Articles | Volume 18, issue 11
https://doi.org/10.5194/acp-18-8373-2018
https://doi.org/10.5194/acp-18-8373-2018
Research article
 | 
15 Jun 2018
Research article |  | 15 Jun 2018

Maximizing ozone signals among chemical, meteorological, and climatological variability

Benjamin Brown-Steiner, Noelle E. Selin, Ronald G. Prinn, Erwan Monier, Simone Tilmes, Louisa Emmons, and Fernando Garcia-Menendez

Related authors

Evaluating simplified chemical mechanisms within present-day simulations of the Community Earth System Model version 1.2 with CAM4 (CESM1.2 CAM-chem): MOZART-4 vs. Reduced Hydrocarbon vs. Super-Fast chemistry
Benjamin Brown-Steiner, Noelle E. Selin, Ronald Prinn, Simone Tilmes, Louisa Emmons, Jean-François Lamarque, and Philip Cameron-Smith
Geosci. Model Dev., 11, 4155–4174, https://doi.org/10.5194/gmd-11-4155-2018,https://doi.org/10.5194/gmd-11-4155-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Regional and sectoral contributions of NOx and reactive carbon emission sources to global trends in tropospheric ozone during the 2000–2018 period
Aditya Nalam, Aura Lupaşcu, Tabish Ansari, and Tim Butler
Atmos. Chem. Phys., 25, 5287–5311, https://doi.org/10.5194/acp-25-5287-2025,https://doi.org/10.5194/acp-25-5287-2025, 2025
Short summary
Underappreciated contributions of biogenic volatile organic compounds from urban green spaces to ozone pollution
Haofan Wang, Yuejin Li, Yiming Liu, Xiao Lu, Yang Zhang, Qi Fan, Chong Shen, Senchao Lai, Yan Zhou, Tao Zhang, and Dingli Yue
Atmos. Chem. Phys., 25, 5233–5250, https://doi.org/10.5194/acp-25-5233-2025,https://doi.org/10.5194/acp-25-5233-2025, 2025
Short summary
Chemistry–climate feedback of atmospheric methane in a methane-emission-flux-driven chemistry–climate model
Laura Stecher, Franziska Winterstein, Patrick Jöckel, Michael Ponater, Mariano Mertens, and Martin Dameris
Atmos. Chem. Phys., 25, 5133–5158, https://doi.org/10.5194/acp-25-5133-2025,https://doi.org/10.5194/acp-25-5133-2025, 2025
Short summary
Surface ozone trend variability across the United States and the impact of heat waves (1990–2023)
Kai-Lan Chang, Brian C. McDonald, Colin Harkins, and Owen R. Cooper
Atmos. Chem. Phys., 25, 5101–5132, https://doi.org/10.5194/acp-25-5101-2025,https://doi.org/10.5194/acp-25-5101-2025, 2025
Short summary
Sensitivity of climate effects of hydrogen to leakage size, location, and chemical background
Ragnhild Bieltvedt Skeie, Marit Sandstad, Srinath Krishnan, Gunnar Myhre, and Maria Sand
Atmos. Chem. Phys., 25, 4929–4942, https://doi.org/10.5194/acp-25-4929-2025,https://doi.org/10.5194/acp-25-4929-2025, 2025
Short summary

Cited articles

Angélil, O., Stone, D., Perkins-Kirkpatrick, S., Alexander, L. V., Wehner, M., Shiogama, H., Wolski, P., Ciavarella, A., and Christidis, N.: On the nonlinearity of spatial scales in extreme weather attribution statements, Clim. Dynam., 50, 2739–2752, 2017. 
Barnes, E. A., Fiore, A. M., and Horowitz, L. W.: Detection of trends in surface ozone in the presence of climate variability, J. Geophys. Res.-Atmos., 121, 6112–6129, 2016. 
Brown-Steiner, B., Hess, P. G., and Lin, M. Y.: On the capabilities and limitations of GCCM simulations of summertime regional air quality: A diagnostic analysis of ozone and temperature simulations in the US using CESM CAM-chem, Atmos. Environ., 101, 134–148, 2015. 
Brown-Steiner, B., Selin, N. E., Prinn, R., Tilmes, S., Emmons, L., Lamarque, J.-F., and Cameron-Smith, P.: Evaluating Simplified Chemical Mechanisms within Present-Day Simulations of CESM Version 1.2 CAM-chem (CAM4): MOZART-4 vs. Reduced Hydrocarbon vs. Super-Fast Chemistry, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-16, in review, 2018. 
Camalier, L., Cox, W., and Dolwick, P.: The effects of meteorology on ozone in urban areaas and their use in assessing ozone trends, Atmos. Environ., 41, 7127–7137, 2007. 
Download
Short summary
Detecting signals in observations and simulations of atmospheric chemistry is difficult due to the underlying variability in the chemistry, meteorology, and climatology. Here we examine the scale dependence of ozone variability and explore strategies for reducing or averaging this variability and thereby enhancing ozone signal detection capabilities. We find that 10–15 years of temporal averaging, and some level of spatial averaging, reduces the risk of overconfidence in ozone signals.
Share
Altmetrics
Final-revised paper
Preprint