Articles | Volume 18, issue 10
https://doi.org/10.5194/acp-18-7001-2018
https://doi.org/10.5194/acp-18-7001-2018
Research article
 | 
18 May 2018
Research article |  | 18 May 2018

Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation

Andrés Esteban Bedoya-Velásquez, Francisco Navas-Guzmán, María José Granados-Muñoz, Gloria Titos, Roberto Román, Juan Andrés Casquero-Vera, Pablo Ortiz-Amezcua, Jose Antonio Benavent-Oltra, Gregori de Arruda Moreira, Elena Montilla-Rosero, Carlos David Hoyos, Begoña Artiñano, Esther Coz, Francisco José Olmo-Reyes, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado

Related authors

Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements
Jose Antonio Benavent-Oltra, Juan Andrés Casquero-Vera, Roberto Román, Hassan Lyamani, Daniel Pérez-Ramírez, María José Granados-Muñoz, Milagros Herrera, Alberto Cazorla, Gloria Titos, Pablo Ortiz-Amezcua, Andrés Esteban Bedoya-Velásquez, Gregori de Arruda Moreira, Noemí Pérez, Andrés Alastuey, Oleg Dubovik, Juan Luis Guerrero-Rascado, Francisco José Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 21, 9269–9287, https://doi.org/10.5194/acp-21-9269-2021,https://doi.org/10.5194/acp-21-9269-2021, 2021
Short summary
Different strategies to retrieve aerosol properties at night-time with the GRASP algorithm
Jose Antonio Benavent-Oltra, Roberto Román, Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Pablo Ortiz-Amezcua, Andrés Esteban Bedoya-Velásquez, Gregori de Arruda Moreira, África Barreto, Anton Lopatin, David Fuertes, Milagros Herrera, Benjamin Torres, Oleg Dubovik, Juan Luis Guerrero-Rascado, Philippe Goloub, Francisco Jose Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 19, 14149–14171, https://doi.org/10.5194/acp-19-14149-2019,https://doi.org/10.5194/acp-19-14149-2019, 2019
Short summary
Long-term aerosol optical hygroscopicity study at the ACTRIS SIRTA observatory: synergy between ceilometer and in situ measurements
Andrés Esteban Bedoya-Velásquez, Gloria Titos, Juan Antonio Bravo-Aranda, Martial Haeffelin, Olivier Favez, Jean-Eudes Petit, Juan Andrés Casquero-Vera, Francisco José Olmo-Reyes, Elena Montilla-Rosero, Carlos D. Hoyos, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 19, 7883–7896, https://doi.org/10.5194/acp-19-7883-2019,https://doi.org/10.5194/acp-19-7883-2019, 2019
Short summary
Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer
Gregori de Arruda Moreira, Juan Luis Guerrero-Rascado, Jose A. Benavent-Oltra, Pablo Ortiz-Amezcua, Roberto Román, Andrés E. Bedoya-Velásquez, Juan Antonio Bravo-Aranda, Francisco Jose Olmo Reyes, Eduardo Landulfo, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 19, 1263–1280, https://doi.org/10.5194/acp-19-1263-2019,https://doi.org/10.5194/acp-19-1263-2019, 2019
Short summary
February 2017 extreme Saharan dust outbreak in the Iberian Peninsula: from lidar-derived optical properties to evaluation of forecast models
Alfonso J. Fernández, Michaël Sicard, Maria J. Costa, Juan L. Guerrero-Rascado, José L. Gómez-Amo, Francisco Molero, Rubén Barragán, Daniele Bortoli, Andrés E. Bedoya-Velásquez, María P. Utrillas, Pedro Salvador, María J. Granados-Muñoz, Miguel Potes, Pablo Ortiz-Amezcua, José A. Martínez-Lozano, Begoña Artíñano, Constantino Muñoz-Porcar, Rui Salgado, Roberto Román, Francesc Rocadenbosch, Vanda Salgueiro, José A. Benavent-Oltra, Alejandro Rodríguez-Gómez, Lucas Alados-Arboledas, Adolfo Comerón, and Manuel Pujadas
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-370,https://doi.org/10.5194/acp-2018-370, 2018
Revised manuscript not accepted

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Measurement report: Dust and anthropogenic aerosols' vertical distributions over northern China dense aerosols gathered at the top of the mixing layer
Zhuang Wang, Chune Shi, Hao Zhang, Yujia Chen, Xiyuan Chi, Congzi Xia, Suyao Wang, Yizhi Zhu, Kaidi Zhang, Xintong Chen, Chengzhi Xing, and Cheng Liu
Atmos. Chem. Phys., 23, 14271–14292, https://doi.org/10.5194/acp-23-14271-2023,https://doi.org/10.5194/acp-23-14271-2023, 2023
Short summary
Climatological assessment of the vertically resolved optical and microphysical aerosol properties by lidar measurements, sun photometer, and in situ observations over 17 years at Universitat Politècnica de Catalunya (UPC) Barcelona
Simone Lolli, Michaël Sicard, Francesco Amato, Adolfo Comeron, Cristina Gíl-Diaz, Tony C. Landi, Constantino Munoz-Porcar, Daniel Oliveira, Federico Dios Otin, Francesc Rocadenbosch, Alejandro Rodriguez-Gomez, Andrés Alastuey, Xavier Querol, and Cristina Reche
Atmos. Chem. Phys., 23, 12887–12906, https://doi.org/10.5194/acp-23-12887-2023,https://doi.org/10.5194/acp-23-12887-2023, 2023
Short summary
Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: differences between major European cities and their surrounding environments
Ludovico Di Antonio, Claudia Di Biagio, Gilles Foret, Paola Formenti, Guillaume Siour, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 23, 12455–12475, https://doi.org/10.5194/acp-23-12455-2023,https://doi.org/10.5194/acp-23-12455-2023, 2023
Short summary
Impact of assimilating NOAA VIIRS aerosol optical depth (AOD) observations on global AOD analysis from the Copernicus Atmosphere Monitoring Service (CAMS)
Sebastien Garrigues, Melanie Ades, Samuel Remy, Johannes Flemming, Zak Kipling, Istvan Laszlo, Mark Parrington, Antje Inness, Roberto Ribas, Luke Jones, Richard Engelen, and Vincent-Henri Peuch
Atmos. Chem. Phys., 23, 10473–10487, https://doi.org/10.5194/acp-23-10473-2023,https://doi.org/10.5194/acp-23-10473-2023, 2023
Short summary
Spectral dependence of birch and pine pollen optical properties using a synergy of lidar instruments
Maria Filioglou, Ari Leskinen, Ville Vakkari, Ewan O'Connor, Minttu Tuononen, Pekko Tuominen, Samuli Laukkanen, Linnea Toiviainen, Annika Saarto, Xiaoxia Shang, Petri Tiitta, and Mika Komppula
Atmos. Chem. Phys., 23, 9009–9021, https://doi.org/10.5194/acp-23-9009-2023,https://doi.org/10.5194/acp-23-9009-2023, 2023
Short summary

Cited articles

Adam, M., Putaud, J. P., Martins dos Santos, S., Dell'Acqua, A., and Gruening, C.: Aerosol hygroscopicity at a regional background site (Ispra) in Northern Italy, Atmos. Chem. Phys., 12, 5703–5717, https://doi.org/10.5194/acp-12-5703-2012, 2012. 
Alados-Arboledas, L., Müller, D., Guerrero-Rascado, J., Navas-Guzmán, F., Pérez-Ramírez, D., and Olmo, F.: Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star-and sun-photometry, Geophys. Res. Lett. 38, L01807, https://doi.org/10.1029/2010GL045999, 2011. 
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, 1989. 
Alfarra, M. R., Paulsen, D., Gysel, M., Garforth, A. A., Dommen, J., Prévôt, A. S. H., Worsnop, D. R., Baltensperger, U., and Coe, H.: A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber, Atmos. Chem. Phys., 6, 5279–5293, https://doi.org/10.5194/acp-6-5279-2006, 2006. 
Baron, P. A. and Willeke, K.: Aerosol Measurement: Principles, Techniques and Applications, John Wiley & Sons: New York, NY, 883 pp., 2001. 
Download
Short summary
This study focuses on the analysis of aerosol hygroscopic growth during the SLOPE I campaign combining active and passive remote sensors at ACTRIS Granada station and in situ instrumentation at a mountain station (Sierra Nevada station, SNS). The results showed good agreement on gamma parameters by using remote sensing with respect to those calculated using Mie theory at SNS, with relative differences lower than 9 % at 532 nm and 11 % at 355 nm.
Altmetrics
Final-revised paper
Preprint