Articles | Volume 21, issue 2
https://doi.org/10.5194/acp-21-731-2021
https://doi.org/10.5194/acp-21-731-2021
Research article
 | 
19 Jan 2021
Research article |  | 19 Jan 2021

Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean

Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze

Related authors

Climate Forcing due to Future Ozone Changes: An intercomparison of metrics and methods
William J. Collins, Fiona M. O'Connor, Connor R. Barker, Rachael E. Byrom, Sebastian D. Eastham, Øivind Hodnebrog, Patrick Jöckel, Eloise A. Marais, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble
EGUsphere, https://doi.org/10.5194/egusphere-2024-3698,https://doi.org/10.5194/egusphere-2024-3698, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Chemistry-climate feedback of atmospheric methane in a methane emission flux driven chemistry-climate model
Laura Stecher, Franziska Winterstein, Patrick Jöckel, Michael Ponater, Mariano Mertens, and Martin Dameris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2938,https://doi.org/10.5194/egusphere-2024-2938, 2024
Short summary
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024,https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
On the atmospheric budget of 1,2-dichloroethane and its impact on stratospheric chlorine and ozone (2002–2020)
Ryan Hossaini, David Sherry, Zihao Wang, Martyn P. Chipperfield, Wuhu Feng, David E. Oram, Karina E. Adcock, Stephen A. Montzka, Isobel J. Simpson, Andrea Mazzeo, Amber A. Leeson, Elliot Atlas, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 13457–13475, https://doi.org/10.5194/acp-24-13457-2024,https://doi.org/10.5194/acp-24-13457-2024, 2024
Short summary
The return to 1980 stratospheric halogen levels: a moving target in ozone assessments from 2006 to 2022
Megan J. Lickley, John S. Daniel, Laura A. McBride, Ross J. Salawitch, and Guus J. M. Velders
Atmos. Chem. Phys., 24, 13081–13099, https://doi.org/10.5194/acp-24-13081-2024,https://doi.org/10.5194/acp-24-13081-2024, 2024
Short summary
The impact of dehydration and extremely low HCl values in the Antarctic stratospheric vortex in mid-winter on ozone loss in spring
Yiran Zhang-Liu, Rolf Müller, Jens-Uwe Grooß, Sabine Robrecht, Bärbel Vogel, Abdul Mannan Zafar, and Ralph Lehmann
Atmos. Chem. Phys., 24, 12557–12574, https://doi.org/10.5194/acp-24-12557-2024,https://doi.org/10.5194/acp-24-12557-2024, 2024
Short summary
Beyond self-healing: stabilizing and destabilizing photochemical adjustment of the ozone layer
Aaron Match, Edwin P. Gerber, and Stephan Fueglistaler
Atmos. Chem. Phys., 24, 10305–10322, https://doi.org/10.5194/acp-24-10305-2024,https://doi.org/10.5194/acp-24-10305-2024, 2024
Short summary
Solar FTIR measurements of NOx vertical distributions – Part 2: Experiment-based scaling factors describing the daytime variation in stratospheric NOx
Pinchas Nürnberg, Sarah A. Strode, and Ralf Sussmann
Atmos. Chem. Phys., 24, 10001–10012, https://doi.org/10.5194/acp-24-10001-2024,https://doi.org/10.5194/acp-24-10001-2024, 2024
Short summary

Cited articles

Austin, J., Wilson, J., Li, F., and Vömel, H.: Evolution of Water Vapor Concentrations and Stratospheric Age of Air in Coupled Chemistry – Climate Model Simulations, J. Atmos. Sci., 64, 905–921, https://doi.org/10.1175/JAS3866.1, 2007. a, b
Baumgaertner, A. J. G., Jöckel, P., Aylward, A. D., and Harris, M. J.: Simulation of Particle Precipitation Effects on the Atmosphere with the MESSy Model System, in: Climate and Weather of the Sun-Earth System (CAWSES), edited by: Lübken, F.-J., Springer, Dordrecht, Netherlands, 301–316, https://doi.org/10.1007/978-94-007-4348-9_17, 2013. a
Birner, T. and Bönisch, H.: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere, Atmos. Chem. Phys., 11, 817–827, https://doi.org/10.5194/acp-11-817-2011, 2011. a
Bony, S., Bellon, G., Klocke, D., Sherwood, S., Fermepin, S., and Denvil, S.: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation, Nat. Geosci., 6, 447–451, https://doi.org/10.1038/ngeo1799, 2013. a
Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15–10, Jet Propulsion Laboratory, http://jpldataeval.jpl.nasa.gov/, 2015. a
Download
Short summary
This study investigates the impact of strongly increased atmospheric methane mixing ratios on the Earth's climate. An interactive model system including atmospheric dynamics, chemistry, and a mixed-layer ocean model is used to analyse the effect of doubled and quintupled methane mixing ratios. We assess feedbacks on atmospheric chemistry and changes in the stratospheric circulation, focusing on the impact of tropospheric warming, and their relevance for the model's climate sensitivity.
Altmetrics
Final-revised paper
Preprint