.
Sara Bacer, Sylvia C. Sullivan, Odran Sourdeval, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 21, 1485–1505, https://doi.org/10.5194/acp-21-1485-2021, https://doi.org/10.5194/acp-21-1485-2021, 2021
Short summary
Short summary
We investigate the relative importance of the rates of both microphysical processes and unphysical correction terms that act as sources or sinks of ice crystals in cold clouds. By means of numerical simulations performed with a global chemistry–climate model, we assess the relevance of these rates at global and regional scales. This estimation is of fundamental importance to assign priority to the development of microphysics parameterizations and compare model output with observations.
Fiona M. O'Connor, N. Luke Abraham, Mohit Dalvi, Gerd A. Folberth, Paul T. Griffiths, Catherine Hardacre, Ben T. Johnson, Ron Kahana, James Keeble, Byeonghyeon Kim, Olaf Morgenstern, Jane P. Mulcahy, Mark Richardson, Eddy Robertson, Jeongbyn Seo, Sungbo Shim, João C. Teixeira, Steven T. Turnock, Jonny Williams, Andrew J. Wiltshire, Stephanie Woodward, and Guang Zeng
Atmos. Chem. Phys., 21, 1211–1243, https://doi.org/10.5194/acp-21-1211-2021, https://doi.org/10.5194/acp-21-1211-2021, 2021
Short summary
Short summary
This paper calculates how changes in emissions and/or concentrations of different atmospheric constituents since the pre-industrial era have altered the Earth's energy budget at the present day using a metric called effective radiative forcing. The impact of land use change is also assessed. We find that individual contributions do not add linearly, and different Earth system interactions can affect the magnitude of the calculated effective radiative forcing.
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary
Short summary
We find that increased temperatures affect aerosols and reactive gases by changing natural emissions and their rates of removal from the atmosphere. Changing the composition of these species in the atmosphere affects the radiative budget of the climate system and therefore amplifies or dampens the climate response of climate models of the Earth system. This study found that the largest effect is a dampening of climate change as warmer temperatures increase the emissions of cooling aerosols.
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary
Short summary
This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Dimitris Akritidis, Eleni Katragkou, Aristeidis K. Georgoulias, Prodromos Zanis, Stergios Kartsios, Johannes Flemming, Antje Inness, John Douros, and Henk Eskes
Atmos. Chem. Phys., 20, 13557–13578, https://doi.org/10.5194/acp-20-13557-2020, https://doi.org/10.5194/acp-20-13557-2020, 2020
Short summary
Short summary
We assess the Copernicus Atmosphere Monitoring Service (CAMS) global and regional forecasts performance during a complex aerosol transport event over Europe induced by the passage of Storm Ophelia in mid-October 2017. Comparison with satellite observations reveals a satisfactory performance of CAMS global forecast assisted by data assimilation, while comparison with ground-based measurements indicates that the CAMS regional system over-performs compared to the global one in terms of air quality.
David S. Stevenson, Alcide Zhao, Vaishali Naik, Fiona M. O'Connor, Simone Tilmes, Guang Zeng, Lee T. Murray, William J. Collins, Paul T. Griffiths, Sungbo Shim, Larry W. Horowitz, Lori T. Sentman, and Louisa Emmons
Atmos. Chem. Phys., 20, 12905–12920, https://doi.org/10.5194/acp-20-12905-2020, https://doi.org/10.5194/acp-20-12905-2020, 2020
Short summary
Short summary
We present historical trends in atmospheric oxidizing capacity (OC) since 1850 from the latest generation of global climate models and compare these with estimates from measurements. OC controls levels of many key reactive gases, including methane (CH4). We find small model trends up to 1980, then increases of about 9 % up to 2014, disagreeing with (uncertain) measurement-based trends. Major drivers of OC trends are emissions of CH4, NOx, and CO; these will be important for future CH4 trends.
Bettina Hottmann, Sascha Hafermann, Laura Tomsche, Daniel Marno, Monica Martinez, Hartwig Harder, Andrea Pozzer, Marco Neumaier, Andreas Zahn, Birger Bohn, Greta Stratmann, Helmut Ziereis, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 20, 12655–12673, https://doi.org/10.5194/acp-20-12655-2020, https://doi.org/10.5194/acp-20-12655-2020, 2020
Short summary
Short summary
During OMO we observed enhanced mixing ratios of hydroperoxides (ROOH) in the Asian monsoon anticyclone (AMA) relative to the background. The observed mixing ratios are higher than steady-state calculations and EMAC simulations, especially in the AMA, indicating atmospheric transport of ROOH. Uncertainties in the scavenging efficiencies likely cause deviations from EMAC. Longitudinal gradients indicate a pool of ROOH towards the center of the AMA associated with upwind convection over India.
Ben Silver, Luke Conibear, Carly L. Reddington, Christoph Knote, Steve R. Arnold, and Dominick V. Spracklen
Atmos. Chem. Phys., 20, 11683–11695, https://doi.org/10.5194/acp-20-11683-2020, https://doi.org/10.5194/acp-20-11683-2020, 2020
Short summary
Short summary
China suffers from serious air pollution, which is thought to cause millions of early deaths each year. Measurements on the ground show that overall air quality is improving. Air quality is also affected by weather conditions, which can vary from year to year. We conduct computer simulations to show it is the reduction of the amount of pollution emitted, rather than weather conditions, which caused air quality to improve during 2015–2017. We then estimate that 150 000 fewer people die early.
Nijing Wang, Achim Edtbauer, Christof Stönner, Andrea Pozzer, Efstratios Bourtsoukidis, Lisa Ernle, Dirk Dienhart, Bettina Hottmann, Horst Fischer, Jan Schuladen, John N. Crowley, Jean-Daniel Paris, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 20, 10807–10829, https://doi.org/10.5194/acp-20-10807-2020, https://doi.org/10.5194/acp-20-10807-2020, 2020
Short summary
Short summary
Carbonyl compounds were measured on a ship travelling around the Arabian Peninsula in summer 2017, crossing both highly polluted and extremely clean regions of the marine boundary layer. We investigated the sources and sinks of carbonyls. The results from a global model showed a significant model underestimation for acetaldehyde, a molecule that can influence regional air chemistry. By adding a diurnal oceanic source, the model estimation was highly improved.
Li Zhang, Meiyun Lin, Andrew O. Langford, Larry W. Horowitz, Christoph J. Senff, Elizabeth Klovenski, Yuxuan Wang, Raul J. Alvarez II, Irina Petropavlovskikh, Patrick Cullis, Chance W. Sterling, Jeff Peischl, Thomas B. Ryerson, Steven S. Brown, Zachary C. J. Decker, Guillaume Kirgis, and Stephen Conley
Atmos. Chem. Phys., 20, 10379–10400, https://doi.org/10.5194/acp-20-10379-2020, https://doi.org/10.5194/acp-20-10379-2020, 2020
Short summary
Short summary
Measuring and quantifying the sources of elevated springtime ozone in the southwestern US is challenging but relevant to the implications for control policy. Here we use intensive field measurements and two global models to study ozone sources in the region. We find that ozone from the stratosphere, wildfires, and Asia is an important source of high-ozone events in the region. Our analysis also helps understand the uncertainties in ozone simulations with individual models.
Robert J. Allen, Steven Turnock, Pierre Nabat, David Neubauer, Ulrike Lohmann, Dirk Olivié, Naga Oshima, Martine Michou, Tongwen Wu, Jie Zhang, Toshihiko Takemura, Michael Schulz, Kostas Tsigaridis, Susanne E. Bauer, Louisa Emmons, Larry Horowitz, Vaishali Naik, Twan van Noije, Tommi Bergman, Jean-Francois Lamarque, Prodromos Zanis, Ina Tegen, Daniel M. Westervelt, Philippe Le Sager, Peter Good, Sungbo Shim, Fiona O'Connor, Dimitris Akritidis, Aristeidis K. Georgoulias, Makoto Deushi, Lori T. Sentman, Jasmin G. John, Shinichiro Fujimori, and William J. Collins
Atmos. Chem. Phys., 20, 9641–9663, https://doi.org/10.5194/acp-20-9641-2020, https://doi.org/10.5194/acp-20-9641-2020, 2020
Christopher J. Smith, Ryan J. Kramer, Gunnar Myhre, Kari Alterskjær, William Collins, Adriana Sima, Olivier Boucher, Jean-Louis Dufresne, Pierre Nabat, Martine Michou, Seiji Yukimoto, Jason Cole, David Paynter, Hideo Shiogama, Fiona M. O'Connor, Eddy Robertson, Andy Wiltshire, Timothy Andrews, Cécile Hannay, Ron Miller, Larissa Nazarenko, Alf Kirkevåg, Dirk Olivié, Stephanie Fiedler, Anna Lewinschal, Chloe Mackallah, Martin Dix, Robert Pincus, and Piers M. Forster
Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, https://doi.org/10.5194/acp-20-9591-2020, 2020
Short summary
Short summary
The spread in effective radiative forcing for both CO2 and aerosols is narrower in the latest CMIP6 (Coupled Model Intercomparison Project) generation than in CMIP5. For the case of CO2 it is likely that model radiation parameterisations have improved. Tropospheric and stratospheric radiative adjustments to the forcing behave differently for different forcing agents, and there is still significant diversity in how clouds respond to forcings, particularly for total anthropogenic forcing.
Jill S. Johnson, Leighton A. Regayre, Masaru Yoshioka, Kirsty J. Pringle, Steven T. Turnock, Jo Browse, David M. H. Sexton, John W. Rostron, Nick A. J. Schutgens, Daniel G. Partridge, Dantong Liu, James D. Allan, Hugh Coe, Aijun Ding, David D. Cohen, Armand Atanacio, Ville Vakkari, Eija Asmi, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 9491–9524, https://doi.org/10.5194/acp-20-9491-2020, https://doi.org/10.5194/acp-20-9491-2020, 2020
Short summary
Short summary
We use over 9000 monthly aggregated grid-box measurements of aerosol to constrain the uncertainty in the HadGEM3-UKCA climate model. Measurements of AOD, PM2.5, particle number concentrations, sulfate and organic mass concentrations are compared to 1 million
variantsof the model using an implausibility metric. Despite many compensating effects in the model, the procedure constrains the probability distributions of many parameters, and direct radiative forcing uncertainty is reduced by 34 %.
Prodromos Zanis, Dimitris Akritidis, Aristeidis K. Georgoulias, Robert J. Allen, Susanne E. Bauer, Olivier Boucher, Jason Cole, Ben Johnson, Makoto Deushi, Martine Michou, Jane Mulcahy, Pierre Nabat, Dirk Olivié, Naga Oshima, Adriana Sima, Michael Schulz, Toshihiko Takemura, and Konstantinos Tsigaridis
Atmos. Chem. Phys., 20, 8381–8404, https://doi.org/10.5194/acp-20-8381-2020, https://doi.org/10.5194/acp-20-8381-2020, 2020
Short summary
Short summary
In this work, we use Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations from 10 Earth system models (ESMs) and general circulation models (GCMs) to study the fast climate responses on pre-industrial climate, due to present-day aerosols. All models carried out two sets of simulations: a control experiment with all forcings set to the year 1850 and a perturbation experiment with all forcings identical to the control, except for aerosols with precursor emissions set to the year 2014.
Yuan Yang, Yonghong Wang, Putian Zhou, Dan Yao, Dongsheng Ji, Jie Sun, Yinghong Wang, Shuman Zhao, Wei Huang, Shuanghong Yang, Dean Chen, Wenkang Gao, Zirui Liu, Bo Hu, Renjian Zhang, Limin Zeng, Maofa Ge, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Yuesi Wang
Atmos. Chem. Phys., 20, 8181–8200, https://doi.org/10.5194/acp-20-8181-2020, https://doi.org/10.5194/acp-20-8181-2020, 2020
Mariano Mertens, Astrid Kerkweg, Volker Grewe, Patrick Jöckel, and Robert Sausen
Atmos. Chem. Phys., 20, 7843–7873, https://doi.org/10.5194/acp-20-7843-2020, https://doi.org/10.5194/acp-20-7843-2020, 2020
Short summary
Short summary
We investigate the contribution of land transport emissions to ozone and ozone precursors in Europe and Germany. Our results show that land transport emissions are one of the most important contributors to reactive nitrogen in Europe. The contribution to ozone is in the range of 8 % to 16 % and varies strongly for different seasons. The hots-pots with the largest ozone concentrations are the Po Valley, while the largest concentration to reactive nitrogen is located mainly in western Europe.
Daniele Visioni, Giovanni Pitari, Vincenzo Rizi, Marco Iarlori, Irene Cionni, Ilaria Quaglia, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando Garcia, Patrick Joeckel, Douglas Kinnison, Jean-François Lamarque, Marion Marchand, Martine Michou, Olaf Morgenstern, Tatsuya Nagashima, Fiona M. O'Connor, Luke D. Oman, David Plummer, Eugene Rozanov, David Saint-Martin, Robyn Schofield, John Scinocca, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Holger Tost, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-525, https://doi.org/10.5194/acp-2020-525, 2020
Preprint withdrawn
Short summary
Short summary
In this work we analyse the trend in ozone profiles taken at L'Aquila (Italy, 42.4° N) for seventeen years, between 2000 and 2016 and compare them against already available measured ozone trends. We try to understand and explain the observed trends at various heights in light of the simulations from seventeen different model, highlighting the contribution of changes in circulation and chemical ozone loss during this time period.
Ivan Tadic, John N. Crowley, Dirk Dienhart, Philipp Eger, Hartwig Harder, Bettina Hottmann, Monica Martinez, Uwe Parchatka, Jean-Daniel Paris, Andrea Pozzer, Roland Rohloff, Jan Schuladen, Justin Shenolikar, Sebastian Tauer, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 20, 6769–6787, https://doi.org/10.5194/acp-20-6769-2020, https://doi.org/10.5194/acp-20-6769-2020, 2020
Short summary
Short summary
We present shipborne observations of NO, NO2, O3, HCHO, OH, HO2, H2O and the actinic flux obtained in the marine boundary layer (MBL) around the Arabian Peninsula during the summer 2017 AQABA ship campaign. NOx (NO+NO2) and O3 observations clearly showed anthropogenic influence in the MBL around the Arabian Peninsula. The observations were also used to calculate net O3 production in the MBL around the Arabian Peninsula, which was greatest over the northern Red Sea, Oman Gulf and Arabian Gulf.
Peter H. Zimmermann, Carl A. M. Brenninkmeijer, Andrea Pozzer, Patrick Jöckel, Franziska Winterstein, Andreas Zahn, Sander Houweling, and Jos Lelieveld
Atmos. Chem. Phys., 20, 5787–5809, https://doi.org/10.5194/acp-20-5787-2020, https://doi.org/10.5194/acp-20-5787-2020, 2020
Short summary
Short summary
The atmospheric abundance of the greenhouse gas methane is determined by interacting emission sources and sinks in a dynamic global environment. In this study, its global budget from 1997 to 2016 is simulated with a general circulation model using emission estimates of 11 source categories. The model results are evaluated against 17 ground station and 320 intercontinental flight observation series. Deviations are used to re-scale the emission quantities with the aim of matching observations.
Dean Chen, Putian Zhou, Tuomo Nieminen, Pontus Roldin, Ximeng Qi, Petri Clusius, Carlton Xavier, Lukas Pichelstorfer, Markku Kulmala, Pekka Rantala, Juho Aalto, Nina Sarnela, Pasi Kolari, Petri Keronen, Matti P. Rissanen, Metin Baykara, and Michael Boy
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-128, https://doi.org/10.5194/acp-2020-128, 2020
Preprint withdrawn
Short summary
Short summary
Atmospheric oxidants OH, O3 and NO3 dominate the atmospheric oxidation capacity, and sulfuric acid (H2SO4) is considered as a main driver for new particle formation events. We studied how the trends of these atmospheric oxidants and H2SO4 changed in southern Finland during the past 12 years and discussed how these trends related to decreasing emissions of air pollutants in Europe. Our results showed that OH increased by 1.56 % yr−1 at daytime and NO3 decreased by 3.92 % yr−1 at nighttime.
Anna-Leah Nickl, Mariano Mertens, Anke Roiger, Andreas Fix, Axel Amediek, Alina Fiehn, Christoph Gerbig, Michal Galkowski, Astrid Kerkweg, Theresa Klausner, Maximilian Eckl, and Patrick Jöckel
Geosci. Model Dev., 13, 1925–1943, https://doi.org/10.5194/gmd-13-1925-2020, https://doi.org/10.5194/gmd-13-1925-2020, 2020
Short summary
Short summary
Based on the global and regional chemistry–climate model system MECO(n), we implemented a forecast system to support the planning of measurement campaign research flights with chemical weather forecasts. We applied this system for the first time to provide 6 d forecasts in support of the CoMet 1.0
campaign targeting methane emitted from coal mining ventilation shafts in the Upper Silesian Coal Basin in Poland. We describe the new forecast system and evaluate its forecast skill.
Oliver Wild, Apostolos Voulgarakis, Fiona O'Connor, Jean-François Lamarque, Edmund M. Ryan, and Lindsay Lee
Atmos. Chem. Phys., 20, 4047–4058, https://doi.org/10.5194/acp-20-4047-2020, https://doi.org/10.5194/acp-20-4047-2020, 2020
Short summary
Short summary
Global models of tropospheric chemistry and transport show a persistent diversity in results that has not been fully explained. We demonstrate the first use of global sensitivity analysis consistently across three independent models to explore these differences and reveal both clear similarities and surprising differences which have important implications for our assessment of future atmospheric composition change.
Alexander T. Archibald, Fiona M. O'Connor, Nathan Luke Abraham, Scott Archer-Nicholls, Martyn P. Chipperfield, Mohit Dalvi, Gerd A. Folberth, Fraser Dennison, Sandip S. Dhomse, Paul T. Griffiths, Catherine Hardacre, Alan J. Hewitt, Richard S. Hill, Colin E. Johnson, James Keeble, Marcus O. Köhler, Olaf Morgenstern, Jane P. Mulcahy, Carlos Ordóñez, Richard J. Pope, Steven T. Rumbold, Maria R. Russo, Nicholas H. Savage, Alistair Sellar, Marc Stringer, Steven T. Turnock, Oliver Wild, and Guang Zeng
Geosci. Model Dev., 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, https://doi.org/10.5194/gmd-13-1223-2020, 2020
Short summary
Short summary
Here we present a description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in the UK Earth System Model (UKESM1). UKCA StratTrop represents a substantial step forward compared to previous versions of UKCA. We show here that it is fully suited to the challenges of representing interactions in a coupled Earth system model and identify key areas and components for future development that will make it even better in the future.
Damien Amedro, Matias Berasategui, Arne J. C. Bunkan, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 3091–3105, https://doi.org/10.5194/acp-20-3091-2020, https://doi.org/10.5194/acp-20-3091-2020, 2020
Short summary
Short summary
Our laboratory experiments show that the rate coefficient for the termolecular reaction between OH and NO2 is enhanced in the presence of water vapour. Using a chemistry transport model we show that our new parameterization of the temperature, pressure, and bath-gas dependence of this reaction has a significant impact on, for example, NOx and the HNO2 / NO2 ratio when compared to present recommendations.
Daniel M. Westervelt, Nora R. Mascioli, Arlene M. Fiore, Andrew J. Conley, Jean-François Lamarque, Drew T. Shindell, Greg Faluvegi, Michael Previdi, Gustavo Correa, and Larry W. Horowitz
Atmos. Chem. Phys., 20, 3009–3027, https://doi.org/10.5194/acp-20-3009-2020, https://doi.org/10.5194/acp-20-3009-2020, 2020
Short summary
Short summary
We use three Earth system models to estimate the impact of regional air pollutant emissions reductions on global and regional surface temperature. We find that removing human-caused air pollutant emissions from certain world regions (such as the USA) results in warming of up to 0.15 °C. We use our model output to calculate simple climate metrics that will allow for regional-scale climate impact estimates without the use of computationally demanding computer models.
Julie M. Nicely, Bryan N. Duncan, Thomas F. Hanisco, Glenn M. Wolfe, Ross J. Salawitch, Makoto Deushi, Amund S. Haslerud, Patrick Jöckel, Béatrice Josse, Douglas E. Kinnison, Andrew Klekociuk, Michael E. Manyin, Virginie Marécal, Olaf Morgenstern, Lee T. Murray, Gunnar Myhre, Luke D. Oman, Giovanni Pitari, Andrea Pozzer, Ilaria Quaglia, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Kane Stone, Susan Strahan, Simone Tilmes, Holger Tost, Daniel M. Westervelt, and Guang Zeng
Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, https://doi.org/10.5194/acp-20-1341-2020, 2020
Short summary
Short summary
Differences in methane lifetime among global models are large and poorly understood. We use a neural network method and simulations from the Chemistry Climate Model Initiative to quantify the factors influencing methane lifetime spread among models and variations over time. UV photolysis, tropospheric ozone, and nitrogen oxides drive large model differences, while the same factors plus specific humidity contribute to a decreasing trend in methane lifetime between 1980 and 2015.
Mariano Mertens, Astrid Kerkweg, Volker Grewe, Patrick Jöckel, and Robert Sausen
Geosci. Model Dev., 13, 363–383, https://doi.org/10.5194/gmd-13-363-2020, https://doi.org/10.5194/gmd-13-363-2020, 2020
Short summary
Short summary
This study investigates if ozone source apportionment results using a tagged tracer approach depend on the resolutions of the applied model and/or emission inventory. For this we apply a global to regional atmospheric chemistry model, which allows us to compare the results on global and regional scales. Our results show that differences on the continental scale (e.g. Europe) are rather small (10 %); on the regional scale, however, differences of up to 30 % were found.
Jian He, Vaishali Naik, Larry W. Horowitz, Ed Dlugokencky, and Kirk Thoning
Atmos. Chem. Phys., 20, 805–827, https://doi.org/10.5194/acp-20-805-2020, https://doi.org/10.5194/acp-20-805-2020, 2020
Short summary
Short summary
In this work, methane representation in AM4.1 is improved by optimizing CH4 emissions to match surface observations. We find increases in CH4 sources balanced by increases in sinks lead to CH4 stabilization during 1999–2006, and anthropogenic sources (e.g., agriculture, energy, and waste) are more likely major contributors to the renewed growth after 2006. Increases in CH4 emissions and decreases in OH levels during 2008–2015 prolong CH4 lifetime and amplify methane response to emission changes.
Ying Chen, Yafang Cheng, Nan Ma, Chao Wei, Liang Ran, Ralf Wolke, Johannes Größ, Qiaoqiao Wang, Andrea Pozzer, Hugo A. C. Denier van der Gon, Gerald Spindler, Jos Lelieveld, Ina Tegen, Hang Su, and Alfred Wiedensohler
Atmos. Chem. Phys., 20, 771–786, https://doi.org/10.5194/acp-20-771-2020, https://doi.org/10.5194/acp-20-771-2020, 2020
Short summary
Short summary
Particulate nitrate is one of the most important climate cooling agents. Our results show that interaction with sea-salt aerosol can shift nitrate to larger sized particles (redistribution effect), weakening its direct cooling effect. The modelling results indicate strong redistribution over coastal and offshore regions worldwide as well as continental Europe. Improving the consideration of the redistribution effect in global models fosters a better understanding of climate change.
Yonghong Wang, Miao Yu, Yuesi Wang, Guiqian Tang, Tao Song, Putian Zhou, Zirui Liu, Bo Hu, Dongsheng Ji, Lili Wang, Xiaowan Zhu, Chao Yan, Mikael Ehn, Wenkang Gao, Yuepeng Pan, Jinyuan Xin, Yang Sun, Veli-Matti Kerminen, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 20, 45–53, https://doi.org/10.5194/acp-20-45-2020, https://doi.org/10.5194/acp-20-45-2020, 2020
Short summary
Short summary
We found a positive particle matter-mixing layer height feedback at three observation platforms at the 325 m Beijing meteorology tower, which is characterized by a shallower mixing layer height and a higher particle matter concentration. Measurements of solar radiation, aerosol chemical composition, meteorology parameters, trace gases and turbulent kinetic energy (TKE) could explain the feedback mechanism to some extent.
Arnaud P. Praplan, Toni Tykkä, Dean Chen, Michael Boy, Ditte Taipale, Ville Vakkari, Putian Zhou, Tuukka Petäjä, and Heidi Hellén
Atmos. Chem. Phys., 19, 14431–14453, https://doi.org/10.5194/acp-19-14431-2019, https://doi.org/10.5194/acp-19-14431-2019, 2019
Short summary
Short summary
Our study shows that, despite our best efforts and recent progress, our knowledge of the chemical composition of the air under the canopy of a boreal forest still cannot be fully characterized. The discrepancy between the measured total reactivity of the air and the reactivity derived from the known chemical composition highlights the need to better understand the emissions from vegetation, but also other sources, such as the forest soil.
Dimitris Akritidis, Andrea Pozzer, and Prodromos Zanis
Atmos. Chem. Phys., 19, 14387–14401, https://doi.org/10.5194/acp-19-14387-2019, https://doi.org/10.5194/acp-19-14387-2019, 2019
Short summary
Short summary
We investigate the impact of future climate change under the RCP6.0 scenario on tropopause folds and tropospheric ozone, using a transient EMAC simulation and a tropopause fold detection algorithm. A strengthening of ozone stratosphere-to-troposphere transport (STT) is projected for the future, resulting in an increase in upper- and middle-tropospheric ozone. The maxima of future ozone STT increases are mainly projected for regions where tropopause folds are expected to occur more frequently.
Carlton Xavier, Anton Rusanen, Putian Zhou, Chen Dean, Lukas Pichelstorfer, Pontus Roldin, and Michael Boy
Atmos. Chem. Phys., 19, 13741–13758, https://doi.org/10.5194/acp-19-13741-2019, https://doi.org/10.5194/acp-19-13741-2019, 2019
Short summary
Short summary
Master Chemical Mechanism (MCM) coupled to peroxy radical autoxidation mechanism (PRAM) was used to simulate secondary organic aerosol mass loadings from oxidation of five selected biogenic volatile organic compounds. The simulations were designed to replicate idealized chamber and oxidative flow-tube setups. The mass yields using MCM + PRAM are in good agreement with the experimental yields, thereby allowing us to highlight a few important compounds which contribute to > 95 % of mass loadings.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019, https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Short summary
The role of hydroxyl radical changes in methane trends is debated, hindering our understanding of the methane cycle. This study quantifies how uncertainties in the hydroxyl radical may influence methane abundance in the atmosphere based on the inter-model comparison of hydroxyl radical fields and model simulations of CH4 abundance with different hydroxyl radical scenarios during 2000–2016. We show that hydroxyl radical changes could contribute up to 54 % of model-simulated methane biases.
Horst Fischer, Raoul Axinte, Heiko Bozem, John N. Crowley, Cheryl Ernest, Stefan Gilge, Sascha Hafermann, Hartwig Harder, Korbinian Hens, Ruud H. H. Janssen, Rainer Königstedt, Dagmar Kubistin, Chinmay Mallik, Monica Martinez, Anna Novelli, Uwe Parchatka, Christian Plass-Dülmer, Andrea Pozzer, Eric Regelin, Andreas Reiffs, Torsten Schmidt, Jan Schuladen, and Jos Lelieveld
Atmos. Chem. Phys., 19, 11953–11968, https://doi.org/10.5194/acp-19-11953-2019, https://doi.org/10.5194/acp-19-11953-2019, 2019
Short summary
Short summary
We use in situ observations of H2O2 to study the interplay between photochemistry, transport and deposition processes. The data were obtained during five ground-based field campaigns across Europe. A budget calculation indicates that the photochemical production rate was much larger than photochemical loss and that dry deposition is the dominant loss process. To reproduce the change in H2O2 mixing ratios after sunrise, a variable contribution of entrainment from the residual layer is required.
Carly L. Reddington, Luke Conibear, Christoph Knote, Ben J. Silver, Yong J. Li, Chak K. Chan, Steve R. Arnold, and Dominick V. Spracklen
Atmos. Chem. Phys., 19, 11887–11910, https://doi.org/10.5194/acp-19-11887-2019, https://doi.org/10.5194/acp-19-11887-2019, 2019
Short summary
Short summary
We use a high-resolution model over South and East Asia to explore air quality and human health benefits of eliminating emissions from six man-made pollution sources. We find that preventing emissions from either residential energy use, industry, or open biomass burning yields the largest reductions in ground-level particulate matter pollution and its associated disease burden over this region. We also summarize previous estimates of the source-specific disease burden in China and India.
Duncan Watson-Parris, Nick Schutgens, Carly Reddington, Kirsty J. Pringle, Dantong Liu, James D. Allan, Hugh Coe, Ken S. Carslaw, and Philip Stier
Atmos. Chem. Phys., 19, 11765–11790, https://doi.org/10.5194/acp-19-11765-2019, https://doi.org/10.5194/acp-19-11765-2019, 2019
Short summary
Short summary
The vertical distribution of aerosol in the atmosphere affects its ability to act as cloud condensation nuclei and changes the amount of sunlight it absorbs or reflects. Common global measurements of aerosol provide no information about this vertical distribution. Using a global collection of in situ aircraft measurements to compare with an aerosol–climate model (ECHAM-HAM), we explore the key processes controlling this distribution and find that wet removal plays a key role.
Jianzhong Ma, Christoph Brühl, Qianshan He, Benedikt Steil, Vlassis A. Karydis, Klaus Klingmüller, Holger Tost, Bin Chen, Yufang Jin, Ningwei Liu, Xiangde Xu, Peng Yan, Xiuji Zhou, Kamal Abdelrahman, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 19, 11587–11612, https://doi.org/10.5194/acp-19-11587-2019, https://doi.org/10.5194/acp-19-11587-2019, 2019
Short summary
Short summary
We find a pronounced maximum in aerosol extinction in the upper troposphere and lower stratosphere over the Tibetan Plateau during the Asian summer monsoon, caused mainly by mineral dust emitted from the northern Tibetan Plateau and slope area, lofted to and accumulating within the anticyclonic circulation. Mineral dust, water-soluble compounds, such as nitrate and sulfate, and associated liquid water dominate aerosol extinction around the tropopause within the Asian summer monsoon anticyclone.
Laura Kiely, Dominick V. Spracklen, Christine Wiedinmyer, Luke Conibear, Carly L. Reddington, Scott Archer-Nicholls, Douglas Lowe, Stephen R. Arnold, Christoph Knote, Md Firoz Khan, Mohd Talib Latif, Mikinori Kuwata, Sri Hapsari Budisulistiorini, and Lailan Syaufina
Atmos. Chem. Phys., 19, 11105–11121, https://doi.org/10.5194/acp-19-11105-2019, https://doi.org/10.5194/acp-19-11105-2019, 2019
Short summary
Short summary
In 2015, a large fire episode occurred in Indonesia, reducing air quality. Fires occurred predominantly on peatland, where large uncertainties are associated with emissions. Current fire emissions datasets underestimate peat fire emissions. We created new fire emissions data, with data specific to Indonesian peat fires. Using these emissions in simulations of particulate matter and aerosol optical depth shows an improvement over simulations using current data, when compared with observations.
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
Ohad Harari, Chaim I. Garfinkel, Shlomi Ziskin Ziv, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, Fiona M. O'Connor, and Sean Davis
Atmos. Chem. Phys., 19, 9253–9268, https://doi.org/10.5194/acp-19-9253-2019, https://doi.org/10.5194/acp-19-9253-2019, 2019
Short summary
Short summary
Ozone depletion in the Antarctic has been shown to influence surface conditions, but the effects of ozone depletion in the Arctic on surface climate are unclear. We show that Arctic ozone does influence surface climate in both polar regions and tropical regions, though the proximate cause of these surface impacts is not yet clear.
Carly L. Reddington, William T. Morgan, Eoghan Darbyshire, Joel Brito, Hugh Coe, Paulo Artaxo, Catherine E. Scott, John Marsham, and Dominick V. Spracklen
Atmos. Chem. Phys., 19, 9125–9152, https://doi.org/10.5194/acp-19-9125-2019, https://doi.org/10.5194/acp-19-9125-2019, 2019
Short summary
Short summary
We use an aerosol model and observations to explore model representation of aerosol emissions from fires in the Amazon. We find that observed aerosol concentrations are captured by the model over deforestation fires in the western Amazon but underestimated over savanna fires in the Cerrado environment. The model underestimates observed aerosol optical depth (AOD) even when the observed aerosol vertical profile is reproduced. We suggest this may be due to uncertainties in the AOD calculation.
Jamie M. Kelly, Ruth M. Doherty, Fiona M. O'Connor, Graham W. Mann, Hugh Coe, and Dantong Liu
Geosci. Model Dev., 12, 2539–2569, https://doi.org/10.5194/gmd-12-2539-2019, https://doi.org/10.5194/gmd-12-2539-2019, 2019
Short summary
Short summary
This study develops the representation of secondary organic aerosol (SOA) within a global chemistry–climate model (UKCA). Both dry and wet deposition within the UKCA model are extended to consider precursors of SOA. The oxidation mechanism describing SOA formation is also extended by adding a reaction intermediate, with SOA yields that are dependent on oxidant concentrations.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Efstratios Bourtsoukidis, Lisa Ernle, John N. Crowley, Jos Lelieveld, Jean-Daniel Paris, Andrea Pozzer, David Walter, and Jonathan Williams
Atmos. Chem. Phys., 19, 7209–7232, https://doi.org/10.5194/acp-19-7209-2019, https://doi.org/10.5194/acp-19-7209-2019, 2019
Short summary
Short summary
We report on results that demonstrate the utility of non-methane hydrocarbons as source/sink identification tracers while providing their mixing ratios around the Arabian Peninsula. By introducing novel data-analysis approaches, we establish a new method for separating associated and non-associated (with liquids) gases. We formulate a relationship between hydrocarbon oxidative pairs that can be used to evaluate the relative abundance of the hydroxyl and chlorine radicals in the troposphere.
Vincent Huijnen, Andrea Pozzer, Joaquim Arteta, Guy Brasseur, Idir Bouarar, Simon Chabrillat, Yves Christophe, Thierno Doumbia, Johannes Flemming, Jonathan Guth, Béatrice Josse, Vlassis A. Karydis, Virginie Marécal, and Sophie Pelletier
Geosci. Model Dev., 12, 1725–1752, https://doi.org/10.5194/gmd-12-1725-2019, https://doi.org/10.5194/gmd-12-1725-2019, 2019
Short summary
Short summary
We report on an evaluation of tropospheric ozone and its precursor gases in three atmospheric chemistry versions as implemented in ECMWF’s Integrated Forecasting System (IFS), referred to as IFS(CB05BASCOE), IFS(MOZART) and IFS(MOCAGE). This configuration of having various chemistry versions within IFS provides a quantification of uncertainties in CAMS trace gas products that are induced by chemistry modelling.
Meryem Tanarhte, Sara Bacer, Susannah M. Burrows, J. Alex Huffman, Kyle M. Pierce, Andrea Pozzer, Roland Sarda-Estève, Nicole J. Savage, and Jos Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-251, https://doi.org/10.5194/acp-2019-251, 2019
Publication in ACP not foreseen
Short summary
Short summary
Bioaerosols have been an important topic in atmospheric science in the last two decades. This paper compares different emission parametrizations used in fungal spores modeling and compare their results to two sets of new observational datasets. It emphasises their uncertainties in order to improve their modeling in the future. This comparison is addressed primarily to the scientific community (publishing in ACP) interested in this type of modeling and the related experimental work in this field.
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019, https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary
Short summary
We present the atmospheric chemistry box model CAABA/MECCA which
now includes a number of new features: skeletal mechanism
reduction, the MOM chemical mechanism for volatile organic
compounds, an option to include reactions from the Master
Chemical Mechanism (MCM) and other chemical mechanisms, updated
isotope tagging, improved and new photolysis modules, and the new
feature of coexisting multiple chemistry mechanisms.
CAABA/MECCA is a community model published under the GPL.
Laura Tomsche, Andrea Pozzer, Narendra Ojha, Uwe Parchatka, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 19, 1915–1939, https://doi.org/10.5194/acp-19-1915-2019, https://doi.org/10.5194/acp-19-1915-2019, 2019
Short summary
Short summary
The Asian monsoon anticyclone (AMA) is an annual phenomenon in the northern hemispheric upper troposphere (UT) and lower stratosphere. We performed in situ measurements of carbon monoxide (CO) and methane (CH4) in the monsoon outflow region and in background air in the UT (Mediterranean, Arabian Peninsula, Arabian Sea) using airborne optical absorption spectroscopy during the Oxidation Mechanism Observations mission (summer 2015). The trace gases increased within the AMA, particularly CH4.
Yingying Yan, David Cabrera-Perez, Jintai Lin, Andrea Pozzer, Lu Hu, Dylan B. Millet, William C. Porter, and Jos Lelieveld
Geosci. Model Dev., 12, 111–130, https://doi.org/10.5194/gmd-12-111-2019, https://doi.org/10.5194/gmd-12-111-2019, 2019
Short summary
Short summary
The GEOS-Chem model has been updated with the SAPRC-11 aromatics chemical mechanism to evaluate global and regional effects of aromatics on tropospheric oxidation capacity. Our results reveal relatively slight changes in ozone, hydroxyl radical, and nitrogen oxides on a global mean basis (1–4 %), although remarkable regional differences (5–20 %) exist near the source regions. Improved representation of aromatics is important to simulate the tropospheric oxidation.
Yuqin Liu, Jiahua Zhang, Putian Zhou, Tao Lin, Juan Hong, Lamei Shi, Fengmei Yao, Jun Wu, Huadong Guo, and Gerrit de Leeuw
Atmos. Chem. Phys., 18, 18187–18202, https://doi.org/10.5194/acp-18-18187-2018, https://doi.org/10.5194/acp-18-18187-2018, 2018
Fabien Paulot, Sergey Malyshev, Tran Nguyen, John D. Crounse, Elena Shevliakova, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 17963–17978, https://doi.org/10.5194/acp-18-17963-2018, https://doi.org/10.5194/acp-18-17963-2018, 2018
Sebastian Ehrhart, Eimear M. Dunne, Hanna E. Manninen, Tuomo Nieminen, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4987–5001, https://doi.org/10.5194/gmd-11-4987-2018, https://doi.org/10.5194/gmd-11-4987-2018, 2018
Laura E. Revell, Andrea Stenke, Fiona Tummon, Aryeh Feinberg, Eugene Rozanov, Thomas Peter, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Neal Butchart, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, Robyn Schofield, Kane Stone, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 16155–16172, https://doi.org/10.5194/acp-18-16155-2018, https://doi.org/10.5194/acp-18-16155-2018, 2018
Short summary
Short summary
Global models such as those participating in the Chemistry-Climate Model Initiative (CCMI) consistently simulate biases in tropospheric ozone compared with observations. We performed an advanced statistical analysis with one of the CCMI models to understand the cause of the bias. We found that emissions of ozone precursor gases are the dominant driver of the bias, implying either that the emissions are too large, or that the way in which the model handles emissions needs to be improved.
Dimitris Akritidis, Eleni Katragkou, Prodromos Zanis, Ioannis Pytharoulis, Dimitris Melas, Johannes Flemming, Antje Inness, Hannah Clark, Matthieu Plu, and Henk Eskes
Atmos. Chem. Phys., 18, 15515–15534, https://doi.org/10.5194/acp-18-15515-2018, https://doi.org/10.5194/acp-18-15515-2018, 2018
Short summary
Short summary
Analysis and evaluation of the Copernicus Atmosphere Monitoring Service (CAMS) global and regional forecast systems during a deep stratosphere-to-troposphere ozone transport event over Europe in January 2017. Radiosondes, satellite images, ozonesondes and aircraft measurements were used to investigate the folding of the tropopause at several European sites and the induced presence of dry and ozone-rich air in the troposphere.
Arlene M. Fiore, Emily V. Fischer, George P. Milly, Shubha Pandey Deolal, Oliver Wild, Daniel A. Jaffe, Johannes Staehelin, Olivia E. Clifton, Dan Bergmann, William Collins, Frank Dentener, Ruth M. Doherty, Bryan N. Duncan, Bernd Fischer, Stefan Gilge, Peter G. Hess, Larry W. Horowitz, Alexandru Lupu, Ian A. MacKenzie, Rokjin Park, Ludwig Ries, Michael G. Sanderson, Martin G. Schultz, Drew T. Shindell, Martin Steinbacher, David S. Stevenson, Sophie Szopa, Christoph Zellweger, and Guang Zeng
Atmos. Chem. Phys., 18, 15345–15361, https://doi.org/10.5194/acp-18-15345-2018, https://doi.org/10.5194/acp-18-15345-2018, 2018
Short summary
Short summary
We demonstrate a proof-of-concept approach for applying northern midlatitude mountaintop peroxy acetyl nitrate (PAN) measurements and a multi-model ensemble during April to constrain the influence of continental-scale anthropogenic precursor emissions on PAN. Our findings imply a role for carefully coordinated multi-model ensembles in helping identify observations for discriminating among widely varying (and poorly constrained) model responses of atmospheric constituents to changes in emissions.
Sara Bacer, Sylvia C. Sullivan, Vlassis A. Karydis, Donifan Barahona, Martina Krämer, Athanasios Nenes, Holger Tost, Alexandra P. Tsimpidi, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4021–4041, https://doi.org/10.5194/gmd-11-4021-2018, https://doi.org/10.5194/gmd-11-4021-2018, 2018
Short summary
Short summary
The complexity of ice nucleation mechanisms and aerosol--ice interactions makes their representation still challenging in atmospheric models. We have implemented a comprehensive ice crystal formation parameterization in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations. The newly implemented parameterization takes into account processes which were previously neglected by the standard version of the model.
Fabien Paulot, David Paynter, Paul Ginoux, Vaishali Naik, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 13265–13281, https://doi.org/10.5194/acp-18-13265-2018, https://doi.org/10.5194/acp-18-13265-2018, 2018
Short summary
Short summary
Observations show that the sunlight reflected to space by particles has decreased over the US and Europe, increased over India, and not changed over China from 2001 to 2015. These changes are attributed to different types of particles, namely sulfate over the US and Europe, and black carbon, sulfate, and nitrate over China and India. Our results suggest that the recent shift in human emissions from the US and Europe to Asia has altered their impact on the Earth's outgoing energy.
Daniel M. Westervelt, Andrew J. Conley, Arlene M. Fiore, Jean-François Lamarque, Drew T. Shindell, Michael Previdi, Nora R. Mascioli, Greg Faluvegi, Gustavo Correa, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 12461–12475, https://doi.org/10.5194/acp-18-12461-2018, https://doi.org/10.5194/acp-18-12461-2018, 2018
Short summary
Short summary
Small particles in Earth's atmosphere (also referred to as atmospheric aerosols) emitted by human activities impact Earth's climate in complex ways and play an important role in Earth's water cycle. We use a climate modeling approach and find that aerosols from the United States and Europe can have substantial effects on rainfall in far-away regions such as Africa's Sahel or the Mediterranean. Air pollution controls in these regions may help reduce the likelihood and severity of Sahel drought.
Alexandra P. Tsimpidi, Vlassis A. Karydis, Andrea Pozzer, Spyros N. Pandis, and Jos Lelieveld
Geosci. Model Dev., 11, 3369–3389, https://doi.org/10.5194/gmd-11-3369-2018, https://doi.org/10.5194/gmd-11-3369-2018, 2018
Short summary
Short summary
A new module, ORACLE 2-D, that calculates the concentrations of surrogate organic species in two-dimensional space defined by volatility and oxygen-to-carbon ratio has been developed and evaluated. ORACLE 2-D uses a simple photochemical aging scheme that efficiently simulates the net effects of fragmentation and functionalization. ORACLE 2-D can be used to compute the ability of organic particles to act as cloud condensation nuclei and serves as a tool to quantify their climatic impact.
Ximeng Qi, Aijun Ding, Pontus Roldin, Zhengning Xu, Putian Zhou, Nina Sarnela, Wei Nie, Xin Huang, Anton Rusanen, Mikael Ehn, Matti P. Rissanen, Tuukka Petäjä, Markku Kulmala, and Michael Boy
Atmos. Chem. Phys., 18, 11779–11791, https://doi.org/10.5194/acp-18-11779-2018, https://doi.org/10.5194/acp-18-11779-2018, 2018
Short summary
Short summary
In this study we simulate the HOM concentrations and discuss their roles in NPF at a remote boreal forest site in Finland and a suburban site in eastern China. We found that sulfuric acid and HOM organonitrate concentrations in the gas phase are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower in eastern China. This study highlights the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas.
Ben H. Lee, Felipe D. Lopez-Hilfiker, Emma L. D'Ambro, Putian Zhou, Michael Boy, Tuukka Petäjä, Liqing Hao, Annele Virtanen, and Joel A. Thornton
Atmos. Chem. Phys., 18, 11547–11562, https://doi.org/10.5194/acp-18-11547-2018, https://doi.org/10.5194/acp-18-11547-2018, 2018
Short summary
Short summary
Molecular identities and abundances of organic compounds residing in the gas and particle phases above a Finnish boreal forest are presented. We determined that in each phase, the organic components are categorized into three subgroups based on their behavior in time. Some are more enhanced at night, others during midday, and another around sunrise. Identifying such collective behavior can potentially connect the chemical processes that evolve in time to specific distributions of products.
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
Maarten Krol, Marco de Bruine, Lars Killaars, Huug Ouwersloot, Andrea Pozzer, Yi Yin, Frederic Chevallier, Philippe Bousquet, Prabir Patra, Dmitry Belikov, Shamil Maksyutov, Sandip Dhomse, Wuhu Feng, and Martyn P. Chipperfield
Geosci. Model Dev., 11, 3109–3130, https://doi.org/10.5194/gmd-11-3109-2018, https://doi.org/10.5194/gmd-11-3109-2018, 2018
Short summary
Short summary
The TransCom inter-comparison project regularly carries out studies to quantify errors in simulated atmospheric transport. This paper presents the first results of an age of air (AoA) inter-comparison of six global transport models. Following a protocol, six models simulated five tracers from which atmospheric transport times can easily be deduced. Results highlight that inter-model differences associated with atmospheric transport are still large and require further analysis.
Edmund Ryan, Oliver Wild, Apostolos Voulgarakis, and Lindsay Lee
Geosci. Model Dev., 11, 3131–3146, https://doi.org/10.5194/gmd-11-3131-2018, https://doi.org/10.5194/gmd-11-3131-2018, 2018
Short summary
Short summary
Global sensitivity analysis (GSA) identifies which parameters of a model most affect its output. We performed GSA using statistical emulators as surrogates of two slow-running atmospheric chemistry transport models. Due to the high dimension of the model outputs, we considered two alternative methods: one that reduced the output dimension and one that did not require an emulator. The alternative methods accurately performed the GSA but were significantly faster than the emulator-only method.
Chinmay Mallik, Laura Tomsche, Efstratios Bourtsoukidis, John N. Crowley, Bettina Derstroff, Horst Fischer, Sascha Hafermann, Imke Hüser, Umar Javed, Stephan Keßel, Jos Lelieveld, Monica Martinez, Hannah Meusel, Anna Novelli, Gavin J. Phillips, Andrea Pozzer, Andreas Reiffs, Rolf Sander, Domenico Taraborrelli, Carina Sauvage, Jan Schuladen, Hang Su, Jonathan Williams, and Hartwig Harder
Atmos. Chem. Phys., 18, 10825–10847, https://doi.org/10.5194/acp-18-10825-2018, https://doi.org/10.5194/acp-18-10825-2018, 2018
Short summary
Short summary
OH and HO2 control the transformation of air pollutants and O3 formation. Their implication for air quality over the climatically sensitive Mediterranean region was studied during a field campaign in Cyprus. Production of OH, HO2, and recycled OH was lower in aged marine air masses. Box model simulations of OH and HO2 agreed with measurements except at high terpene concentrations when model RO2 due to terpenes caused large HO2 loss. Autoxidation schemes for RO2 improved the agreement.
Jordan L. Schnell, Vaishali Naik, Larry W. Horowitz, Fabien Paulot, Jingqiu Mao, Paul Ginoux, Ming Zhao, and Kirpa Ram
Atmos. Chem. Phys., 18, 10157–10175, https://doi.org/10.5194/acp-18-10157-2018, https://doi.org/10.5194/acp-18-10157-2018, 2018
Short summary
Short summary
We evaluate the ability of a developmental version of the NOAA GFDL Atmospheric Model, version 4 to simulate observed wintertime pollution and its relationship to weather over Northern India, one of the most densely populated and polluted regions in world. We also compare two emission inventories and find that the newest version dramatically improves our simulation. Observed and modeled pollution is the highest within the Indo-Gangetic Plain, where it is closely related to near-surface weather.
Steven T. Turnock, Oliver Wild, Frank J. Dentener, Yanko Davila, Louisa K. Emmons, Johannes Flemming, Gerd A. Folberth, Daven K. Henze, Jan E. Jonson, Terry J. Keating, Sudo Kengo, Meiyun Lin, Marianne Lund, Simone Tilmes, and Fiona M. O'Connor
Atmos. Chem. Phys., 18, 8953–8978, https://doi.org/10.5194/acp-18-8953-2018, https://doi.org/10.5194/acp-18-8953-2018, 2018
Short summary
Short summary
A simple parameterisation was developed in this study to provide a rapid assessment of the impacts and uncertainties associated with future emission control strategies by predicting changes to surface ozone air quality and near-term climate forcing of ozone. Future emissions scenarios based on currently implemented legislation are shown to worsen surface ozone air quality and enhance near-term climate warming, with changes in methane becoming increasingly important in the future.
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Vanessa S. Rieger, Mariano Mertens, and Volker Grewe
Geosci. Model Dev., 11, 2049–2066, https://doi.org/10.5194/gmd-11-2049-2018, https://doi.org/10.5194/gmd-11-2049-2018, 2018
Short summary
Short summary
To reduce the climate impact of human activities, it is crucial to attribute changes in atmospheric gases to anthropogenic emissions. We present an advanced method to determine the contribution of emissions to OH and HO2 concentrations. Compared to the former version, it contains the main reactions of the OH and HO2 chemistry in the troposphere and stratosphere, introduces the tagging of the H radical and closes the budget of the sum of all contributions and the total concentration.
Jamie M. Kelly, Ruth M. Doherty, Fiona M. O'Connor, and Graham W. Mann
Atmos. Chem. Phys., 18, 7393–7422, https://doi.org/10.5194/acp-18-7393-2018, https://doi.org/10.5194/acp-18-7393-2018, 2018
Short summary
Short summary
The global secondary organic aerosol (SOA) budget is highly uncertain with global models typically underpredicting observed SOA concentrations. Using a global chemistry-climate model, the impacts of biogenic, anthropogenic, and biomass burning VOC emissions on the global SOA budget and model agreement with observed SOA concentrations are quantified.
Meryem Tanarhte, Sara Bacer, Susannah M. Burrows, J. Alex Huffman, Kyle M. Pierce, Andrea Pozzer, Roland Sarda-Estève, Nicole J. Savage, and Jos Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-361, https://doi.org/10.5194/acp-2018-361, 2018
Revised manuscript not accepted
Sara Fenech, Ruth M. Doherty, Clare Heaviside, Sotiris Vardoulakis, Helen L. Macintyre, and Fiona M. O'Connor
Atmos. Chem. Phys., 18, 5765–5784, https://doi.org/10.5194/acp-18-5765-2018, https://doi.org/10.5194/acp-18-5765-2018, 2018
Short summary
Short summary
The impact of model horizontal resolution on simulated surface ozone and particulate matter less than 2.5 μm concentrations, and the associated health impacts over Europe, using a coarse (~ 140 km) and a finer (~ 50 km) resolution is examined. Results highlight a strong seasonal variation in simulated O3 and PM2.5 differences between the two resolutions and demonstrate that health impact assessments are sensitive to a change in model resolution by up to ±5 % of the total mortality across Europe.
Mariano Mertens, Volker Grewe, Vanessa S. Rieger, and Patrick Jöckel
Atmos. Chem. Phys., 18, 5567–5588, https://doi.org/10.5194/acp-18-5567-2018, https://doi.org/10.5194/acp-18-5567-2018, 2018
Short summary
Short summary
We quantified the contribution of land transport and shipping emissions to tropospheric ozone using a global chemistry–climate model. Our results indicate a contribution to ground-level ozone from land transport emissions of up to 18 % in North America and Southern Europe as well as a contribution from shipping emissions of up to 30 % in the Pacific. Our estimates of the radiative ozone forcing due to land transport and shipping emissions are 92 mW m−2 and 62 mW m−2, respectively.
Yingying Yan, Andrea Pozzer, Narendra Ojha, Jintai Lin, and Jos Lelieveld
Atmos. Chem. Phys., 18, 5589–5605, https://doi.org/10.5194/acp-18-5589-2018, https://doi.org/10.5194/acp-18-5589-2018, 2018
Short summary
Short summary
Surface-based measurements from the EMEP network and EMAC model simulations are used to estimate the European surface ozone changes over 1995–2014. It shows a significantly decreasing trend in the 95th percentile ozone concentrations, while increasing in the 5th percentile ozone. Sensitivity simulations and statistical analysis show that a decrease in European anthropogenic emissions had contrasting effects on surface ozone trends between the 95th and 5th percentile levels.
Astrid Kerkweg, Christiane Hofmann, Patrick Jöckel, Mariano Mertens, and Gregor Pante
Geosci. Model Dev., 11, 1059–1076, https://doi.org/10.5194/gmd-11-1059-2018, https://doi.org/10.5194/gmd-11-1059-2018, 2018
Short summary
Short summary
As part of the model documentation of the MECO(n) system, this article documents the basics of the Multi-Model-Driver expansion (MMD v2.0) to two-way coupling and the newly developed generic MESSy submodel GRID (v1.0), which is used by MMD v2.0 for the generalised definition of arbitrary grids and for the
transformation of data between them.
Klaus Klingmüller, Swen Metzger, Mohamed Abdelkader, Vlassis A. Karydis, Georgiy L. Stenchikov, Andrea Pozzer, and Jos Lelieveld
Geosci. Model Dev., 11, 989–1008, https://doi.org/10.5194/gmd-11-989-2018, https://doi.org/10.5194/gmd-11-989-2018, 2018
Short summary
Short summary
More than 1 billion tons of mineral dust particles are raised into the atmosphere every year, which has a significant impact on climate, society and ecosystems. The location, time and amount of dust emissions depend on surface and wind conditions. In the atmospheric chemistry–climate model EMAC, we have updated the relevant surface data and equations. Our validation shows that the updates substantially improve the agreement of model results and observations.
Jingqiu Mao, Annmarie Carlton, Ronald C. Cohen, William H. Brune, Steven S. Brown, Glenn M. Wolfe, Jose L. Jimenez, Havala O. T. Pye, Nga Lee Ng, Lu Xu, V. Faye McNeill, Kostas Tsigaridis, Brian C. McDonald, Carsten Warneke, Alex Guenther, Matthew J. Alvarado, Joost de Gouw, Loretta J. Mickley, Eric M. Leibensperger, Rohit Mathur, Christopher G. Nolte, Robert W. Portmann, Nadine Unger, Mika Tosca, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 2615–2651, https://doi.org/10.5194/acp-18-2615-2018, https://doi.org/10.5194/acp-18-2615-2018, 2018
Short summary
Short summary
This paper is aimed at discussing progress in evaluating, diagnosing, and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models.
Katrin Dulitz, Damien Amedro, Terry J. Dillon, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 18, 2381–2394, https://doi.org/10.5194/acp-18-2381-2018, https://doi.org/10.5194/acp-18-2381-2018, 2018
Short summary
Short summary
The reaction between the OH radical and HNO3 represents an important route for the release of NOx (NO and NO2) from HNO3, the most important NOx reservoir in many parts of the atmosphere. In our laboratory study, we have generated an extensive, high-quality set of rate coefficients for this reaction at different temperatures and pressures and used these to derive a new parameterisation of the rate coefficient for atmospheric modelling.
Jingyi Li, Jingqiu Mao, Arlene M. Fiore, Ronald C. Cohen, John D. Crounse, Alex P. Teng, Paul O. Wennberg, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Jeff Peischl, Ilana B. Pollack, Thomas B. Ryerson, Patrick Veres, James M. Roberts, J. Andrew Neuman, John B. Nowak, Glenn M. Wolfe, Thomas F. Hanisco, Alan Fried, Hanwant B. Singh, Jack Dibb, Fabien Paulot, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 2341–2361, https://doi.org/10.5194/acp-18-2341-2018, https://doi.org/10.5194/acp-18-2341-2018, 2018
Short summary
Short summary
We present the first comprehensive model evaluation of summertime reactive oxidized nitrogen using a high-resolution chemistry–climate model with up-to-date isoprene oxidation chemistry, along with a series of observations from aircraft campaigns and ground measurement networks from 2004 to 2013 over the Southeast US. We investigate the impact of NOx emission reductions on changes in reactive nitrogen speciation and export efficiency as well as ozone in the past and future decade.
Amit Sharma, Narendra Ojha, Andrea Pozzer, Kathleen A. Mar, Gufran Beig, Jos Lelieveld, and Sachin S. Gunthe
Atmos. Chem. Phys., 17, 14393–14413, https://doi.org/10.5194/acp-17-14393-2017, https://doi.org/10.5194/acp-17-14393-2017, 2017
Short summary
Short summary
We evaluate the numerical simulations of surface ozone during pre-monsoon season against a network of stations including clean, rural and polluted urban environments in the south Asian region. Significant effects of the employed emission inventory and chemical mechanism on the simulated ozone are found during the noon hours of intense photochemistry. The presented evaluation on the diurnal timescale would have implications for assessing ozone buildup and impacts on human health and crop yields.
Putian Zhou, Laurens Ganzeveld, Ditte Taipale, Üllar Rannik, Pekka Rantala, Matti Petteri Rissanen, Dean Chen, and Michael Boy
Atmos. Chem. Phys., 17, 14309–14332, https://doi.org/10.5194/acp-17-14309-2017, https://doi.org/10.5194/acp-17-14309-2017, 2017
Short summary
Short summary
In boreal forest, there is a large number of gaseous organic compounds called biogenic volatile organic compounds (BVOCs). Within the canopy, they can be emitted from vegetation and soil, react with each other and other gases, be transported in the air, and be removed from vegetation and soil surfaces. We applied a numerical model to simulate these processes and found that these BVOCs can be divided into five categories according to the significance of their sources and sinks.
Huisheng Bian, Mian Chin, Didier A. Hauglustaine, Michael Schulz, Gunnar Myhre, Susanne E. Bauer, Marianne T. Lund, Vlassis A. Karydis, Tom L. Kucsera, Xiaohua Pan, Andrea Pozzer, Ragnhild B. Skeie, Stephen D. Steenrod, Kengo Sudo, Kostas Tsigaridis, Alexandra P. Tsimpidi, and Svetlana G. Tsyro
Atmos. Chem. Phys., 17, 12911–12940, https://doi.org/10.5194/acp-17-12911-2017, https://doi.org/10.5194/acp-17-12911-2017, 2017
Short summary
Short summary
Atmospheric nitrate contributes notably to total aerosol mass in the present day and is likely to be more important over the next century, with a projected decline in SO2 and NOx emissions and increase in NH3 emissions. This paper investigates atmospheric nitrate using multiple global models and measurements. The study is part of the AeroCom phase III activity. The study is the first attempt to look at global atmospheric nitrate simulation at physical and chemical process levels.
Lucy S. Neal, Mohit Dalvi, Gerd Folberth, Rachel N. McInnes, Paul Agnew, Fiona M. O'Connor, Nicholas H. Savage, and Marie Tilbee
Geosci. Model Dev., 10, 3941–3962, https://doi.org/10.5194/gmd-10-3941-2017, https://doi.org/10.5194/gmd-10-3941-2017, 2017
Short summary
Short summary
This paper concerns aspects of downscaling global atmospheric composition and chemistry model predictions on the continental and UK national scale. A two-step nested model configuration was developed and used to simulate UK air quality for a 5-year period under present-day conditions. The results show some benefits associated with higher-resolution modelling for primary emitted pollutants, but also highlight the importance of consistency between the nested models.
Andrea Pozzer, Alexandra P. Tsimpidi, Vlassis A. Karydis, Alexander de Meij, and Jos Lelieveld
Atmos. Chem. Phys., 17, 12813–12826, https://doi.org/10.5194/acp-17-12813-2017, https://doi.org/10.5194/acp-17-12813-2017, 2017
Short summary
Short summary
This study shows that agricultural emissions are important for air quality and their reduction can effectively reduce the concentration of fine particles and their associated premature mortality. Therefore, emission control policies, especially in North America and Europe, should also involve strong ammonia emission decreases to optimally reduce fine-particle concentration.
David Cabrera-Perez, Domenico Taraborrelli, Jos Lelieveld, Thorsten Hoffmann, and Andrea Pozzer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-928, https://doi.org/10.5194/acp-2017-928, 2017
Revised manuscript not accepted
Short summary
Short summary
Aromatic compounds are present in rural and urban atmospheres. The aim of this work is to disentangle the impacts of these compounds in different important atmospheric chemical species with the help of a numerical model. Aromatics have low impact OH, NOx and Ozone concentrations in the global scale (below 4 %). The impact however is larger in the regional scale (up to 10 %). The largest impact is in glyoxal and NO3 concentrations, with changes up to 10 % globally and 40 % regionally.
Heiko Bozem, Andrea Pozzer, Hartwig Harder, Monica Martinez, Jonathan Williams, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 17, 11835–11848, https://doi.org/10.5194/acp-17-11835-2017, https://doi.org/10.5194/acp-17-11835-2017, 2017
Short summary
Short summary
We present a case study of deep convection over Germany in July 2007 within the framework of the HOOVER II project. Airborne in situ measurements within the in- and outflow regions of an isolated thunderstorm provide a unique data set to study the influence of deep convection on the transport efficiency of soluble and insoluble trace gases. Despite their high solubility HCHO and H2O2 show enhanced concentrations in the outflow presumably due to degassing from cloud droplets during freezing.
Michael J. Prather, Xin Zhu, Clare M. Flynn, Sarah A. Strode, Jose M. Rodriguez, Stephen D. Steenrod, Junhua Liu, Jean-Francois Lamarque, Arlene M. Fiore, Larry W. Horowitz, Jingqiu Mao, Lee T. Murray, Drew T. Shindell, and Steven C. Wofsy
Atmos. Chem. Phys., 17, 9081–9102, https://doi.org/10.5194/acp-17-9081-2017, https://doi.org/10.5194/acp-17-9081-2017, 2017
Short summary
Short summary
We present a new approach for comparing atmospheric chemistry models with measurements based on what these models are used to do, i.e., calculate changes in ozone and methane, prime greenhouse gases. This method anticipates a new type of measurements from the NASA Atmospheric Tomography (ATom) mission. In comparing the mixture of species within air parcels, we focus on those responsible for key chemical changes and weight these parcels by their chemical reactivity.
Emilie Öström, Zhou Putian, Guy Schurgers, Mikhail Mishurov, Niku Kivekäs, Heikki Lihavainen, Mikael Ehn, Matti P. Rissanen, Theo Kurtén, Michael Boy, Erik Swietlicki, and Pontus Roldin
Atmos. Chem. Phys., 17, 8887–8901, https://doi.org/10.5194/acp-17-8887-2017, https://doi.org/10.5194/acp-17-8887-2017, 2017
Short summary
Short summary
We used a model to study how biogenic volatile organic compounds (BVOCs) emitted from the boreal forest contribute to the formation and growth of particles in the atmosphere. Some of these particles are important climate forcers, acting as seeds for cloud droplet fomation. We implemented a new gas chemistry mechanism that describes how the BVOCs are oxidized and form low-volatility highly oxidized organic molecules. With the new mechanism we are able to accurately predict the particle growth.
Stephan Keßel, David Cabrera-Perez, Abraham Horowitz, Patrick R. Veres, Rolf Sander, Domenico Taraborrelli, Maria Tucceri, John N. Crowley, Andrea Pozzer, Christof Stönner, Luc Vereecken, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 17, 8789–8804, https://doi.org/10.5194/acp-17-8789-2017, https://doi.org/10.5194/acp-17-8789-2017, 2017
Short summary
Short summary
In this study we identify an often overlooked stable oxide of carbon, namely carbon suboxide (C3O2), in ambient air. We have made C3O2 and in the laboratory determined its absorption cross section data and the rate of reaction with two important atmospheric oxidants, OH and O3. By incorporating known sources and sinks in a global model we have generated a first global picture of the distribution of this species in the atmosphere.
Hyun-Deok Choi, Hongyu Liu, James H. Crawford, David B. Considine, Dale J. Allen, Bryan N. Duncan, Larry W. Horowitz, Jose M. Rodriguez, Susan E. Strahan, Lin Zhang, Xiong Liu, Megan R. Damon, and Stephen D. Steenrod
Atmos. Chem. Phys., 17, 8429–8452, https://doi.org/10.5194/acp-17-8429-2017, https://doi.org/10.5194/acp-17-8429-2017, 2017
Short summary
Short summary
We evaluate global ozone–carbon monoxide (O3–CO) correlations in a chemistry and transport model during July–August with TES-Aura satellite observations and examine the sensitivity of model simulations to input meteorological data and emissions. Results show that O3–CO correlations may be used effectively to constrain the sources of regional tropospheric O3 in global 3-D models, especially for those regions where convective transport of pollution plays an important role.
Volker Grewe, Eleni Tsati, Mariano Mertens, Christine Frömming, and Patrick Jöckel
Geosci. Model Dev., 10, 2615–2633, https://doi.org/10.5194/gmd-10-2615-2017, https://doi.org/10.5194/gmd-10-2615-2017, 2017
Short summary
Short summary
We present a diagnostics, implemented in an Earth system model, which keeps track of the contribution of source categories (mainly emission sectors) to various concentrations (O3 and HOx). For the first time, it takes into account chemically competing effects, e.g., the competition between ozone precursors in the production of ozone. We show that the results are in-line with results from other tagging schemes and provide plausibility checks for OH and HO2, which have not previously been tagged.
Narendra Ojha, Andrea Pozzer, Dimitris Akritidis, and Jos Lelieveld
Atmos. Chem. Phys., 17, 6743–6757, https://doi.org/10.5194/acp-17-6743-2017, https://doi.org/10.5194/acp-17-6743-2017, 2017
Short summary
Short summary
We investigate the processes, frequency of occurrence and seasonality, and effects of strongly enhanced ozone layers in the middle–upper troposphere (SOPs) over the Himalayas using a global model (EMAC). Rapid transport of stratospheric air masses is found as a key underlying process. Model predicts more frequent SOP events during the pre-monsoon. SOPs are found to significantly enhance the tropospheric ozone column over the Himalayas.
Eri Saikawa, Hankyul Kim, Min Zhong, Alexander Avramov, Yu Zhao, Greet Janssens-Maenhout, Jun-ichi Kurokawa, Zbigniew Klimont, Fabian Wagner, Vaishali Naik, Larry W. Horowitz, and Qiang Zhang
Atmos. Chem. Phys., 17, 6393–6421, https://doi.org/10.5194/acp-17-6393-2017, https://doi.org/10.5194/acp-17-6393-2017, 2017
Short summary
Short summary
We analyze differences in existing air pollutant emission estimates to better understand the magnitude of emissions as well as the source regions and sectors of air pollution in China. We find large disagreements among the inventories, and we show that these differences have a significant impact on regional air quality simulations. Better understanding of air pollutant emissions at more disaggregated levels is essential for air pollution mitigation in China.
Eero Nikinmaa, Tuomo Kalliokoski, Kari Minkkinen, Jaana Bäck, Michael Boy, Yao Gao, Nina Janasik-Honkela, Janne I. Hukkinen, Maarit Kallio, Markku Kulmala, Nea Kuusinen, Annikki Mäkelä, Brent D. Matthies, Mikko Peltoniemi, Risto Sievänen, Ditte Taipale, Lauri Valsta, Anni Vanhatalo, Martin Welp, Luxi Zhou, Putian Zhou, and Frank Berninger
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-141, https://doi.org/10.5194/bg-2017-141, 2017
Manuscript not accepted for further review
Short summary
Short summary
We estimated the impact of boreal forest management on climate, considering the effects of carbon, albedo, aerosols, and effects of industrial wood use. We made analyses both in current and warmer climate of 2050. The aerosol effect was comparable to that of carbon sequestration. Deciduous trees may have a large potential for mitigation due to their high albedo and aerosol effects. If the forests will be used more intensively and mainly for pulp and energy, the warming influence is clear.
Yuqin Liu, Gerrit de Leeuw, Veli-Matti Kerminen, Jiahua Zhang, Putian Zhou, Wei Nie, Ximeng Qi, Juan Hong, Yonghong Wang, Aijun Ding, Huadong Guo, Olaf Krüger, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 17, 5623–5641, https://doi.org/10.5194/acp-17-5623-2017, https://doi.org/10.5194/acp-17-5623-2017, 2017
Short summary
Short summary
The aerosol effects on warm cloud parameters over the Yangtze River Delta are systematically examined using multi-sensor retrievals. This study shows that the COT–CDR and CWP–CDR relationships are not unique, but are affected by atmospheric aerosol loading. CDR and cloud fraction show different behaviours for low and high AOD. Aerosol–cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust. Meteorological conditions play an important role in ACI.
Vlassis A. Karydis, Alexandra P. Tsimpidi, Sara Bacer, Andrea Pozzer, Athanasios Nenes, and Jos Lelieveld
Atmos. Chem. Phys., 17, 5601–5621, https://doi.org/10.5194/acp-17-5601-2017, https://doi.org/10.5194/acp-17-5601-2017, 2017
Short summary
Short summary
The importance of mineral dust for cloud droplet formation is studied by considering the adsorption activation of insoluble dust particles and the thermodynamic interactions between mineral cations and inorganic anions. This study demonstrates that a comprehensive treatment of the CCN activity of mineral dust and its chemical and thermodynamic interactions with inorganic species by chemistry climate models is important to realistically account for aerosol–chemistry–cloud–climate interaction.
Mohamed Abdelkader, Swen Metzger, Benedikt Steil, Klaus Klingmüller, Holger Tost, Andrea Pozzer, Georgiy Stenchikov, Leonard Barrie, and Jos Lelieveld
Atmos. Chem. Phys., 17, 3799–3821, https://doi.org/10.5194/acp-17-3799-2017, https://doi.org/10.5194/acp-17-3799-2017, 2017
Short summary
Short summary
We present a modeling study on the impacts of the key processes (dust emission flux, convection and dust aging parameterizations) that control the transatlantic dust transport using an advanced version of the EMAC atmospheric chemistry general circulation model. We define the
direct effect of dust agingas an increase in the AOD as a result of hygroscopic growth. We define the
indirect effectas a reduction in the dust AOD due to the higher removal of the aged dust particles.
Steven C. Hardiman, Neal Butchart, Fiona M. O'Connor, and Steven T. Rumbold
Geosci. Model Dev., 10, 1209–1232, https://doi.org/10.5194/gmd-10-1209-2017, https://doi.org/10.5194/gmd-10-1209-2017, 2017
Short summary
Short summary
HadGEM3-ES is improved, with respect to the previous model, in 10 of the 14 metrics considered. A significant bias in stratospheric water vapour is reduced, allowing more accurate simulation of water vapour and ozone concentrations in the stratosphere. Dynamics are found to influence the spatial structure of the simulated ozone hole and the area of polar stratospheric clouds. This research was carried out as part of involvement in the Chemistry-Climate Model Initiative (CCM-I).
Meiyun Lin, Larry W. Horowitz, Richard Payton, Arlene M. Fiore, and Gail Tonnesen
Atmos. Chem. Phys., 17, 2943–2970, https://doi.org/10.5194/acp-17-2943-2017, https://doi.org/10.5194/acp-17-2943-2017, 2017
Short summary
Short summary
US ozone pollution responds to varying global-to-regional precursor emissions and climate, with implications for designing effective air quality control policies. Asian anthropogenic emissions of ozone precursors tripled since 1990, contributing 65 % to western US ozone increases in spring, outpacing ozone decreases attained via 50 % US emission controls. In the eastern US, if emissions had not declined, more frequent hot extremes since 1990 would have worsened the highest ozone events in summer.
Olaf Morgenstern, Michaela I. Hegglin, Eugene Rozanov, Fiona M. O'Connor, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Neal Butchart, Martyn P. Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando R. Garcia, Steven C. Hardiman, Larry W. Horowitz, Patrick Jöckel, Beatrice Josse, Douglas Kinnison, Meiyun Lin, Eva Mancini, Michael E. Manyin, Marion Marchand, Virginie Marécal, Martine Michou, Luke D. Oman, Giovanni Pitari, David A. Plummer, Laura E. Revell, David Saint-Martin, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, https://doi.org/10.5194/gmd-10-639-2017, 2017
Short summary
Short summary
We present a review of the make-up of 20 models participating in the Chemistry–Climate Model Initiative (CCMI). In comparison to earlier such activities, most of these models comprise a whole-atmosphere chemistry, and several of them include an interactive ocean module. This makes them suitable for studying the interactions of tropospheric air quality, stratospheric ozone, and climate. The paper lays the foundation for other studies using the CCMI simulations for scientific analysis.
Johannes Flemming, Angela Benedetti, Antje Inness, Richard J. Engelen, Luke Jones, Vincent Huijnen, Samuel Remy, Mark Parrington, Martin Suttie, Alessio Bozzo, Vincent-Henri Peuch, Dimitris Akritidis, and Eleni Katragkou
Atmos. Chem. Phys., 17, 1945–1983, https://doi.org/10.5194/acp-17-1945-2017, https://doi.org/10.5194/acp-17-1945-2017, 2017
Short summary
Short summary
We combine satellite observations of carbon monoxide, ozone and aerosols with the results from a model using a technique called data assimilation. The generated global data set (CAMS interim reanalysis) covers the period 2003–2015 at a resolution of about 110 km. The CAMS interim reanalysis can be used to study global air pollution and climate forcing of aerosol and stratospheric ozone. It has been produced by the Copernicus Atmosphere Monitoring Service (http://atmosphere. copernicus.eu).
Putian Zhou, Laurens Ganzeveld, Üllar Rannik, Luxi Zhou, Rosa Gierens, Ditte Taipale, Ivan Mammarella, and Michael Boy
Atmos. Chem. Phys., 17, 1361–1379, https://doi.org/10.5194/acp-17-1361-2017, https://doi.org/10.5194/acp-17-1361-2017, 2017
Short summary
Short summary
We implemented a multi-layer O3 dry deposition model in a 1-D model SOSAA to simulate O3 flux and concentration within and above a boreal forest at SMEAR II in Hyytiälä, Finland, in August 2010. The results showed that when RH > 70 % the O3 uptake on leaf wet skin was ~ 51 % to the total deposition at night and ~ 19 % at daytime. The sub-canopy contribution below 4.2 m was ~ 38 % at daytime. The averaged daily chemical contribution to total O3 alteration inside the canopy was less than 10 %.
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Pau Cortes, Birgit Quack, Rafel Simo, Dennis Booge, Andrea Pozzer, Tobias Steinhoff, Damian L. Arevalo-Martinez, Corinna Kloss, Astrid Bracher, Rüdiger Röttgers, Elliot Atlas, and Kirstin Krüger
Atmos. Chem. Phys., 17, 385–402, https://doi.org/10.5194/acp-17-385-2017, https://doi.org/10.5194/acp-17-385-2017, 2017
Short summary
Short summary
We present new sea surface and marine boundary layer measurements of carbonyl sulfide, the most abundant sulfur gas in the atmosphere, and calculate an oceanic emission estimate. Our results imply that oceanic emissions are very unlikely to account for the missing source in the atmospheric budget that is currently discussed for OCS.
Imran A. Girach, Narendra Ojha, Prabha R. Nair, Andrea Pozzer, Yogesh K. Tiwari, K. Ravi Kumar, and Jos Lelieveld
Atmos. Chem. Phys., 17, 257–275, https://doi.org/10.5194/acp-17-257-2017, https://doi.org/10.5194/acp-17-257-2017, 2017
Short summary
Short summary
This study presents first ship-borne measurements of trace gases over the Bay of Bengal during summer monsoon. The observed variations in trace gases are shown to be due to dynamics/transport and en route photochemistry. Analysis of meteorological and chemical fields shows that significantly lower ozone during rainfall is associated with the downdrafts. A regional model reproduces the observed variations and revealed the rapid transport of ozone across the Bay of Bengal during an event.
Sara Bacer, Theodoros Christoudias, and Andrea Pozzer
Atmos. Chem. Phys., 16, 15581–15592, https://doi.org/10.5194/acp-16-15581-2016, https://doi.org/10.5194/acp-16-15581-2016, 2016
Short summary
Short summary
We investigate the influence of the North Atlantic Oscillation on atmospheric pollutant transport in the 21st century under a global climate-change scenario, using a coupled atmosphere–chemistry–ocean general circulation model. We find that, at the end of the century, the south-western Mediterranean and northern Africa will see higher pollutant concentrations during positive NAO phases with respect to the past, while a wider part of north Europe will see lower pollutant concentrations.
Dimitris Akritidis, Andrea Pozzer, Prodromos Zanis, Evangelos Tyrlis, Bojan Škerlak, Michael Sprenger, and Jos Lelieveld
Atmos. Chem. Phys., 16, 14025–14039, https://doi.org/10.5194/acp-16-14025-2016, https://doi.org/10.5194/acp-16-14025-2016, 2016
Short summary
Short summary
We investigate the contribution of tropopause folds in the summertime tropospheric ozone pool over the eastern Mediterranean and the Middle East. For this purpose we use the EMAC atmospheric chemistry–climate model and a fold identification algorithm. A clear increase of ozone is found in the middle troposphere due to fold activity. The interannual variability of near-surface ozone over the eastern Mediterranean is related to that of both tropopause folds and ozone in the free troposphere.
Kathleen A. Mar, Narendra Ojha, Andrea Pozzer, and Tim M. Butler
Geosci. Model Dev., 9, 3699–3728, https://doi.org/10.5194/gmd-9-3699-2016, https://doi.org/10.5194/gmd-9-3699-2016, 2016
Short summary
Short summary
Ground-level ozone is an air pollutant with adverse effects on human and ecosystem health and is also a climate forcer with a significant warming effect. This paper presents the setup and evaluation of a model for ozone air quality over Europe. Within the model evaluation, we compare the use of two commonly used photochemical schemes, and we conclude that uncertainties in the representation of chemistry are important to consider when using air quality models for policy applications.
Jos Lelieveld, Sergey Gromov, Andrea Pozzer, and Domenico Taraborrelli
Atmos. Chem. Phys., 16, 12477–12493, https://doi.org/10.5194/acp-16-12477-2016, https://doi.org/10.5194/acp-16-12477-2016, 2016
Short summary
Short summary
The self-cleaning capacity of the atmosphere is controlled by hydroxyl (OH) radicals in the troposphere. There are primary and secondary OH sources, the former through the photodissociation of ozone, the latter through OH recycling. We used a global model, showing that secondary sources are larger than assumed previously, which buffers OH. Complementary OH formation mechanisms in pristine and polluted environments, connected through transport of ozone, can maintain stable global OH levels.
Mariano Mertens, Astrid Kerkweg, Patrick Jöckel, Holger Tost, and Christiane Hofmann
Geosci. Model Dev., 9, 3545–3567, https://doi.org/10.5194/gmd-9-3545-2016, https://doi.org/10.5194/gmd-9-3545-2016, 2016
Short summary
Short summary
This fourth part in a series of publications describing the newly developed regional chemistry–climate system MECO(n) is dedicated to the evaluation of MECO(n) with respect to tropospheric gas-phase chemistry. For this, a simulation incorporating two regional instances, one over Europe with 50 km resolution and one over Germany with 12 km resolution, is conducted. The model results are compared with satellite, ground-based and aircraft in situ observations.
Carly L. Reddington, Dominick V. Spracklen, Paulo Artaxo, David A. Ridley, Luciana V. Rizzo, and Andrea Arana
Atmos. Chem. Phys., 16, 11083–11106, https://doi.org/10.5194/acp-16-11083-2016, https://doi.org/10.5194/acp-16-11083-2016, 2016
Short summary
Short summary
We use a global aerosol model evaluated against long-term observations of surface aerosol and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol. We use three satellite-derived fire emission datasets in the model, identifying regions where these datasets capture observations and where emissions are likely to be underestimated. For coincident observations of surface aerosol and AOD, model underestimation of AOD is greater than of surface aerosol.
Zarashpe Z. Kapadia, Dominick V. Spracklen, Steve R. Arnold, Duncan J. Borman, Graham W. Mann, Kirsty J. Pringle, Sarah A. Monks, Carly L. Reddington, François Benduhn, Alexandru Rap, Catherine E. Scott, Edward W. Butt, and Masaru Yoshioka
Atmos. Chem. Phys., 16, 10521–10541, https://doi.org/10.5194/acp-16-10521-2016, https://doi.org/10.5194/acp-16-10521-2016, 2016
Short summary
Short summary
Using a coupled tropospheric chemistry-aerosol microphysics model this research paper investigates the effect of variations in aviation fuel sulfur content (FSC) on surface PM2.5 concentrations, increases in aviation-induced premature mortalities, low-level cloud condensation nuclei and radiative effect.
When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.
When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.
Narendra Singh, Raman Solanki, Narendra Ojha, Ruud H. H. Janssen, Andrea Pozzer, and Surendra K. Dhaka
Atmos. Chem. Phys., 16, 10559–10572, https://doi.org/10.5194/acp-16-10559-2016, https://doi.org/10.5194/acp-16-10559-2016, 2016
Short summary
Short summary
Our study presents measurements and model simulations of boundary layer evolution over a mountain peak in the central Himalayas. The observations were made as a part of the Ganges Valley Aerosol Experiment. The implications of biases in model simulated boundary layer towards simulations of trace species is investigated.
Elham Baranizadeh, Benjamin N. Murphy, Jan Julin, Saeed Falahat, Carly L. Reddington, Antti Arola, Lars Ahlm, Santtu Mikkonen, Christos Fountoukis, David Patoulias, Andreas Minikin, Thomas Hamburger, Ari Laaksonen, Spyros N. Pandis, Hanna Vehkamäki, Kari E. J. Lehtinen, and Ilona Riipinen
Geosci. Model Dev., 9, 2741–2754, https://doi.org/10.5194/gmd-9-2741-2016, https://doi.org/10.5194/gmd-9-2741-2016, 2016
Short summary
Short summary
The molecular mechanisms through which new ultrafine (< 100 nm) aerosol particles are formed in the atmosphere have puzzled the scientific community for decades. In the past few years, however, significant progress has been made in unraveling these processes through laboratory studies and computational efforts. In this work we have implemented these new developments to an air quality model and study the implications of anthropogenically driven particle formation for European air quality.
Raquel A. Silva, J. Jason West, Jean-François Lamarque, Drew T. Shindell, William J. Collins, Stig Dalsoren, Greg Faluvegi, Gerd Folberth, Larry W. Horowitz, Tatsuya Nagashima, Vaishali Naik, Steven T. Rumbold, Kengo Sudo, Toshihiko Takemura, Daniel Bergmann, Philip Cameron-Smith, Irene Cionni, Ruth M. Doherty, Veronika Eyring, Beatrice Josse, Ian A. MacKenzie, David Plummer, Mattia Righi, David S. Stevenson, Sarah Strode, Sophie Szopa, and Guang Zengast
Atmos. Chem. Phys., 16, 9847–9862, https://doi.org/10.5194/acp-16-9847-2016, https://doi.org/10.5194/acp-16-9847-2016, 2016
Short summary
Short summary
Using ozone and PM2.5 concentrations from the ACCMIP ensemble of chemistry-climate models for the four Representative Concentration Pathway scenarios (RCPs), together with projections of future population and baseline mortality rates, we quantify the human premature mortality impacts of future ambient air pollution in 2030, 2050 and 2100, relative to 2000 concentrations. We also estimate the global mortality burden of ozone and PM2.5 in 2000 and each future period.
Yuqiang Zhang, Jared H. Bowden, Zachariah Adelman, Vaishali Naik, Larry W. Horowitz, Steven J. Smith, and J. Jason West
Atmos. Chem. Phys., 16, 9533–9548, https://doi.org/10.5194/acp-16-9533-2016, https://doi.org/10.5194/acp-16-9533-2016, 2016
Short summary
Short summary
Reducing greenhouse gas (GHG) emissions can also improve air quality. We estimate the co-benefits of global GHG mitigation for US air quality in 2050 at fine resolution by downscaling from a previous global study. Foreign GHG mitigation under RCP4.5 contributes more to the US O3 reduction (76 % of the total) than domestic mitigation and contributes 26 % of the PM2.5 reduction. Therefore, the US gains significantly greater air quality co-benefits by coordinating GHG controls internationally.
Steffen Beirle, Christoph Hörmann, Patrick Jöckel, Song Liu, Marloes Penning de Vries, Andrea Pozzer, Holger Sihler, Pieter Valks, and Thomas Wagner
Atmos. Meas. Tech., 9, 2753–2779, https://doi.org/10.5194/amt-9-2753-2016, https://doi.org/10.5194/amt-9-2753-2016, 2016
David Cabrera-Perez, Domenico Taraborrelli, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 16, 6931–6947, https://doi.org/10.5194/acp-16-6931-2016, https://doi.org/10.5194/acp-16-6931-2016, 2016
Short summary
Short summary
The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with observations with the goal of understanding emission, production and removal of these compounds. Anthropogenic and biomass burning are the main sources of aromatic compounds to the atmosphere. The main sink is photochemical decomposition and in lesser importance dry deposition.
Klaus Klingmüller, Andrea Pozzer, Swen Metzger, Georgiy L. Stenchikov, and Jos Lelieveld
Atmos. Chem. Phys., 16, 5063–5073, https://doi.org/10.5194/acp-16-5063-2016, https://doi.org/10.5194/acp-16-5063-2016, 2016
Short summary
Short summary
During the last decade, the Middle East experienced the strongest increase in atmospheric aerosol concentrations worldwide. Based on satellite observations, the present study corroborates this trend and reveals correlations with soil moisture and precipitation in and surrounding the Fertile Crescent. This suggests that the increasing drought conditions in this region have enhanced dust emissions, a tendency which is expected to be intensified by climate change.
Hongyu Liu, David B. Considine, Larry W. Horowitz, James H. Crawford, Jose M. Rodriguez, Susan E. Strahan, Megan R. Damon, Stephen D. Steenrod, Xiaojing Xu, Jules Kouatchou, Claire Carouge, and Robert M. Yantosca
Atmos. Chem. Phys., 16, 4641–4659, https://doi.org/10.5194/acp-16-4641-2016, https://doi.org/10.5194/acp-16-4641-2016, 2016
Short summary
Short summary
We assess the utility of cosmogenic beryllium-7, a natural aerosol tracer, for evaluating cross-tropopause transport in global models. We show that model excessive cross-tropopause transport of beryllium-7 corresponds to overestimated stratospheric contribution to tropospheric ozone. We conclude that the observational constraints for beryllium-7 and observed beryllium-7 total deposition fluxes can be used routinely as a first-order assessment of cross-tropopause transport in global models.
Min Zhong, Eri Saikawa, Yang Liu, Vaishali Naik, Larry W. Horowitz, Masayuki Takigawa, Yu Zhao, Neng-Huei Lin, and Elizabeth A. Stone
Geosci. Model Dev., 9, 1201–1218, https://doi.org/10.5194/gmd-9-1201-2016, https://doi.org/10.5194/gmd-9-1201-2016, 2016
Short summary
Short summary
Large discrepancies exist among emission inventories (e.g., REAS and EDGAR) at the provincial level in China. We use WRF-Chem to evaluate the impact of the difference in existing emission inventories and find that emissions inputs significantly affect our air pollutant simulation results. Our study highlights the importance of constraining emissions at the provincial level for regional air quality modeling over East Asia.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
Narendra Ojha, Andrea Pozzer, Armin Rauthe-Schöch, Angela K. Baker, Jongmin Yoon, Carl A. M. Brenninkmeijer, and Jos Lelieveld
Atmos. Chem. Phys., 16, 3013–3032, https://doi.org/10.5194/acp-16-3013-2016, https://doi.org/10.5194/acp-16-3013-2016, 2016
Short summary
Short summary
We compare simulations of ozone and carbon monoxide using a regional chemistry transport model (WRF-Chem) with aircraft observations from CARIBIC program over India during monsoon period. Sensitivity simulations are conducted to assess the influences of regional emissions and long-range transport.
G. M. Wolfe, J. Kaiser, T. F. Hanisco, F. N. Keutsch, J. A. de Gouw, J. B. Gilman, M. Graus, C. D. Hatch, J. Holloway, L. W. Horowitz, B. H. Lee, B. M. Lerner, F. Lopez-Hilifiker, J. Mao, M. R. Marvin, J. Peischl, I. B. Pollack, J. M. Roberts, T. B. Ryerson, J. A. Thornton, P. R. Veres, and C. Warneke
Atmos. Chem. Phys., 16, 2597–2610, https://doi.org/10.5194/acp-16-2597-2016, https://doi.org/10.5194/acp-16-2597-2016, 2016
Short summary
Short summary
This study uses airborne trace gas observations acquired over the southeast US to examine how both natural (isoprene) and anthropogenic (NOx) emissions influence the production of formaldehyde (HCHO). We find a 3-fold increase in HCHO yield between rural and polluted environments. State-of-the-science chemical mechanisms are generally able to reproduce this behavior. These results add confidence to global hydrocarbon emission inventories constrained by spaceborne HCHO observations.
V. A. Karydis, A. P. Tsimpidi, A. Pozzer, M. Astitha, and J. Lelieveld
Atmos. Chem. Phys., 16, 1491–1509, https://doi.org/10.5194/acp-16-1491-2016, https://doi.org/10.5194/acp-16-1491-2016, 2016
Short summary
Short summary
We provide an assessment of the chemical composition and global aerosol load of aerosol nitrate and determine the effect of mineral dust on its formation due to thermodynamical interactions. For this purpose we used an explicit geographical representation of the emitted soil particle size distribution and chemical composition. We conclude mineral dust aerosol chemistry is important for nitrate aerosol formation and significantly affects its global distribution, especially in the coarse mode.
F. Paulot, P. Ginoux, W. F. Cooke, L. J. Donner, S. Fan, M.-Y. Lin, J. Mao, V. Naik, and L. W. Horowitz
Atmos. Chem. Phys., 16, 1459–1477, https://doi.org/10.5194/acp-16-1459-2016, https://doi.org/10.5194/acp-16-1459-2016, 2016
Short summary
Short summary
We characterize the sensitivity of NO3 optical depth (OD) to both the sources of its precursors (NH3 and HNO3) and to its surface sinks. Uncertainties in the heterogeneous chemistry of HNO3 and the near-surface volatilization of NH4NO3 can cause up to 25 % difference in the global NO3 OD. Simulated NO3 OD increases little (< 30 %) in response to changes in emissions (2010 to 2050). Better constraints on the tropical flux of NH3 into the free troposphere are needed to improve estimates of NO3 OD.
E. W. Butt, A. Rap, A. Schmidt, C. E. Scott, K. J. Pringle, C. L. Reddington, N. A. D. Richards, M. T. Woodhouse, J. Ramirez-Villegas, H. Yang, V. Vakkari, E. A. Stone, M. Rupakheti, P. S. Praveen, P. G. van Zyl, J. P. Beukes, M. Josipovic, E. J. S. Mitchell, S. M. Sallu, P. M. Forster, and D. V. Spracklen
Atmos. Chem. Phys., 16, 873–905, https://doi.org/10.5194/acp-16-873-2016, https://doi.org/10.5194/acp-16-873-2016, 2016
Short summary
Short summary
We estimate the impact of residential emissions (cooking and heating) on atmospheric aerosol, human health, and climate. We find large contributions to annual mean ambient PM2.5 in residential sources regions resulting in significant but uncertain global premature mortality when key uncertainties in emission flux are considered. We show that residential emissions exert an uncertain global radiative effect and suggest more work is needed to characterise residential emissions climate importance.
S. Bacer, T. Christoudias, and A. Pozzer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-33049-2015, https://doi.org/10.5194/acpd-15-33049-2015, 2015
Preprint withdrawn
Short summary
Short summary
We investigate the temporal variability of the North Atlantic Oscillation (NAO) pattern and its relation to the atmospheric dispersion of pollutants in the near past and in the future.
We use a global climate circulation model in order to analyze the NAO signal and its correlation with pollutant concentrations. We find that the NAO is influenced by natural climate variability and that the NAO Indices may be used as indicators of (future) pollutant transport over Europe.
D. M. Westervelt, L. W. Horowitz, V. Naik, J.-C. Golaz, and D. L. Mauzerall
Atmos. Chem. Phys., 15, 12681–12703, https://doi.org/10.5194/acp-15-12681-2015, https://doi.org/10.5194/acp-15-12681-2015, 2015
Short summary
Short summary
Decreases in aerosols over the 21st century as projected by the Representative Concentration Pathways (RCPs) lead to increases up to 0.5 - 1 ºC in global temperature and up to 0.05 - 0.1 mm/day in global precipitation, depending strongly on present-day aerosol radiative forcing. In East Asia, future aerosol decreases could be responsible for 10-20% of the total temperature increase (30-40% with strong present-day aerosol forcing), even under the high greenhouse gas emissions scenario (RCP8.5).
J. L. Schnell, M. J. Prather, B. Josse, V. Naik, L. W. Horowitz, P. Cameron-Smith, D. Bergmann, G. Zeng, D. A. Plummer, K. Sudo, T. Nagashima, D. T. Shindell, G. Faluvegi, and S. A. Strode
Atmos. Chem. Phys., 15, 10581–10596, https://doi.org/10.5194/acp-15-10581-2015, https://doi.org/10.5194/acp-15-10581-2015, 2015
Short summary
Short summary
We test global chemistry--climate models in their ability to simulate present-day surface ozone. Models are tested against observed hourly ozone from 4217 stations in North America and Europe that are averaged over 1°x1° grid cells. Using novel metrics, we find most models match the shape but not the amplitude of regional summertime diurnal and annual cycles and match the pattern but not the magnitude of summer ozone enhancement. Most also match the observed distribution of extreme episode sizes
S. T. Turnock, D. V. Spracklen, K. S. Carslaw, G. W. Mann, M. T. Woodhouse, P. M. Forster, J. Haywood, C. E. Johnson, M. Dalvi, N. Bellouin, and A. Sanchez-Lorenzo
Atmos. Chem. Phys., 15, 9477–9500, https://doi.org/10.5194/acp-15-9477-2015, https://doi.org/10.5194/acp-15-9477-2015, 2015
Short summary
Short summary
We evaluate HadGEM3-UKCA over Europe for the period 1960-2009 against observations of aerosol mass and number, aerosol optical depth (AOD) and surface solar radiation (SSR). The model underestimates aerosol mass and number but is less biased if compared to AOD and SSR. Observed trends in aerosols are well simulated by the model and necessary for reproducing the observed increase in SSR since 1990. European all-sky top of atmosphere aerosol radiative forcing increased by > 3 Wm-2 from 1970 to 2009.
H. G. Ouwersloot, A. Pozzer, B. Steil, H. Tost, and J. Lelieveld
Geosci. Model Dev., 8, 2435–2445, https://doi.org/10.5194/gmd-8-2435-2015, https://doi.org/10.5194/gmd-8-2435-2015, 2015
H. Fischer, A. Pozzer, T. Schmitt, P. Jöckel, T. Klippel, D. Taraborrelli, and J. Lelieveld
Atmos. Chem. Phys., 15, 6971–6980, https://doi.org/10.5194/acp-15-6971-2015, https://doi.org/10.5194/acp-15-6971-2015, 2015
S. Zheng, A. Pozzer, C. X. Cao, and J. Lelieveld
Atmos. Chem. Phys., 15, 5715–5725, https://doi.org/10.5194/acp-15-5715-2015, https://doi.org/10.5194/acp-15-5715-2015, 2015
Short summary
Short summary
The present study uses aerosol optical depth as proxy to estimate 12 years of PM2.5 data for the Beijing central area and calculate the yearly premature mortality by different diseases attributable to PM2.5. The estimated average total mortality due to PM2.5 is about 5100 individuals/year for the period 2001--2012 in the Beijing central area, and the per capita mortality for all ages due to PM2.5 is around 15 per 10,000 person-years for the period 2010--2012.
A. Pozzer, A. de Meij, J. Yoon, H. Tost, A. K. Georgoulias, and M. Astitha
Atmos. Chem. Phys., 15, 5521–5535, https://doi.org/10.5194/acp-15-5521-2015, https://doi.org/10.5194/acp-15-5521-2015, 2015
Short summary
Short summary
Thanks to numerical simulations and satellite observations, it is shown that aerosol optical depth (AOD) trends (2000--2010 period) over the US and Europe are due to emission decrease, while over the Sahara Desert and the Middle East they are due to meteorological changes. Over Southeast Asia, both meteorology and emission changes are important for the AOD trends.
It is shown that soluble components strongly influence AOD, as their contribution is enhanced by the aerosol water content.
R. H. H. Janssen and A. Pozzer
Geosci. Model Dev., 8, 453–471, https://doi.org/10.5194/gmd-8-453-2015, https://doi.org/10.5194/gmd-8-453-2015, 2015
A. P. Tsimpidi, V. A. Karydis, A. Pozzer, S. N. Pandis, and J. Lelieveld
Geosci. Model Dev., 7, 3153–3172, https://doi.org/10.5194/gmd-7-3153-2014, https://doi.org/10.5194/gmd-7-3153-2014, 2014
Short summary
Short summary
A computationally efficient module for the description of OA composition and evolution in the atmosphere has been developed. This module subdivides OA into several compounds based on their source of origin and volatility, allowing the quantification of POA vs. SOA as well as biogenic vs. anthropogenic contributions to OA concentrations. Such fundamental information can shed light on long-term changes in OA abundance, and hence project the effects of OA on future air quality and climate.
G. D. Hayman, F. M. O'Connor, M. Dalvi, D. B. Clark, N. Gedney, C. Huntingford, C. Prigent, M. Buchwitz, O. Schneising, J. P. Burrows, C. Wilson, N. Richards, and M. Chipperfield
Atmos. Chem. Phys., 14, 13257–13280, https://doi.org/10.5194/acp-14-13257-2014, https://doi.org/10.5194/acp-14-13257-2014, 2014
Short summary
Short summary
Globally, wetlands are a major source of methane, which is the second most important greenhouse gas. We find the JULES wetland methane scheme to perform well in general, although there is a tendency for it to overpredict emissions in the tropics and underpredict them in northern latitudes. Our study highlights novel uses of satellite data as a major tool to constrain land-atmosphere methane flux models in a warming world.
R. Sander, P. Jöckel, O. Kirner, A. T. Kunert, J. Landgraf, and A. Pozzer
Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014, https://doi.org/10.5194/gmd-7-2653-2014, 2014
S. S. Dhomse, K. M. Emmerson, G. W. Mann, N. Bellouin, K. S. Carslaw, M. P. Chipperfield, R. Hommel, N. L. Abraham, P. Telford, P. Braesicke, M. Dalvi, C. E. Johnson, F. O'Connor, O. Morgenstern, J. A. Pyle, T. Deshler, J. M. Zawodny, and L. W. Thomason
Atmos. Chem. Phys., 14, 11221–11246, https://doi.org/10.5194/acp-14-11221-2014, https://doi.org/10.5194/acp-14-11221-2014, 2014
J. Yoon and A. Pozzer
Atmos. Chem. Phys., 14, 10465–10482, https://doi.org/10.5194/acp-14-10465-2014, https://doi.org/10.5194/acp-14-10465-2014, 2014
Z. Shen, J. Liu, L. W. Horowitz, D. K. Henze, S. Fan, Levy II H., D. L. Mauzerall, J.-T. Lin, and S. Tao
Atmos. Chem. Phys., 14, 6315–6327, https://doi.org/10.5194/acp-14-6315-2014, https://doi.org/10.5194/acp-14-6315-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
C. Liu, S. Beirle, T. Butler, P. Hoor, C. Frankenberg, P. Jöckel, M. Penning de Vries, U. Platt, A. Pozzer, M. G. Lawrence, J. Lelieveld, H. Tost, and T. Wagner
Atmos. Chem. Phys., 14, 1717–1732, https://doi.org/10.5194/acp-14-1717-2014, https://doi.org/10.5194/acp-14-1717-2014, 2014
Y. F. Elshorbany, P. J. Crutzen, B. Steil, A. Pozzer, H. Tost, and J. Lelieveld
Atmos. Chem. Phys., 14, 1167–1184, https://doi.org/10.5194/acp-14-1167-2014, https://doi.org/10.5194/acp-14-1167-2014, 2014
D. Giannadaki, A. Pozzer, and J. Lelieveld
Atmos. Chem. Phys., 14, 957–968, https://doi.org/10.5194/acp-14-957-2014, https://doi.org/10.5194/acp-14-957-2014, 2014
F. M. O'Connor, C. E. Johnson, O. Morgenstern, N. L. Abraham, P. Braesicke, M. Dalvi, G. A. Folberth, M. G. Sanderson, P. J. Telford, A. Voulgarakis, P. J. Young, G. Zeng, W. J. Collins, and J. A. Pyle
Geosci. Model Dev., 7, 41–91, https://doi.org/10.5194/gmd-7-41-2014, https://doi.org/10.5194/gmd-7-41-2014, 2014
P. Zanis, P. Hadjinicolaou, A. Pozzer, E. Tyrlis, S. Dafka, N. Mihalopoulos, and J. Lelieveld
Atmos. Chem. Phys., 14, 115–132, https://doi.org/10.5194/acp-14-115-2014, https://doi.org/10.5194/acp-14-115-2014, 2014
J. Yoon, A. Pozzer, P. Hoor, D. Y. Chang, S. Beirle, T. Wagner, S. Schloegl, J. Lelieveld, and H. M. Worden
Atmos. Chem. Phys., 13, 11307–11316, https://doi.org/10.5194/acp-13-11307-2013, https://doi.org/10.5194/acp-13-11307-2013, 2013
L. A. Lee, K. J. Pringle, C. L. Reddington, G. W. Mann, P. Stier, D. V. Spracklen, J. R. Pierce, and K. S. Carslaw
Atmos. Chem. Phys., 13, 8879–8914, https://doi.org/10.5194/acp-13-8879-2013, https://doi.org/10.5194/acp-13-8879-2013, 2013
J. Lelieveld, C. Barlas, D. Giannadaki, and A. Pozzer
Atmos. Chem. Phys., 13, 7023–7037, https://doi.org/10.5194/acp-13-7023-2013, https://doi.org/10.5194/acp-13-7023-2013, 2013
V. Naik, A. Voulgarakis, A. M. Fiore, L. W. Horowitz, J.-F. Lamarque, M. Lin, M. J. Prather, P. J. Young, D. Bergmann, P. J. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, T. P. C. van Noije, D. A. Plummer, M. Righi, S. T. Rumbold, R. Skeie, D. T. Shindell, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 5277–5298, https://doi.org/10.5194/acp-13-5277-2013, https://doi.org/10.5194/acp-13-5277-2013, 2013
K. W. Bowman, D. T. Shindell, H. M. Worden, J.F. Lamarque, P. J. Young, D. S. Stevenson, Z. Qu, M. de la Torre, D. Bergmann, P. J. Cameron-Smith, W. J. Collins, R. Doherty, S. B. Dalsøren, G. Faluvegi, G. Folberth, L. W. Horowitz, B. M. Josse, Y. H. Lee, I. A. MacKenzie, G. Myhre, T. Nagashima, V. Naik, D. A. Plummer, S. T. Rumbold, R. B. Skeie, S. A. Strode, K. Sudo, S. Szopa, A. Voulgarakis, G. Zeng, S. S. Kulawik, A. M. Aghedo, and J. R. Worden
Atmos. Chem. Phys., 13, 4057–4072, https://doi.org/10.5194/acp-13-4057-2013, https://doi.org/10.5194/acp-13-4057-2013, 2013
D. T. Shindell, J.-F. Lamarque, M. Schulz, M. Flanner, C. Jiao, M. Chin, P. J. Young, Y. H. Lee, L. Rotstayn, N. Mahowald, G. Milly, G. Faluvegi, Y. Balkanski, W. J. Collins, A. J. Conley, S. Dalsoren, R. Easter, S. Ghan, L. Horowitz, X. Liu, G. Myhre, T. Nagashima, V. Naik, S. T. Rumbold, R. Skeie, K. Sudo, S. Szopa, T. Takemura, A. Voulgarakis, J.-H. Yoon, and F. Lo
Atmos. Chem. Phys., 13, 2939–2974, https://doi.org/10.5194/acp-13-2939-2013, https://doi.org/10.5194/acp-13-2939-2013, 2013
D. S. Stevenson, P. J. Young, V. Naik, J.-F. Lamarque, D. T. Shindell, A. Voulgarakis, R. B. Skeie, S. B. Dalsoren, G. Myhre, T. K. Berntsen, G. A. Folberth, S. T. Rumbold, W. J. Collins, I. A. MacKenzie, R. M. Doherty, G. Zeng, T. P. C. van Noije, A. Strunk, D. Bergmann, P. Cameron-Smith, D. A. Plummer, S. A. Strode, L. Horowitz, Y. H. Lee, S. Szopa, K. Sudo, T. Nagashima, B. Josse, I. Cionni, M. Righi, V. Eyring, A. Conley, K. W. Bowman, O. Wild, and A. Archibald
Atmos. Chem. Phys., 13, 3063–3085, https://doi.org/10.5194/acp-13-3063-2013, https://doi.org/10.5194/acp-13-3063-2013, 2013
Y. H. Lee, J.-F. Lamarque, M. G. Flanner, C. Jiao, D. T. Shindell, T. Berntsen, M. M. Bisiaux, J. Cao, W. J. Collins, M. Curran, R. Edwards, G. Faluvegi, S. Ghan, L. W. Horowitz, J. R. McConnell, J. Ming, G. Myhre, T. Nagashima, V. Naik, S. T. Rumbold, R. B. Skeie, K. Sudo, T. Takemura, F. Thevenon, B. Xu, and J.-H. Yoon
Atmos. Chem. Phys., 13, 2607–2634, https://doi.org/10.5194/acp-13-2607-2013, https://doi.org/10.5194/acp-13-2607-2013, 2013
A. Voulgarakis, V. Naik, J.-F. Lamarque, D. T. Shindell, P. J. Young, M. J. Prather, O. Wild, R. D. Field, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, L. W. Horowitz, B. Josse, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, D. S. Stevenson, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 2563–2587, https://doi.org/10.5194/acp-13-2563-2013, https://doi.org/10.5194/acp-13-2563-2013, 2013
P. J. Young, A. T. Archibald, K. W. Bowman, J.-F. Lamarque, V. Naik, D. S. Stevenson, S. Tilmes, A. Voulgarakis, O. Wild, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, L. W. Horowitz, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, R. B. Skeie, D. T. Shindell, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, https://doi.org/10.5194/acp-13-2063-2013, 2013
C. He, J. Liu, A. G. Carlton, S. Fan, L. W. Horowitz, H. Levy II, and S. Tao
Atmos. Chem. Phys., 13, 1913–1926, https://doi.org/10.5194/acp-13-1913-2013, https://doi.org/10.5194/acp-13-1913-2013, 2013
J.-F. Lamarque, D. T. Shindell, B. Josse, P. J. Young, I. Cionni, V. Eyring, D. Bergmann, P. Cameron-Smith, W. J. Collins, R. Doherty, S. Dalsoren, G. Faluvegi, G. Folberth, S. J. Ghan, L. W. Horowitz, Y. H. Lee, I. A. MacKenzie, T. Nagashima, V. Naik, D. Plummer, M. Righi, S. T. Rumbold, M. Schulz, R. B. Skeie, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, A. Voulgarakis, and G. Zeng
Geosci. Model Dev., 6, 179–206, https://doi.org/10.5194/gmd-6-179-2013, https://doi.org/10.5194/gmd-6-179-2013, 2013
P. J. Telford, N. L. Abraham, A. T. Archibald, P. Braesicke, M. Dalvi, O. Morgenstern, F. M. O'Connor, N. A. D. Richards, and J. A. Pyle
Geosci. Model Dev., 6, 161–177, https://doi.org/10.5194/gmd-6-161-2013, https://doi.org/10.5194/gmd-6-161-2013, 2013
Y. Fang, V. Naik, L. W. Horowitz, and D. L. Mauzerall
Atmos. Chem. Phys., 13, 1377–1394, https://doi.org/10.5194/acp-13-1377-2013, https://doi.org/10.5194/acp-13-1377-2013, 2013
A. J. Turner, A. M. Fiore, L. W. Horowitz, and M. Bauer
Atmos. Chem. Phys., 13, 565–578, https://doi.org/10.5194/acp-13-565-2013, https://doi.org/10.5194/acp-13-565-2013, 2013
J. G. John, A. M. Fiore, V. Naik, L. W. Horowitz, and J. P. Dunne
Atmos. Chem. Phys., 12, 12021–12036, https://doi.org/10.5194/acp-12-12021-2012, https://doi.org/10.5194/acp-12-12021-2012, 2012
Related subject area
Subject: Climate and Earth System | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impacts of irrigation on ozone and fine particulate matter (PM2.5) air quality: implications for emission control strategies for intensively irrigated regions in China
Recommendations on benchmarks for numerical air quality model applications in China – Part 2: Ozone and uncertainty analysis
Efficient use of a Lagrangian Particle Dispersion Model for atmospheric inversions using satellite observations of column mixing ratios
Opinion: Understanding the impacts of agriculture and food systems on atmospheric chemistry is instrumental to achieving multiple Sustainable Development Goals
The long-term impact of biogenic volatile organic compound emissions on urban ozone patterns over central Europe: contributions from urban and rural vegetation
Ozone dry deposition through plant stomata: Multi-model comparison with flux observations and the role of water stress as part of AQMEII4 Activity 2
Examining ENSO-related variability in tropical tropospheric ozone in the RAQMS-Aura chemical reanalysis
Global assessment of climatic responses to ozone–vegetation interactions
Opinion: A research roadmap for exploring atmospheric methane removal via iron salt aerosol
An inverse model to correct for the effects of post-depositional processing on ice-core nitrate and its isotopes: model framework and applications at Summit, Greenland, and Dome C, Antarctica
The carbon sink in China as seen from GOSAT with a regional inversion system based on the Community Multi-scale Air Quality (CMAQ) and ensemble Kalman smoother (EnKS)
Tiangang Yuan, Tzung-May Fu, Aoxing Zhang, David H. Y. Yung, Jin Wu, Sien Li, and Amos P. K. Tai
Atmos. Chem. Phys., 25, 4211–4232, https://doi.org/10.5194/acp-25-4211-2025, https://doi.org/10.5194/acp-25-4211-2025, 2025
Short summary
Short summary
This study utilizes a regional climate–air quality coupled model to first investigate the complex interaction between irrigation, climate and air quality in China. We found that large-scale irrigation practices reduce summertime surface ozone while raising secondary inorganic aerosol concentration via complicated physical and chemical processes. Our results emphasize the importance of making a tradeoff between air pollution controls and sustainable agricultural development.
Ling Huang, Xinxin Zhang, Chris Emery, Qing Mu, Greg Yarwood, Hehe Zhai, Zhixu Sun, Shuhui Xue, Yangjun Wang, Joshua S. Fu, and Li Li
Atmos. Chem. Phys., 25, 4233–4249, https://doi.org/10.5194/acp-25-4233-2025, https://doi.org/10.5194/acp-25-4233-2025, 2025
Short summary
Short summary
Ground-level ozone pollution has emerged as a significant air pollutant in China. Chemical transport models (CTMs) serve as crucial tools in addressing ozone pollution. This study reviews CTM applications for simulating ozone in China and proposes goal and criteria benchmark values for evaluating ozone. Along with prior work on PM₂₅ and other pollutants, this effort establishes a comprehensive framework for evaluating CTM performance in China.
Rona Louise Thompson, Nalini Krishnankutty, Ignacio Pisso, Philipp Schneider, Kerstin Stebel, Motoki Sasakawa, Andreas Stohl, and Stephen Platt
EGUsphere, https://doi.org/10.5194/egusphere-2025-147, https://doi.org/10.5194/egusphere-2025-147, 2025
Short summary
Short summary
Satellite remote sensing of atmospheric mixing ratios of greenhouse gases (GHGs) can provide information on the emissions of these GHGs. This study presents a novel method to use atmospheric column mixing ratios with a Lagrangian model of atmospheric transport to estimate GHG emissions. This method can reduce model errors resulting from how an observation is represented by an atmospheric model potentially reducing the errors in the GHG emissions derived.
Amos P. K. Tai, Lina Luo, and Biao Luo
Atmos. Chem. Phys., 25, 923–941, https://doi.org/10.5194/acp-25-923-2025, https://doi.org/10.5194/acp-25-923-2025, 2025
Short summary
Short summary
We discuss our current understanding of and knowledge gaps in how agriculture and food systems affect air quality and how agricultural emissions can be mitigated. We argue that scientists need to address these gaps, especially as the importance of fossil fuel emissions is fading. This will help guide food-system transformation in economically viable, socially inclusive, and environmentally responsible ways and is essential to help society achieve sustainable development.
Marina Liaskoni, Peter Huszár, Lukáš Bartík, Alvaro Patricio Prieto Perez, Jan Karlický, and Kateřina Šindelářová
Atmos. Chem. Phys., 24, 13541–13569, https://doi.org/10.5194/acp-24-13541-2024, https://doi.org/10.5194/acp-24-13541-2024, 2024
Short summary
Short summary
The impact of biogenic emissions of hydrocarbons from vegetation on ozone, as well as on overall oxidative capacity of air, is analyzed for central European cities for a present-day period using a chemistry transport model. Moreover, the analysis evaluates the partial role of urban vegetation in impacting all biogenic emissions. We found substantial increases in ozone due to these emissions, and about 10% of this increase is attributable to vegetation within urban areas.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Maggie Bruckner, R. Bradley Pierce, and Allen Lenzen
Atmos. Chem. Phys., 24, 10921–10945, https://doi.org/10.5194/acp-24-10921-2024, https://doi.org/10.5194/acp-24-10921-2024, 2024
Short summary
Short summary
We analyze interannual variability in tropical tropospheric ozone by applying composite analysis, empirical orthogonal function (EOF) analysis, and multiple linear regression to the Real-time Air Quality Modeling System (RAQMS) Aura chemical reanalysis. We find that variability in biomass burning emissions contributes to El Niño–Southern Oscillation (ENSO) variability in tropical tropospheric ozone, though the dominant driver is convection.
Xinyi Zhou, Xu Yue, Chenguang Tian, and Xiaofei Lu
Atmos. Chem. Phys., 24, 9923–9937, https://doi.org/10.5194/acp-24-9923-2024, https://doi.org/10.5194/acp-24-9923-2024, 2024
Short summary
Short summary
With a climate–vegetation–chemistry coupled model, we explore global climatic responses to the ozone–vegetation interactions of the present day. We find strong warming and drying effects due to the ozone-induced inhibition on plant stomatal conductance, especially over polluted regions such as the eastern US and China. These climatic perturbations further enhance surface ozone by decreasing dry deposition but reduce aerosol optical depth by increasing cloudiness and the drought tendency.
Katrine A. Gorham, Sam Abernethy, Tyler R. Jones, Peter Hess, Natalie M. Mahowald, Daphne Meidan, Matthew S. Johnson, Maarten M. J. W. van Herpen, Yangyang Xu, Alfonso Saiz-Lopez, Thomas Röckmann, Chloe A. Brashear, Erika Reinhardt, and David Mann
Atmos. Chem. Phys., 24, 5659–5670, https://doi.org/10.5194/acp-24-5659-2024, https://doi.org/10.5194/acp-24-5659-2024, 2024
Short summary
Short summary
Rapid reduction in atmospheric methane is needed to slow the rate of global warming. Reducing anthropogenic methane emissions is a top priority. However, atmospheric methane is also impacted by rising natural emissions and changing sinks. Studies of possible atmospheric methane removal approaches, such as iron salt aerosols to increase the chlorine radical sink, benefit from a roadmapped approach to understand if there may be viable and socially acceptable ways to decrease future risk.
Zhuang Jiang, Becky Alexander, Joel Savarino, and Lei Geng
Atmos. Chem. Phys., 24, 4895–4914, https://doi.org/10.5194/acp-24-4895-2024, https://doi.org/10.5194/acp-24-4895-2024, 2024
Short summary
Short summary
Ice-core nitrate could track the past atmospheric NOx and oxidant level, but its interpretation is hampered by the post-depositional processing. In this work, an inverse model was developed and tested against two polar sites and was shown to well reproduce the observed nitrate signals in snow and atmosphere, suggesting that the model can properly correct for the effect of post-depositional processing. This model offers a very useful tool for future studies on ice-core nitrate records.
Xingxia Kou, Zhen Peng, Meigen Zhang, Fei Hu, Xiao Han, Ziming Li, and Lili Lei
Atmos. Chem. Phys., 23, 6719–6741, https://doi.org/10.5194/acp-23-6719-2023, https://doi.org/10.5194/acp-23-6719-2023, 2023
Short summary
Short summary
A CMAQ EnSRF-based regional inversion system was extended to resolve satellite retrievals into biogenic source–sink changes. The size of the assimilated biosphere sink in China inferred from GOSAT was −0.47 Pg C yr−1. The biosphere flux at the provincial scale was re-estimated following the refined description in the regional inversion.
Cited articles
Akritidis, D., Pozzer, A., Flemming, J., Inness, A., and Zanis, P.: A Global Climatology of Tropopause Folds in CAMS and MERRA-2 Reanalyses, J. Geophys. Res.-Atmos., 126, e2020JD034115, https://doi.org/10.1029/2020JD034115, 2021. a
Akritidis, D., Bacer, S., Zanis, P., Georgoulias, A. K., Chowdhury, S., Horowitz, L. W., Naik, V., O'Connor, F. M., Keeble, J., Sager, P. L., van Noije, T., Zhou, P., Turnock, S., West, J. J., Lelieveld, J., and Pozzer, A.: Strong increase in mortality attributable to ozone pollution under a climate change and demographic scenario, Environ. Res. Lett., 19, 024041, https://doi.org/10.1088/1748-9326/ad2162, 2024. a, b
Anenberg, S. C., Horowitz, L. W., Tong, D. Q., and West, J. J.: An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling, Environ. Healt Perspect., 118, 1189–1195, https://doi.org/10.1289/ehp.0901220, 2010. a
Archibald, A. T., Neu, J. L., Elshorbany, Y. F., Cooper, O. R., Young, P. J., Akiyoshi, H., Cox, R. A., Coyle, M., Derwent, R. G., Deushi, M., Finco, A., Frost, G. J., Galbally, I. E., Gerosa, G., Granier, C., Griffiths, P. T., Hossaini, R., Hu, L., Jöckel, P., Josse, B., Lin, M. Y., Mertens, M., Morgenstern, O., Naja, M., Naik, V., Oltmans, S., Plummer, D. A., Revell, L. E., Saiz-Lopez, A., Saxena, P., Shin, Y. M., Shahid, I., Shallcross, D., Tilmes, S., Trickl, T., Wallington, T. J., Wang, T., Worden, H. M., and Zeng, G.: Tropospheric Ozone Assessment Report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100, Elementa, 8, 034, https://doi.org/10.1525/elementa.2020.034, 2020a. a
Archibald, A. T., O'Connor, F. M., Abraham, N. L., Archer-Nicholls, S., Chipperfield, M. P., Dalvi, M., Folberth, G. A., Dennison, F., Dhomse, S. S., Griffiths, P. T., Hardacre, C., Hewitt, A. J., Hill, R. S., Johnson, C. E., Keeble, J., Köhler, M. O., Morgenstern, O., Mulcahy, J. P., Ordóñez, C., Pope, R. J., Rumbold, S. T., Russo, M. R., Savage, N. H., Sellar, A., Stringer, M., Turnock, S. T., Wild, O., and Zeng, G.: Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1, Geosci. Model Dev., 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, 2020b. a, b
Archibald, A. T., Turnock, S. T., Griffiths, P. T., Cox, T., Derwent, R. G., Knote, C., and Shin, M.: On the changes in surface ozone over the twenty-first century: sensitivity to changes in surface temperature and chemical mechanisms, Philos. T. Roy. Soc. A, 378, 20190329, https://doi.org/10.1098/rsta.2019.0329, 2020c. a
Becker, J. S., DeLang, M. N., Chang, K.-L., Serre, M. L., Cooper, O. R., Wang, H., Schultz, M. G., Schröder, S., Lu, X., Zhang, L., Deushi, M., Josse, B., Keller, C. A., Lamarque, J.-F., Lin, M., Liu, J., Marécal, V., Strode, S. A., Sudo, K., Tilmes, S., Zhang, L., Brauer, M., and West, J. J.: Using Regionalized Air Quality Model Performance and Bayesian Maximum Entropy data fusion to map global surface ozone concentration, Elementa, 11, 00025, https://doi.org/10.1525/elementa.2022.00025, 2023. a, b, c, d, e, f, g, h, i
Chen, D., Rojas, M., Samset, B., Cobb, K., Diongue Niang, A., Edwards, P., Emori, S., Faria, S., Hawkins, E., Hope, P., Huybrechts, P., Meinshausen, M., Mustafa, S., Plattner, G.-K., and Tréguier, A.-M.: Framing, Context, and Methods in Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 147–286, https://doi.org/10.1017/9781009157896.003, 2021. a
Chen, Z., Liu, J., Qie, X., Cheng, X., Yang, M., Shu, L., and Zang, Z.: Stratospheric influence on surface ozone pollution in China, Nat. Commun., 15, 4064, https://doi.org/10.1038/s41467-024-48406-x, 2024. a
Cohen, A. J., Anderson, H. R., Ostro, B., Pandey, K. D., Krzyzanowski, M., Künzli, N., Gutschmidt, K., Pope, A., Romieu, I., Samet, J. M., and Smith, K.: The Global Burden of Disease Due to Outdoor Air Pollution, J. Toxicol. Environm. Health Pt. A, 68, 1301–1307, https://doi.org/10.1080/15287390590936166, 2005. a
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918, https://doi.org/10.1016/S0140-6736(17)30505-6, 2017. a
Collins, W. J., Lamarque, J.-F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I., Maycock, A., Myhre, G., Prather, M., Shindell, D., and Smith, S. J.: AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6, Geosci. Model Dev., 10, 585–607, https://doi.org/10.5194/gmd-10-585-2017, 2017. a, b
Dahlmann, K., Grewe, V., Ponater, M., and Matthes, S.: Quantifying the contributions of individual NOx sources to the trend in ozone radiative forcing, Atmos. Environ., 45, 2860–2868, https://doi.org/10.1016/j.atmosenv.2011.02.071, 2011. a
DeLang, M. N., Becker, J. S., Chang, K.-L., Serre, M. L., Cooper, O. R., Schultz, M. G., Schröder, S., Lu, X., Zhang, L., Deushi, M., Josse, B., Keller, C. A., Lamarque, J.-F., Lin, M., Liu, J., Marécal, V., Strode, S. A., Sudo, K., Tilmes, S., Zhang, L., Cleland, S. E., Collins, E. L., Brauer, M., and West, J. J.: Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017, Environ. Sci. Technol., 55, 4389–4398, https://doi.org/10.1021/acs.est.0c07742, 2021. a, b
Doherty, R. M., Wild, O., Shindell, D. T., Zeng, G., MacKenzie, I. A., Collins, W. J., Fiore, A. M., Stevenson, D. S., Dentener, F. J., Schultz, M. G., Hess, P., Derwent, R. G., and Keating, T. J.: Impacts of climate change on surface ozone and intercontinental ozone pollution: A multi-model study, J. Geophys. Res.-Atmos., 118, 3744–3763, https://doi.org/10.1002/jgrd.50266, 2013. a
Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C., Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S. M., Guo, H., Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., Milly, P. C. D., Nikonov, S., Paynter, D. J., Ploshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, Y., and Zhao, M.: The GFDL Earth System Model version 4.1 (GFDL‐ESM 4.1): Overall coupled model description and simulation characteristics, J. Adv. Model. Earth Syst., 12, 2019ms002015, https://doi.org/10.1029/2019ms002015, 2020. a, b
EC-Earth Consortium (EC-Earth): EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 AerChemMIP, Version.20220314, Earth System Grid Federation. [data set], https://doi.org/10.22033/ESGF/CMIP6.699, 2020. a
EMEP Steering Body and Working Group on Effects of the Convention on Long-Range Transboundary Air Pollution: Towards Cleaner Air, Scientific Assessment Report 2016, edited by: Maas, R. and Grennfelt, P., https://unece.org/sites/default/files/2021-06/CLRTAP_Scientific_Assessment_Report_en.pdf (last access: 4 April 2025), 2016. a
Fang, Y., Naik, V., Horowitz, L. W., and Mauzerall, D. L.: Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present, Atmos. Chem. Phys., 13, 1377–1394, https://doi.org/10.5194/acp-13-1377-2013, 2013. a
Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P., Textor, C., Schulz, M., Doherty, R. M., Horowitz, L. W., MacKenzie, I. A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G., Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong, S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson, J. E., Kaminski, J. W., Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J., Pitari, G., Pringle, K. J., Pyle, J. A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G., Wu, S., and Zuber, A.: Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res.-Atmos., 114, D04301, https://doi.org/10.1029/2008JD010816, 2009. a
Fleming, Z. L., Doherty, R. M., von Schneidemesser, E., Malley, C. S., Cooper, O. R., Pinto, J. P., Colette, A., Xu, X., Simpson, D., Schultz, M. G., Lefohn, A. S., Hamad, S., Moolla, R., Solberg, S., and Feng, Z.: Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health, Elementa, 6, 12, https://doi.org/10.1525/elementa.273, 2018. a
Flynn, C. M. and Mauritsen, T.: On the climate sensitivity and historical warming evolution in recent coupled model ensembles, Atmos. Chem. Phys., 20, 7829–7842, https://doi.org/10.5194/acp-20-7829-2020, 2020. a
Folberth, G. A., Staniaszek, Z., Archibald, A. T., Gedney, N., Griffiths, P. T., Jones, C. D., O'Connor, F. M., Parker, R. J., Sellar, A. A., and Wiltshire, A.: Description and Evaluation of an Emission-Driven and Fully Coupled Methane Cycle in UKESM1, J. Adv. Model. Earth Syst., 14, e2021MS002982, https://doi.org/10.1029/2021MS002982, 2022. a
Forouzanfar, M., Alexander, L., Anderson, H., Bachman, V., Biryukov, S., Brauer, M., Burnett, R., Casey, D., Coates, M., Cohen, A., Delwiche, K., Estep, K., Frostad, J., Astha, K., Kyu, H., Moradi-Lakeh, M., Ng, M., Slepak, E., Thomas, B., Wagner, J., Aasvang, G., Abbafati, C., Ozgoren, A., Abd-Allah, F., Abera, S., Aboyans, V., Abraham, B., Abraham, J., Abubakar, I., Abu-Rmeileh, N., Aburto, T., Achoki, T., Adelekan, A., Adofo, K., Adou, A., Adsuar, J., Afshin, A., Agardh, E., Al Khabouri, M., Al Lami, F., Alam, S., Alasfoor, D., Amini, H., Brooks, P., Havmøller, R., Iburg, K., Juel, K., Larsson, A., Narayan, K., Zhao, Y., and GBD 2013 Risk Factors Collaborators: Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013, Lancet, 386, 2287–2323, https://doi.org/10.1016/S0140-6736(15)00128-2, 2015. a
Fortems-Cheiney, A., Foret, G., Siour, G., Vautard, R., Szopa, S., Dufour, G., Colette, A., Lacressonniere, G., and Beekmann, M.: A 3 °C global RCP8.5 emission trajectory cancels benefits of European emission reductions on air quality, Nat. Commun., 8, 1–5, https://doi.org/10.1038/s41467-017-00075-9, 2017. a
Fu, T.-M. and Tian, H.: Climate Change Penalty to Ozone Air Quality: Review of Current Understandings and Knowledge Gaps, Curr. Pollut. Rep., 5, 159–171, https://doi.org/10.1007/s40726-019-00115-6, 2019. a
Gao, Y., Zhang, J., Yan, F., Leung, L. R., Luo, K., Zhang, Y., and Bell, M. L.: Nonlinear effect of compound extreme weather events on ozone formation over the United States, Weather Clim. Ext., 30, 100285, https://doi.org/10.1016/j.wace.2020.100285, 2020. a
GBD 2021 Risk Factors Collaborators: Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021, Lancet, 403, 2162–2203, https://doi.org/10.1016/S0140-6736(24)00933-4, 2024. a, b
Griffiths, P. T., Murray, L. T., Zeng, G., Shin, Y. M., Abraham, N. L., Archibald, A. T., Deushi, M., Emmons, L. K., Galbally, I. E., Hassler, B., Horowitz, L. W., Keeble, J., Liu, J., Moeini, O., Naik, V., O'Connor, F. M., Oshima, N., Tarasick, D., Tilmes, S., Turnock, S. T., Wild, O., Young, P. J., and Zanis, P.: Tropospheric ozone in CMIP6 simulations, Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, 2021. a, b
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018. a
Horowitz, L. W., Naik, V., Sentman, L., Paulot, F., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Zadeh, N. T., Wilson, C., Ginoux, P., He, J., John, J. G., Lin, M., Paynter, D. J., Ploshay, J., Zhang, A., and Zeng, Y.: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 AerChemMIP, Version 20180701, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.1404, 2018. a
Horowitz, L. W., Naik, V., Paulot, F., Ginoux, P. A., Dunne, J. P., Mao, J., Schnell, J., Chen, X., He, J., John, J. G., Lin, M., Lin, P., Malyshev, S., Paynter, D., Shevliakova, E., and Zhao, M.: The GFDL Global Atmospheric Chemistry-Climate Model AM4.1: Model Description and Simulation Characteristics, J. Adv. Mode. Earth Syst., 12, e2019MS002032, https://doi.org/10.1029/2019MS002032, 2020. a, b
Iglesias-Suarez, F., Kinnison, D. E., Rap, A., Maycock, A. C., Wild, O., and Young, P. J.: Key drivers of ozone change and its radiative forcing over the 21st century, Atmos. Chem. Phys., 18, 6121–6139, https://doi.org/10.5194/acp-18-6121-2018, 2018. a, b
Ivatt, P. D., Evans, M. J., and Lewis, A. C.: Suppression of surface ozone by an aerosol-inhibited photochemical ozone regime, Nat. Geosci., 15, 536–540, https://doi.org/10.1038/s41561-022-00972-9, 2022. a, b
Johnson, C. E., Collins, W. J., Stevenson, D. S., and Derwent, R. G.: Relative roles of climate and emissions changes on future tropospheric oxidant concentrations, J. Geophys. Res.-Atmos., 104, 18631–18645, https://doi.org/10.1029/1999JD900204, 1999. a
Keeble, J., Hassler, B., Banerjee, A., Checa-Garcia, R., Chiodo, G., Davis, S., Eyring, V., Griffiths, P. T., Morgenstern, O., Nowack, P., Zeng, G., Zhang, J., Bodeker, G., Burrows, S., Cameron-Smith, P., Cugnet, D., Danek, C., Deushi, M., Horowitz, L. W., Kubin, A., Li, L., Lohmann, G., Michou, M., Mills, M. J., Nabat, P., Olivié, D., Park, S., Seland, Ø., Stoll, J., Wieners, K.-H., and Wu, T.: Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100, Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, 2021. a
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017. a
Lelieveld, J. and Dentener, F. J.: What controls tropospheric ozone?, J. Geophys. Res.-Atmos., 105, 3531–3551, https://doi.org/10.1029/1999JD901011, 2000. a, b
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015. a
Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., and Münzel, T.: Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective, Cardiovas. Res., 116, 1910–1917, https://doi.org/10.1093/cvr/cvaa025, 2020. a
Liang, C.-K., West, J. J., Silva, R. A., Bian, H., Chin, M., Davila, Y., Dentener, F. J., Emmons, L., Flemming, J., Folberth, G., Henze, D., Im, U., Jonson, J. E., Keating, T. J., Kucsera, T., Lenzen, A., Lin, M., Lund, M. T., Pan, X., Park, R. J., Pierce, R. B., Sekiya, T., Sudo, K., and Takemura, T.: HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors, Atmos. Chem. Phys., 18, 10497–10520, https://doi.org/10.5194/acp-18-10497-2018, 2018. a, b
Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., AlMazroa, M. A., Amann, M., Anderson, H. R., Andrews, K. G., et al.: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010, Lancet, 380, 2224–2260, https://doi.org/10.1016/S0140-6736(12)61766-8, 2012. a
Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M., and Tonnesen, G.: US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate, Atmos. Chem. Phys., 17, 2943–2970, https://doi.org/10.5194/acp-17-2943-2017, 2017. a
Malashock, D. A., DeLang, M. N., Becker, J. S., Serre, M. L., West, J. J., Chang, K.-L., Cooper, O. R., and Anenberg, S. C.: Estimates of ozone concentrations and attributable mortality in urban, peri-urban and rural areas worldwide in 2019, Environ. Res. Lett., 17, 054023, https://doi.org/10.1088/1748-9326/ac66f3, 2022. a, b
Malley, C. S., Henze, D. K., Kuylenstierna, J. C., Vallack, H. W., Davila, Y., Anenberg, S. C., Turner, M. C., and Ashmore, M. R.: Updated global estimates of respiratory mortality in adults ≥ 30 years of age attributable to long-term ozone exposure, Environ. Health Perspect., 125, 087021, https://doi.org/10.1289/EHP1390, 2017. a
Mertens, M., Brinkop, S., Graf, P., Grewe, V., Hendricks, J., Jöckel, P., Lanteri, A., Matthes, S., Rieger, V. S., Righi, M., and Thor, R. N.: The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs), Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024, 2024. a
Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., Neufeld, H. S., Simpson, D., Sharps, K., Feng, Z., Gerosa, G., Harmens, H., Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V., and Xu, X.: Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and trends relevant to vegetation, Elementa, 6, 47, https://doi.org/10.1525/elementa.302, 2018. a
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015. a
Morgenstern, O., Stone, K. A., Schofield, R., Akiyoshi, H., Yamashita, Y., Kinnison, D. E., Garcia, R. R., Sudo, K., Plummer, D. A., Scinocca, J., Oman, L. D., Manyin, M. E., Zeng, G., Rozanov, E., Stenke, A., Revell, L. E., Pitari, G., Mancini, E., Di Genova, G., Visioni, D., Dhomse, S. S., and Chipperfield, M. P.: Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations, Atmos. Chem. Phys., 18, 1091–1114, https://doi.org/10.5194/acp-18-1091-2018, 2018. a, b
Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E., Dunn, R. J. H., Osborn, T. J., Jones, P. D., and Simpson, I. R.: An Updated Assessment of Near-Surface Temperature Change From 1850: The HadCRUT5 Data Set, J. Geophys. Res.-Atmos., 126, e2019JD032361, https://doi.org/10.1029/2019JD032361, 2021. a, b
Mulcahy, J. P., Johnson, C., Jones, C. G., Povey, A. C., Scott, C. E., Sellar, A., Turnock, S. T., Woodhouse, M. T., Abraham, N. L., Andrews, M. B., Bellouin, N., Browse, J., Carslaw, K. S., Dalvi, M., Folberth, G. A., Glover, M., Grosvenor, D. P., Hardacre, C., Hill, R., Johnson, B., Jones, A., Kipling, Z., Mann, G., Mollard, J., O'Connor, F. M., Palmiéri, J., Reddington, C., Rumbold, S. T., Richardson, M., Schutgens, N. A. J., Stier, P., Stringer, M., Tang, Y., Walton, J., Woodward, S., and Yool, A.: Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations, Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, 2020. a
Mulcahy, J. P., Jones, C. G., Rumbold, S. T., Kuhlbrodt, T., Dittus, A. J., Blockley, E. W., Yool, A., Walton, J., Hardacre, C., Andrews, T., Bodas-Salcedo, A., Stringer, M., de Mora, L., Harris, P., Hill, R., Kelley, D., Robertson, E., and Tang, Y.: UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model, Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, 2023. a
Murray, C. J., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., Abd-Allah, F., Abdelalim, A., Abdollahi, M., Abdollahpour, I., et al.: Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019, Lancet, 396, 1223–1249, https://doi.org/10.1016/S0140-6736(20)30752-2, 2020. a, b, c, d, e
O'Connor, F.: MOHC UKESM1.0-LL model output prepared for CMIP6 AerChemMIP, Version 20190902, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.1561, 2019. a
O'Connor, F. M., Abraham, N. L., Dalvi, M., Folberth, G. A., Griffiths, P. T., Hardacre, C., Johnson, B. T., Kahana, R., Keeble, J., Kim, B., Morgenstern, O., Mulcahy, J. P., Richardson, M., Robertson, E., Seo, J., Shim, S., Teixeira, J. C., Turnock, S. T., Williams, J., Wiltshire, A. J., Woodward, S., and Zeng, G.: Assessment of pre-industrial to present-day anthropogenic climate forcing in UKESM1, Atmos. Chem. Phys., 21, 1211–1243, https://doi.org/10.5194/acp-21-1211-2021, 2021. a
Ostro, B.: Outdoor air pollution: Assessing the environmental burden of disease at national and local levels, Geneva, World Health Organization, WHO Environmental Burden of Disease Series, No. 5, https://www.who.int/publications/i/item/9241591463 (last access: 4 July 2025), 2004. a
Parrish, D. D., Lamarque, J.-F., Naik, V., Horowitz, L., Shindell, D. T., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., Volz-Thomas, A., Gilge, S., Scheel, H.-E., Steinbacher, M., and Fröhlich, M.: Long-term changes in lower tropospheric baseline ozone concentrations: Comparing chemistry-climate models and observations at northern midlatitudes, J. Geophys. Res.-Atmos., 119, 5719–5736, https://doi.org/10.1002/2013JD021435, 2014. a, b
Parrish, D. D., Derwent, R. G., Turnock, S. T., O'Connor, F. M., Staehelin, J., Bauer, S. E., Deushi, M., Oshima, N., Tsigaridis, K., Wu, T., and Zhang, J.: Investigations on the anthropogenic reversal of the natural ozone gradient between northern and southern midlatitudes, Atmos. Chem. Phys., 21, 9669–9679, https://doi.org/10.5194/acp-21-9669-2021, 2021. a
Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., and Thurston, G. D.: Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution, JAMA, 287, 1132–1141, https://doi.org/10.1001/jama.287.9.1132, 2002. a
Pozzer, A., Anenberg, S. C., Dey, S., Haines, A., Lelieveld, J., and Chowdhury, S.: Mortality Attributable to Ambient Air Pollution: A Review of Global Estimates, GeoHealth, 7, e2022GH000711, https://doi.org/10.1029/2022GH000711, 2023. a, b, c
Pozzer, A., Steffens, B., Proestos, Y., Sciare, J., Akritidis, D., Chowdhury, S., Burkart, K., and Bacer, S.: Atmospheric health burden across the century and the accelerating impact of temperature compared to pollution, Nat. Commun., 15, 9379, https://doi.org/10.1038/s41467-024-53649-9, 2024. a
Prather, M. J.: Time scales in atmospheric chemistry: Theory, GWPs for CH4 and CO, and runaway growth, Geophys. Res. Lett., 23, 2597–2600, https://doi.org/10.1029/96GL02371, 1996. a
Qu, Y., Voulgarakis, A., Wang, T., Kasoar, M., Wells, C., Yuan, C., Varma, S., and Mansfield, L.: A study of the effect of aerosols on surface ozone through meteorology feedbacks over China, Atmos. Chem. Phys., 21, 5705–5718, https://doi.org/10.5194/acp-21-5705-2021, 2021. a
Rowlinson, M. J., Rap, A., Hamilton, D. S., Pope, R. J., Hantson, S., Arnold, S. R., Kaplan, J. O., Arneth, A., Chipperfield, M. P., Forster, P. M., and Nieradzik, L.: Tropospheric ozone radiative forcing uncertainty due to pre-industrial fire and biogenic emissions, Atmos. Chem. Phys., 20, 10937–10951, https://doi.org/10.5194/acp-20-10937-2020, 2020. a
Schnell, J. L., Prather, M. J., Josse, B., Naik, V., Horowitz, L. W., Zeng, G., Shindell, D. T., and Faluvegi, G.: Effect of climate change on surface ozone over North America, Europe, and East Asia, Geophys. Res. Lett., 43, 3509–3518, https://doi.org/10.1002/2016GL068060, 2016. a
Sellar, A. A., Jones, C. G., Mulcahy, J., Tang, Y., Yool, A., Wiltshire, A., O'Connor, F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S., Mora, L., Kuhlbrodt, T., Rumbold, S., Kelley, D. I., Ellis, R., Johnson, C. E., Walton, J., Abraham, N. L., Andrews, M. B., Andrews, T., Archibald, A. T., Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J., Folberth, G. A., Gedney, N., Griffiths, P. T., Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A., Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and Zerroukat, M.: UKESM1: Description and evaluation of the UK Earth System Model, J. Adv. Model. Earth Syst., 11, 4513–4558, https://doi.org/10.1029/2019MS001739, 2019. a
Sellar, A. A., Walton, J., Jones, C. G., Wood, R., Abraham, N. L., Andrejczuk, M., Andrews, M. B., Andrews, T., Archibald, A. T., de Mora, L., Dyson, H., Elkington, M., Ellis, R., Florek, P., Good, P., Gohar, L., Haddad, S., Hardiman, S. C., Hogan, E., Iwi, A., Jones, C. D., Johnson, B., Kelley, D. I., Kettleborough, J., Knight, J. R., Köhler, M. O., Kuhlbrodt, T., Liddicoat, S., Linova-Pavlova, I., Mizielinski, M. S., Morgenstern, O., Mulcahy, J., Neininger, E., O'Connor, F. M., Petrie, R., Ridley, J., Rioual, J. C., Roberts, M., Robertson, E., Rumbold, S., Seddon, J., Shepherd, H., Shim, S., Stephens, A., Teixiera, J. C., Tang, Y., Williams, J., Wiltshire, A., and Griffiths, P. T.: Implementation of U.K. Earth System Models for CMIP6, J. Adv. Model. Earth Syst., 12, 1–27, https://doi.org/10.1029/2019MS001946, 2020. a
Silva, R. A., West, J. J., Zhang, Y., Anenberg, S. C., Lamarque, J.-F., Shindell, D. T., Collins, W. J., Dalsoren, S., Faluvegi, G., Folberth, G., Horowitz, L. W., Nagashima, T., Naik, V., Rumbold, S., Skeie, R., Sudo, K., Takemura, T., Bergmann, D., Cameron-Smith, P., Cionni, I., Doherty, R. M., Eyring, V., Josse, B., MacKenzie, I. A., Plummer, D., Righi, M., Stevenson, D. S., Strode, S., Szopa, S., and Zeng, G.: Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change, Environ. Res. Lett., 8, 034005, https://doi.org/10.1088/1748-9326/8/3/034005, 2013. a
Silva, R. A., West, J. J., Lamarque, J.-F., Shindell, D. T., Collins, W. J., Dalsoren, S., Faluvegi, G., Folberth, G., Horowitz, L. ., Nagashima, T., Naik, V., Rumbold, S. T., Sudo, K., Takemura, T., Bergmann, D., Cameron-Smith, P., Cionni, I., Doherty, R. M., Eyring, V., Josse, B., MacKenzie, I. A., Plummer, D., Righi, M., Stevenson, D. S., Strode, S., Szopa, S., and Zengast, G.: The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble, Atmos. Chem. Phys., 16, 9847–9862, https://doi.org/10.5194/acp-16-9847-2016, 2016. a, b
Škerlak, B., Sprenger, M., and Wernli, H.: A global climatology of stratosphere–troposphere exchange using the ERA-Interim data set from 1979 to 2011, Atmos. Chem. Phys., 14, 913–937, https://doi.org/10.5194/acp-14-913-2014, 2014. a
Staehle, C., Rieder, H. E., Fiore, A. M., and Schnell, J. L.: Technical note: An assessment of the performance of statistical bias correction techniques for global chemistry–climate model surface ozone fields, Atmos. Chem. Phys., 24, 5953–5969, https://doi.org/10.5194/acp-24-5953-2024, 2024. a, b, c
Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J.-F., Shindell, D. T., Voulgarakis, A., Skeie, R. B., Dalsoren, S. B., Myhre, G., Berntsen, T. K., Folberth, G. A., Rumbold, S. T., Collins, W. J., MacKenzie, I. A., Doherty, R. M., Zeng, G., van Noije, T. P. C., Strunk, A., Bergmann, D., Cameron-Smith, P., Plummer, D. A., Strode, S. A., Horowitz, L., Lee, Y. H., Szopa, S., Sudo, K., Nagashima, T., Josse, B., Cionni, I., Righi, M., Eyring, V., Conley, A., Bowman, K. W., Wild, O., and Archibald, A.: Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 3063—3085, https://doi.org/10.5194/acp-13-3063-2013, 2013. a
Stevenson, D. S., Zhao, A., Naik, V., O'Connor, F. M., Tilmes, S., Zeng, G., Murray, L. T., Collins, W. J., Griffiths, P. T., Shim, S., Horowitz, L. W., Sentman, L. T., and Emmons, L.: Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP, Atmos. Chem. Phys., 20, 12905–12920, https://doi.org/10.5194/acp-20-12905-2020, 2020. a
Stohl, A., Bonasoni, P., Cristofanelli, P., Collins, W., Feichter, J., Frank, A., Forster, C., Gerasopoulos, E., Gäggeler, H., James, P., Kentarchos, T., Kromp-Kolb, H., Krüger, B., Land, C., Meloen, J., Papayannis, A., Priller, A., Seibert, P., Sprenger, M., Roelofs, G. J., Scheel, H. E., Schnabel, C., Siegmund, P., Tobler, L., Trickl, T., Wernli, H., Wirth, V., Zanis, P., and Zerefos, C.: Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO, J. Geophys. Res.-Atmos., 108, 8516, https://doi.org/10.1029/2002JD002490, 2003. a
Szopa, S., Naik, V., Adhikar, B., Artaxo, P., Berntsen, T., Collins, W., Fuzzi, S., Gallardo, L., Kiendler-Scharr, A., Klimont, Z., Liao, H., Unger, N., and Zanis, P.: Short-lived Climate Forcersin Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 817–922, https://doi.org/10.1017/9781009157896.008, 2021. a
Tarasick, D., Galbally, I. E., Cooper, O. R., Schultz, M. G., Ancellet, G., Leblanc, T., Wallington, T. J., Ziemke, J., Liu, X., Steinbacher, M., Staehelin, J., Vigouroux, C., Hannigan, J. W., García, O., Foret, G., Zanis, P., Weatherhead, E., Petropavlovskikh, I., Worden, H., Osman, M., Liu, J., Chang, K.-L., Gaudel, A., Lin, M., Granados-Muñoz, M., Thompson, A. M., Oltmans, S. J., Cuesta, J., Dufour, G., Thouret, V., Hassler, B., Trickl, T., and Neu, J. L.: Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties, Elementa, 7, 39, https://doi.org/10.1525/elementa.376, 2019. a, b
Turnock, S. and Akritidis, D.: Dataset for Drivers of change in Peak Season Surface Ozone Concentrations and Impacts on Human Health over the Historical Period (1850–2014), Zenodo [data set], https://doi.org/10.5281/zenodo.13385648, 2024. a
Turnock, S. T., Spracklen, D. V., Carslaw, K. S., Mann, G. W., Woodhouse, M. T., Forster, P. M., Haywood, J., Johnson, C. E., Dalvi, M., Bellouin, N., and Sanchez-Lorenzo, A.: Modelled and ob 1960 and 2009, Atmos. Chem. Phys., 15, 9477–9500, https://doi.org/10.5194/acp-15-9477-2015, 2015. a
Turnock, S. T., Wild, O., Dentener, F. J., Davila, Y., Emmons, L. K., Flemming, J., Folberth, G. A., Henze, D. K., Jonson, J. E., Keating, T. J., Kengo, S., Lin, M., Lund, M., Tilmes, S., and O'Connor, F. M.: The impact of future emission policies on tropospheric ozone using a parameterised approach, Atmos. Chem. Phys., 18, 8953–8978, https://doi.org/10.5194/acp-18-8953-2018, 2018. a, b
Turnock, S. T., Allen, R. J., Andrews, M., Bauer, S. E., Deushi, M., Emmons, L., Good, P., Horowitz, L., John, J. G., Michou, M., Nabat, P., Naik, V., Neubauer, D., O'Connor, F. M., Olivié, D., Oshima, N., Schulz, M., Sellar, A., Shim, S., Takemura, T., Tilmes, S., Tsigaridis, K., Wu, T., and Zhang, J.: Historical and future changes in air pollutants from CMIP6 models, Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, 2020. a, b, c, d, e, f, g
Turnock, S. T., Reddington, C. L., West, J. J., and O'Connor, F. M.: The Air Pollution Human Health Burden in Different Future Scenarios That Involve the Mitigation of Near-Term Climate Forcers, Climate and Land-Use, GeoHealth, 7, e2023GH000812, https://doi.org/10.1029/2023GH000812, 2023. a
United Nations Economic Commission for Europe: Clearing the Air: 25 years of the Convention on Long-Range Transboundary Air Pollution, ISBN 9211169100, https://unece.org/sites/default/files/2021-06/25th year anniversary BOOKscreen.pdf (last access: 28 February 2020), 2004. a
van Noije, T., Bergman, T., Le Sager, P., O'Donnell, D., Makkonen, R., Gonçalves-Ageitos, M., Döscher, R., Fladrich, U., von Hardenberg, J., Keskinen, J.-P., Korhonen, H., Laakso, A., Myriokefalitakis, S., Ollinaho, P., Pérez García-Pando, C., Reerink, T., Schrödner, R., Wyser, K., and Yang, S.: EC-Earth3-AerChem: a global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6, Geosci. Model Dev., 14, 5637–5668, https://doi.org/10.5194/gmd-14-5637-2021, 2021. a, b
Wang, H., Lu, X., Jacob, D. J., Cooper, O. R., Chang, K.-L., Li, K., Gao, M., Liu, Y., Sheng, B., Wu, K., Wu, T., Zhang, J., Sauvage, B., Nédélec, P., Blot, R., and Fan, S.: Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations, Atmos. Chem. Phys., 22, 13753–13782, https://doi.org/10.5194/acp-22-13753-2022, 2022. a, b
West, J. J., Szopa, S., and Hauglustaine, D. A.: Human mortality effects of future concentrations of tropospheric ozone, Comptes Rendus Geoscience, 339, 775–783, https://doi.org/10.1016/j.crte.2007.08.005, 2007. a
Wild, O. and Prather, M. J.: Global tropospheric ozone modeling: Quantifying errors due to grid resolution, J. Geophys. Res.-Atmos., 111, D11305, https://doi.org/10.1029/2005JD006605, 2006. a
Wild, O., Fiore, A. M., Shindell, D. T., Doherty, R. M., Collins, W. J., Dentener, F. J., Schultz, M. G., Gong, S., MacKenzie, I. A., Zeng, G., Hess, P., Duncan, B. N., Bergmann, D. J., Szopa, S., Jonson, J. E., Keating, T. J., and Zuber, A.: Modelling future changes in surface ozone: a parameterized approach, Atmos. Chem. Phys., 12, 2037–2054, https://doi.org/10.5194/acp-12-2037-2012, 2012. a, b
Wild, O., Voulgarakis, A., O'Connor, F., Lamarque, J.-F., Ryan, E. M., and Lee, L.: Global sensitivity analysis of chemistry–climate model budgets of tropospheric ozone and OH: exploring model diversity, Atmos. Chem. Phys., 20, 4047–4058, https://doi.org/10.5194/acp-20-4047-2020, 2020. a, b
Xing, J., Wang, J., Mathur, R., Wang, S., Sarwar, G., Pleim, J., Hogrefe, C., Zhang, Y., Jiang, J., Wong, D. C., and Hao, J.: Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates, Atmos. Chem. Phys., 17, 9869–9883, https://doi.org/10.5194/acp-17-9869-2017, 2017. a
Yan, Y., Pozzer, A., Ojha, N., Lin, J., and Lelieveld, J.: Analysis of European ozone trends in the period 1995–2014, Atmos. Chem. Phys., 18, 5589–5605, https://doi.org/10.5194/acp-18-5589-2018, 2018. a, b
Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, 2013. a, b, c, d
Young, P. J., Naik, V., Fiore, A. M., Gaudel, A., Guo, J., Lin, M. Y., Neu, J. L., Parrish, D. D., Rieder, H. E., Schnell, J. L., Tilmes, S., Wild, O., Zhang, L., Ziemke, J. R., Brandt, J., Delcloo, A., Doherty, R. M., Geels, C., Hegglin, M. I., Hu, L., Im, U., Kumar, R., Luhar, A., Murray, L., Plummer, D., Rodriguez, J., Saiz-Lopez, A., Schultz, M. G., Woodhouse, M. T., and Zeng, G.: Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends, Elem. Sci. Anth., 6, 10, https://doi.org/10.1525/elementa.265, 2018. a, b, c, d
Zanis, P., Akritidis, D., Turnock, S., Naik, V., Szopa, S., Georgoulias, A. K., Bauer, S. E., Deushi, M., Horowitz, L. W., Keeble, J., Sager, P. L., O'Connor, F. M., Oshima, N., Tsigaridis, K., and van Noije, T.: Climate change penalty and benefit on surface ozone: A global perspective based on CMIP6 earth system models, Environ. Res. Lett., 17, 024014, https://doi.org/10.1088/1748-9326/ac4a34, 2022. a, b, c, d, e, f, g
Zeng, G., Morgenstern, O., Williams, J. H. T., O’Connor, F. M., Griffiths, P. T., Keeble, J., Deushi, M., Horowitz, L. W., Naik, V., Emmons, L. K., Abraham, N. L., Archibald, A. T., Bauer, S. E., Hassler, B., Michou, M., Mills, M. J., Murray, L. T., Oshima, N., Sentman, L. T., Tilmes, S., Tsigaridis, K., and Young, P. J.: Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6 Models, J. Geophys. Res.-Atmos., 127, e2022JD036452, https://doi.org/10.1029/2022JD036452, 2022. a
Zhang, J., Furtado, K., Turnock, S. T., Mulcahy, J. P., Wilcox, L. J., Booth, B. B., Sexton, D., Wu, T., Zhang, F., and Liu, Q.: The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models, Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021, 2021. a
Zhang, Y., Cooper, O. R., Gaudel, A., Thompson, A. M., Nédélec, P., Ogino, S.-Y., and West, J. J.: Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions, Nat. Geosci., 9, 875–879, https://doi.org/10.1038/ngeo2827, 2016. a, b
Short summary
We assess the drivers behind changes in peak-season surface ozone concentrations and risks to human health between 1850 and 2014. Substantial increases in surface ozone have occurred over this period, resulting in an increased risk to human health, driven mainly by increases in anthropogenic NOx emissions and global CH4 concentrations. Fixing anthropogenic NOx emissions at 1850 values in the near-present-day period can eliminate the risk to human health associated with exposure to surface ozone.
We assess the drivers behind changes in peak-season surface ozone concentrations and risks to...
Altmetrics
Final-revised paper
Preprint