Articles | Volume 21, issue 20
https://doi.org/10.5194/acp-21-15619-2021
https://doi.org/10.5194/acp-21-15619-2021
Research article
 | Highlight paper
 | 
19 Oct 2021
Research article | Highlight paper |  | 19 Oct 2021

Self-consistent global transport of metallic ions with WACCM-X

Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane

Related authors

Effects of nonmigrating diurnal tides on the Na layer in the mesosphere and lower thermosphere
Jianfei Wu, Wuhu Feng, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 24, 12133–12141, https://doi.org/10.5194/acp-24-12133-2024,https://doi.org/10.5194/acp-24-12133-2024, 2024
Short summary
The impact of QBO disruptions on diurnal tides over the low- and mid-latitude MLT region observed by a meteor radar chain
Jianyuan Wang, Na Li, Wen Yi, Xianghui Xue, Iain Reid, Jianfei Wu, Hailun Ye, Jian Li, Zonghua Ding, Jinsong Chen, Guozhu Li, Yaoyu Tian, Boyuan Chang, Jiajing Wu, and Lei Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1662,https://doi.org/10.5194/egusphere-2024-1662, 2024
Short summary
Ionospheric irregularity reconstruction using multisource data fusion via deep learning
Penghao Tian, Bingkun Yu, Hailun Ye, Xianghui Xue, Jianfei Wu, and Tingdi Chen
Atmos. Chem. Phys., 23, 13413–13431, https://doi.org/10.5194/acp-23-13413-2023,https://doi.org/10.5194/acp-23-13413-2023, 2023
Short summary
Multistatic meteor radar observations of two-dimensional horizontal MLT wind
Wen Yi, Jie Zeng, Xianghui Xue, Iain Reid, Wei Zhong, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-254,https://doi.org/10.5194/amt-2022-254, 2022
Revised manuscript not accepted
Short summary
Interhemispheric transport of metallic ions within ionospheric sporadic E layers by the lower thermospheric meridional circulation
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021,https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Effects of nonmigrating diurnal tides on the Na layer in the mesosphere and lower thermosphere
Jianfei Wu, Wuhu Feng, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 24, 12133–12141, https://doi.org/10.5194/acp-24-12133-2024,https://doi.org/10.5194/acp-24-12133-2024, 2024
Short summary
Observation and simulation of neutral air density in the middle atmosphere during the 2021 sudden stratospheric warming event
Junfeng Yang, Jianmei Wang, Dan Liu, Wenjie Guo, and Yiming Zhang
Atmos. Chem. Phys., 24, 10113–10127, https://doi.org/10.5194/acp-24-10113-2024,https://doi.org/10.5194/acp-24-10113-2024, 2024
Short summary
Studies on the propagation dynamics and source mechanism of quasi-monochromatic gravity waves observed over São Martinho da Serra (29° S, 53° W), Brazil
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024,https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Quasi-10 d wave activity in the southern high-latitude mesosphere and lower thermosphere (MLT) region and its relation to large-scale instability and gravity wave drag
Wonseok Lee, In-Sun Song, Byeong-Gwon Song, and Yong Ha Kim
Atmos. Chem. Phys., 24, 3559–3575, https://doi.org/10.5194/acp-24-3559-2024,https://doi.org/10.5194/acp-24-3559-2024, 2024
Short summary
Impact of a strong volcanic eruption on the summer middle atmosphere in UA-ICON simulations
Sandra Wallis, Hauke Schmidt, and Christian von Savigny
Atmos. Chem. Phys., 23, 7001–7014, https://doi.org/10.5194/acp-23-7001-2023,https://doi.org/10.5194/acp-23-7001-2023, 2023
Short summary

Cited articles

Banks, P. and Kockarts, G. (Eds.): Chapter 19 – Plasma Transport, in: Aeronomy, Academic Press, New York, 152–168, https://doi.org/10.1016/B978-0-12-077802-7.50011-7, 1973. 
Bones, D. L., Plane, J. M. C., and Feng, W.: Dissociative Recombination of FeO+ with Electrons: Implications for Plasma Layers in the Ionosphere, J. Phys. Chem. A, 120, 1369–1376, https://doi.org/10.1021/acs.jpca.5b04947, 2016. a
Boris, J., Landsberg, A., Oran, E., and Gardner, J.: LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations, Naval Research Lab Washington DC, NRL Memorandum Report, 93–7192, 1993. a
Cai, X., Yuan, T., and Eccles, J. V.: A Numerical Investigation on Tidal and Gravity Wave Contributions to the Summer Time Na Variations in the Midlatitude E Region, J. Geophys. Res.-Space, 122, 10577–10595, https://doi.org/10.1002/2016JA023764, 2017. a
Cai, X., Yuan, T., Eccles, J. V., Pedatella, N. M., Xi, X., Ban, C., and Liu, A. Z.: A Numerical Investigation on the Variation of Sodium Ion and Observed Thermospheric Sodium Layer at Cerro Pachón, Chile During Equinox, J. Geophys. Res.-Space, 124, 10395–10414, https://doi.org/10.1029/2018JA025927, 2019. a, b
Download
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The latest lidar observations show these metals can reach a height approaching 200 km, which is challenging to explain. We have developed the first global simulation incorporating the full life cycle of metal atoms and ions. The model results compare well with lidar and satellite observations of the seasonal and diurnal variation of the metals and demonstrate the importance of ion mass and ion-neutral coupling.
Altmetrics
Final-revised paper
Preprint