Articles | Volume 19, issue 19
Atmos. Chem. Phys., 19, 12607–12630, 2019

Special issue: WISE: Wave-driven isentropic exchange in the extratropical...

Atmos. Chem. Phys., 19, 12607–12630, 2019

Research article 09 Oct 2019

Research article | 09 Oct 2019

Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves

Daniel Kunkel et al.

Related authors

Chemical composition and source attribution of sub-micrometre aerosol particles in the summertime Arctic lower troposphere
Franziska Köllner, Johannes Schneider, Megan D. Willis, Hannes Schulz, Daniel Kunkel, Heiko Bozem, Peter Hoor, Thomas Klimach, Frank Helleis, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 21, 6509–6539,,, 2021
Short summary
On the occurrence of enhanced vertical wind shear in the tropopause region: A ten year ERA5 northern hemispheric study
Thorsten Kaluza, Daniel Kunkel, and Peter Hoor
Weather Clim. Dynam. Discuss.,,, 2021
Preprint under review for WCD
Short summary
Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements
Heiko Bozem, Peter Hoor, Daniel Kunkel, Franziska Köllner, Johannes Schneider, Andreas Herber, Hannes Schulz, W. Richard Leaitch, Amir A. Aliabadi, Megan D. Willis, Julia Burkart, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 19, 15049–15071,,, 2019
Short summary
Composite analysis of the tropopause inversion layer in extratropical baroclinic waves
Thorsten Kaluza, Daniel Kunkel, and Peter Hoor
Atmos. Chem. Phys., 19, 6621–6636,,, 2019
Short summary
Concentrations, composition, and sources of ice-nucleating particles in the Canadian High Arctic during spring 2016
Meng Si, Erin Evoy, Jingwei Yun, Yu Xi, Sarah J. Hanna, Alina Chivulescu, Kevin Rawlings, Daniel Veber, Andrew Platt, Daniel Kunkel, Peter Hoor, Sangeeta Sharma, W. Richard Leaitch, and Allan K. Bertram
Atmos. Chem. Phys., 19, 3007–3024,,, 2019
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species
Henning Franke, Ulrike Niemeier, and Daniele Visioni
Atmos. Chem. Phys., 21, 8615–8635,,, 2021
Short summary
The advective Brewer–Dobson circulation in the ERA5 reanalysis: climatology, variability, and trends
Mohamadou Diallo, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 21, 7515–7544,,, 2021
Short summary
Is our dynamical understanding of the circulation changes associated with the Antarctic ozone hole sensitive to the choice of reanalysis dataset?
Andrew Orr, Hua Lu, Patrick Martineau, Edwin P. Gerber, Gareth J. Marshall, and Thomas J. Bracegirdle
Atmos. Chem. Phys., 21, 7451–7472,,, 2021
Short summary
The impact of increasing stratospheric radiative damping on the quasi-biennial oscillation period
Tiehan Zhou, Kevin DallaSanta, Larissa Nazarenko, Gavin A. Schmidt, and Zhonghai Jin
Atmos. Chem. Phys., 21, 7395–7407,,, 2021
Short summary
Analysis of recent lower-stratospheric ozone trends in chemistry climate models
Simone Dietmüller, Hella Garny, Roland Eichinger, and William T. Ball
Atmos. Chem. Phys., 21, 6811–6837,,, 2021

Cited articles

Appenzeller, C., Davies, H. C., and Norton, W. A.: Fragmentation of stratospheric intrusions, J. Geophys. Res.-Atmos., 101, 1435–1456,, 1996. a
Birner, T. and Bönisch, H.: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere, Atmos. Chem. Phys., 11, 817–827,, 2011. a
Birner, T., Dörnbrack, A., and Schumann, U.: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29, 1–4,, 2002. a, b
Boothe, A. C. and Homeyer, C. R.: Global large-scale stratosphere–troposphere exchange in modern reanalyses, Atmos. Chem. Phys., 17, 5537–5559,, 2017. a, b
Bush, A. B. G. and Peltier, W. R.: Tropopause Folds and Synoptic-Scale Baroclinic Wave Life Cycles, J. Atmos. Sci., 51, 1581–1604,<1581:TFASSB>2.0.CO;2, 1994. a
Short summary
In this study we present a mixing process around the tropopause in extratropical baroclinic waves. We analyze airborne data from a flight during the WISE campaign in autumn 2017 over the North Atlantic. We use idealized experiments to study the mixing process. Although the process occurs on a small geographical scale, it might be of importance due to its relation to a frequent feature of the extratropical UTLS. The process is relevant for STE but is not fully included in climatologies.
Final-revised paper