Articles | Volume 17, issue 18
https://doi.org/10.5194/acp-17-11313-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-17-11313-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Brominated VSLS and their influence on ozone under a changing climate
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Björn-Martin Sinnhuber
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Gisèle Krysztofiak
LPC2E, Université d'Orléans, CNRS, UMR7328, Orléans, France
Patrick Jöckel
Deutsches Zentrum für Luft- und Raumfahrt e.V., Oberpfaffenhofen, Germany
Phoebe Graf
Deutsches Zentrum für Luft- und Raumfahrt e.V., Oberpfaffenhofen, Germany
Sinikka T. Lennartz
Geomar, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Related authors
Sabine Egerer, Stefanie Falk, Dorothea Mayer, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz
Biogeosciences, 21, 5005–5025, https://doi.org/10.5194/bg-21-5005-2024, https://doi.org/10.5194/bg-21-5005-2024, 2024
Short summary
Short summary
Using a state-of-the-art land model, we find that bioenergy plants can store carbon more efficiently than forests over long periods in the soil, in geological reservoirs, or by substituting fossil-fuel-based energy. Planting forests is more suitable for reaching climate targets by 2050. The carbon removal potential depends also on local environmental conditions. These considerations have important implications for climate policy, spatial planning, nature conservation, and agriculture.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, Almut Arneth, Stefanie Falk, Atul K. Jain, Fortunat Joos, Daniel Kennedy, Jürgen Knauer, Stephen Sitch, Michael O'Sullivan, Naiqing Pan, Qing Sun, Hanqin Tian, Nicolas Vuichard, and Sönke Zaehle
Earth Syst. Dynam., 14, 767–795, https://doi.org/10.5194/esd-14-767-2023, https://doi.org/10.5194/esd-14-767-2023, 2023
Short summary
Short summary
Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N processes across models is large. Models tended to overestimate C storage per unit N in vegetation and soil, which could have consequences for projecting the future terrestrial C sink. However, N cycling measurements are highly uncertain, and more are necessary to guide the development of N cycling in models.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Stefanie Falk, Ane V. Vollsnes, Aud B. Eriksen, Lisa Emberson, Connie O'Neill, Frode Stordal, and Terje Koren Berntsen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-260, https://doi.org/10.5194/bg-2021-260, 2021
Revised manuscript not accepted
Short summary
Short summary
Subarctic vegetation is threatened by climate change and ozone. We assess essential climate variables in 2018/19. 2018 was warmer and brighter than usual in Spring with forest fires and elevated ozone in summer. Visible damage was observed on plant species in 2018. We find that generic parameterizations used in modeling ozone dose do not suffice. We propose a method to acclimate these parameterizations and find an ozone-induced biomass loss of 2.5 to 17.4 % (up to 6 % larger than default).
Stefanie Falk, Ane V. Vollsnes, Aud B. Eriksen, Frode Stordal, and Terje Koren Berntsen
Atmos. Chem. Phys., 21, 15647–15661, https://doi.org/10.5194/acp-21-15647-2021, https://doi.org/10.5194/acp-21-15647-2021, 2021
Short summary
Short summary
We evaluate regional and global models for ozone modeling and damage risk mapping of vegetation over subarctic Europe. Our analysis suggests that low-resolution global models do not reproduce the observed ozone seasonal cycle at ground level, underestimating ozone by 30–50 %. High-resolution regional models capture the seasonal cycle well, still underestimating ozone by up to 20 %. Our proposed gap-filling method for site observations shows a 76 % accuracy compared to the regional model (80 %).
Stefanie Falk and Amund Søvde Haslerud
Geosci. Model Dev., 12, 4705–4728, https://doi.org/10.5194/gmd-12-4705-2019, https://doi.org/10.5194/gmd-12-4705-2019, 2019
Short summary
Short summary
High concentrations of ozone in ambient air are hazardous to the whole ecosystem. The impact of ozone-induced damage on vegetation and agricultural plants in combination with advancing climate change may affect food security in the future. The process of dry deposition is important for predicting and understanding the observed surface ozone concentrations. We have updated the dry deposition scheme in Oslo CTM3 to a more process-based parameterization and assess the effect on modeled ozone.
Stefanie Falk and Björn-Martin Sinnhuber
Geosci. Model Dev., 11, 1115–1131, https://doi.org/10.5194/gmd-11-1115-2018, https://doi.org/10.5194/gmd-11-1115-2018, 2018
Short summary
Short summary
Ozone depletion events (ODEs) in the polar boundary layer are observed frequently in spring. ODEs serve as a source of tropospheric BrO at high latitudes. A treatment of bromine release and recycling on sea-ice- and snow-covered surfaces is implemented in global chemistry–climate model EMAC based on a scheme of Toyota et al. (2011). Many aspects of bromine enhancement and associated ODEs are reproduced in both polar regions. Further bromine release mechanisms can now be tested in a global model.
Rodrigo J. Seguel, Charlie Opazo, Yann Cohen, Owen R. Cooper, Laura Gallardo, Björn-Martin Sinnhuber, Florian Obersteiner, Andreas Zahn, Peter Hoor, and Susanne Rohs
EGUsphere, https://doi.org/10.5194/egusphere-2024-3719, https://doi.org/10.5194/egusphere-2024-3719, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We explored differences in ozone levels between the Northern and Southern Hemispheres in the Stratosphere-troposphere exchange region. Using unique data from a research aircraft, we found significantly lower ozone levels (with stratospheric character) in the Southern Hemisphere, especially during years of severe ozone depletion. A Sudden Stratospheric Warming event in 2019 increased Southern Hemisphere ozone levels, highlighting the relationship between atmospheric events and ozone distribution.
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Heidi Huntrieser, Patrick Jöckel, and Eric J. Bucsela
EGUsphere, https://doi.org/10.5194/egusphere-2024-3348, https://doi.org/10.5194/egusphere-2024-3348, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Lightning plays a significant role in tropospheric chemistry by producing substantial amounts of nitrogen oxides. According to recent estimates, thunderstorms that produce a higher lightning frequency rate also produce less nitrogen oxide per flash. We implemented the dependency of nitrogen oxide production per flash on lightning flash frequency in a chemical atmospheric model.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 24, 13503–13523, https://doi.org/10.5194/acp-24-13503-2024, https://doi.org/10.5194/acp-24-13503-2024, 2024
Short summary
Short summary
Anthropogenic emissions are a major source of precursors of tropospheric ozone. As ozone formation is highly non-linear, we apply a global–regional chemistry–climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. Our analysis shows that the contribution of European anthropogenic emissions largely increases during large ozone periods, indicating that emissions from these sectors drive ozone values.
Björn-Martin Sinnhuber
Polarforschung, 92, 33–45, https://doi.org/10.5194/polf-92-33-2024, https://doi.org/10.5194/polf-92-33-2024, 2024
Short summary
Short summary
Knowledge of past climate change is essential to test our understanding of the rapidly changing Arctic. One of the longest Arctic temperature time series comes from observations in Svalbard that extend back more than 125 years but have a gap during World War II between 1941 and 1945. Observations from German military weather stations on Svalbard have now been retrieved from weather maps preserved at the Deutscher Wetterdienst (DWD), which will help close much of the existing data gap.
William J. Collins, Fiona M. O'Connor, Connor R. Barker, Rachael E. Byrom, Sebastian D. Eastham, Øivind Hodnebrog, Patrick Jöckel, Eloise A. Marais, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble
EGUsphere, https://doi.org/10.5194/egusphere-2024-3698, https://doi.org/10.5194/egusphere-2024-3698, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
If reductions aren’t implemented to limit emissions of pollutants that produce ozone then we calculate that this will cause a warming of climate. We assess how the future warming from ozone is affected by changing meteorological variables such as clouds and atmospheric temperatures. We find that reductions in high cloud cover tend to slightly reduce the warming from ozone.
Sabine Egerer, Stefanie Falk, Dorothea Mayer, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz
Biogeosciences, 21, 5005–5025, https://doi.org/10.5194/bg-21-5005-2024, https://doi.org/10.5194/bg-21-5005-2024, 2024
Short summary
Short summary
Using a state-of-the-art land model, we find that bioenergy plants can store carbon more efficiently than forests over long periods in the soil, in geological reservoirs, or by substituting fossil-fuel-based energy. Planting forests is more suitable for reaching climate targets by 2050. The carbon removal potential depends also on local environmental conditions. These considerations have important implications for climate policy, spatial planning, nature conservation, and agriculture.
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024, https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
Short summary
We quantified the contributions of land transport, shipping, and aviation emissions to tropospheric ozone; its radiative forcing; and the reductions of the methane lifetime using chemistry-climate model simulations. The contributions were analysed for the conditions of 2015 and for three projections for the year 2050. The results highlight the challenges of mitigating ozone formed by emissions of the transport sector, caused by the non-linearitiy of the ozone chemistry and the long lifetime.
Matthias Kohl, Christoph Brühl, Jennifer Schallock, Holger Tost, Patrick Jöckel, Adrian Jost, Steffen Beirle, Michael Höpfner, and Andrea Pozzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2200, https://doi.org/10.5194/egusphere-2024-2200, 2024
Short summary
Short summary
SO2 from explosive volcanic eruptions reaching the stratosphere can oxidize and form sulfate aerosols, potentially persisting for several years and influencing climate and the ozone layer. We developed a new submodel for Explosive Volcanic ERuptions (EVER) that seamlessly includes stratospheric volcanic SO2 emissions in global numerical simulations based on a novel standard historical model setup. Sensitivity studies on the Nabro eruption in 2011 evaluate different emission methods.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Laura Stecher, Franziska Winterstein, Patrick Jöckel, Michael Ponater, Mariano Mertens, and Martin Dameris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2938, https://doi.org/10.5194/egusphere-2024-2938, 2024
Short summary
Short summary
Methane, the second most important anthropogenic greenhouse gas, is chemically decomposed in the atmosphere. The chemical sink of atmospheric methane is not constant, but depends on the temperature and on the abundance of its reaction partners. In this study, we use a global chemistry-climate model to assess the feedback of atmospheric methane induced by changes of the chemical sink in a warming climate, and its implications for the chemical composition and the surface air temperature change.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-135, https://doi.org/10.5194/gmd-2024-135, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The Icosahedral Nonhydrostatic (ICON) Model Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++ and Python) and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Sergio Soler, Francisco J. Gordillo-Vázquez, Francisco J. Pérez-Invernón, Patrick Jöckel, Torsten Neubert, Olivier Chanrion, Victor Reglero, and Nikolai Østgaard
Atmos. Chem. Phys., 24, 10225–10243, https://doi.org/10.5194/acp-24-10225-2024, https://doi.org/10.5194/acp-24-10225-2024, 2024
Short summary
Short summary
Sudden local ozone (O3) enhancements have been reported in different regions of the world since the 1970s. While the hot channel of lightning strokes directly produce significant amounts of nitrogen oxide, no direct emission of O3 is expected. Corona discharges in convective active regions could explain local O3 increases, which remains unexplained. We present the first mathematical functions that relate the global annual frequency of in-cloud coronas with four sets of meteorological variables.
Patrick Peter, Sigrun Matthes, Christine Frömming, Patrick Jöckel, Luca Bugliaro, Andreas Giez, Martina Krämer, and Volker Grewe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2142, https://doi.org/10.5194/egusphere-2024-2142, 2024
Short summary
Short summary
Our study examines how temperature and humidity representations influence contrail (-cirrus) formation criteria. Using various model setups, we identified biases that lead to overestimation of contrail formation areas. By comparing simulations with in-flight and satellite observations, we confirmed that humidity threshold choices greatly affect contrail predictions. These findings can help develop strategies for climate-optimized flight routes, potentially reducing aviation's climate effect.
Florian Voet, Felix Plöger, Johannes Laube, Peter Preusse, Paul Konopka, Jens-Uwe Grooß, Jörn Ungermann, Björn-Martin Sinnhuber, Michael Hoepfner, Bernd Funke, Gerald Wetzel, Sören Johansson, Gabriele Stiller, Eric Ray, and Michaela Imelda Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2624, https://doi.org/10.5194/egusphere-2024-2624, 2024
Short summary
Short summary
This study refines estimates of the stratospheric “age of air,” a measure of how long air circulates in the stratosphere. By analyzing correlations between trace gases measurable by satellites, the research introduces a method that reduces uncertainties and detects small-scale atmospheric features. This improved understanding of stratospheric circulation is crucial for better climate models and predictions, enhancing our ability to assess the impacts of climate change on the atmosphere.
Astrid Kerkweg, Timo Kirfel, Doung H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-117, https://doi.org/10.5194/gmd-2024-117, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article introduces the MESSy DWARF. Usually, the Modular Earth Submodel System (MESSy) is linked to full dynamical models to build chemistry climate models. However, due to the modular concept of MESSy, and the newly developed DWARF component, it is now possible to create simplified models containing just one or some process descriptions. This renders very useful for technical optimisation (e.g., GPU porting) and can be used to create less complex models, e.g., a chemical box model.
Hossein Maazallahi, Foteini Stavropoulou, Samuel Jonson Sutanto, Michael Steiner, Dominik Brunner, Mariano Mertens, Patrick Jöckel, Antoon Visschedijk, Hugo Denier van der Gon, Stijn Dellaert, Nataly Velandia Salinas, Stefan Schwietzke, Daniel Zavala-Araiza, Sorin Ghemulet, Alexandru Pana, Magdalena Ardelean, Marius Corbu, Andreea Calcan, Stephen A. Conley, Mackenzie L. Smith, and Thomas Röckmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2135, https://doi.org/10.5194/egusphere-2024-2135, 2024
Short summary
Short summary
This article provide insights from airborne in-situ measurements during the ROMEO campaign with support from two model simulations. The results from the evaluations performed for this article are independently consistent with the results from previously published article which was based on ground-based measurements during the ROMEO campaign. The results show that reported methane emissions from oil and gas industry in Romania are largely under-reported to UNFCCC in 2019.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz
Atmos. Meas. Tech., 17, 4507–4528, https://doi.org/10.5194/amt-17-4507-2024, https://doi.org/10.5194/amt-17-4507-2024, 2024
Short summary
Short summary
A novel balloon-borne instrument for direct sun and solar occultation measurements of several UV–Vis absorbing gases (e.g. O3, NO2, BrO, IO, and HONO) is described. Its major design features and performance during two stratospheric deployments are discussed. From the measured overhead BrO concentration and a suitable photochemical correction, total stratospheric bromine is inferred to (17.5 ± 2.2) ppt in air masses which entered the stratosphere around early 2017 ± 1 year.
Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Norbert Glatthor, Thomas Gulde, Vincent Huijnen, Anne Kleinert, Erik Kretschmer, Guido Maucher, Tom Neubert, Hans Nordmeyer, Christof Piesch, Peter Preusse, Martin Riese, Björn-Martin Sinnhuber, Jörn Ungermann, Gerald Wetzel, and Wolfgang Woiwode
Atmos. Chem. Phys., 24, 8125–8138, https://doi.org/10.5194/acp-24-8125-2024, https://doi.org/10.5194/acp-24-8125-2024, 2024
Short summary
Short summary
We present airborne infrared limb sounding GLORIA measurements of ammonia (NH3) in the upper troposphere of air masses within the Asian monsoon and of those connected with biomass burning. Comparing CAMS (Copernicus Atmosphere Monitoring Service) model data, we find that the model reproduces the measured enhanced NH3 within the Asian monsoon well but not that within biomass burning plumes, where no enhanced NH3 is measured in the upper troposphere but considerable amounts are simulated by CAMS.
Nelson Bègue, Alexandre Baron, Gisèle Krysztofiak, Gwenaël Berthet, Corinna Kloss, Fabrice Jégou, Sergey Khaykin, Marion Ranaivombola, Tristan Millet, Thierry Portafaix, Valentin Duflot, Philippe Keckhut, Hélène Vérèmes, Guillaume Payen, Mahesh Kumar Sha, Pierre-François Coheur, Cathy Clerbaux, Michaël Sicard, Tetsu Sakai, Richard Querel, Ben Liley, Dan Smale, Isamu Morino, Osamu Uchino, Tomohiro Nagai, Penny Smale, John Robinson, and Hassan Bencherif
Atmos. Chem. Phys., 24, 8031–8048, https://doi.org/10.5194/acp-24-8031-2024, https://doi.org/10.5194/acp-24-8031-2024, 2024
Short summary
Short summary
During the 2020 austral summer, the pristine atmosphere of the southwest Indian Ocean basin experienced significant perturbations. Numerical models indicated that the lower-stratospheric aerosol content was influenced by the intense and persistent stratospheric aerosol layer generated during the 2019–2020 extreme Australian bushfire events. Ground-based observations at Réunion confirmed the simultaneous presence of African and Australian aerosol layers.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
EGUsphere, https://doi.org/10.5194/egusphere-2024-1518, https://doi.org/10.5194/egusphere-2024-1518, 2024
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. For this, it is crucial to understand possible shortcomings in the models. New features of the software package ESMValTool allow for comparing and visualizing a model's performance in reproducing observations within the context of other climate models in an easy and user-friendly way. The aim is to help model developers to assess and monitor climate simulations more efficiently.
Marion Ranaivombola, Nelson Bègue, Farahnaz Fazel-Rastgar, Venkataraman Sivakumar, Gisèle Krysztofiak, Gwenaël Berthet, Fabrice Jegou, Stuart Piketh, and Hassan Bencherif
EGUsphere, https://doi.org/10.5194/egusphere-2024-921, https://doi.org/10.5194/egusphere-2024-921, 2024
Short summary
Short summary
From September to October 2022, the Biomass Burning Aerosol Campaign (BiBAC) in Kruger National Park revealed a significant aerosol loading linked to biomass burning activity, with a southeastward transport over Southern Africa and the southwestern of Indian Ocean (SWIO) basin. The "river of smoke" phenomenon drove the plume during September toward the SWIO. One discusses the long-range transport of biomass burning from South America to Southern Africa is likely driven by climate forcings.
Simon Rosanka, Holger Tost, Rolf Sander, Patrick Jöckel, Astrid Kerkweg, and Domenico Taraborrelli
Geosci. Model Dev., 17, 2597–2615, https://doi.org/10.5194/gmd-17-2597-2024, https://doi.org/10.5194/gmd-17-2597-2024, 2024
Short summary
Short summary
The capabilities of the Modular Earth Submodel System (MESSy) are extended to account for non-equilibrium aqueous-phase chemistry in the representation of deliquescent aerosols. When applying the new development in a global simulation, we find that MESSy's bias in modelling routinely observed reduced inorganic aerosol mass concentrations, especially in the United States. Furthermore, the representation of fine-aerosol pH is particularly improved in the marine boundary layer.
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Alejandro Malagón-Romero, and Patrick Jöckel
Atmos. Chem. Phys., 24, 3577–3592, https://doi.org/10.5194/acp-24-3577-2024, https://doi.org/10.5194/acp-24-3577-2024, 2024
Short summary
Short summary
Sprites are electrical discharges that occur in the upper atmosphere. Recent modelling and observational data suggest that they may have a measurable impact on atmospheric chemistry. We incorporate both the occurrence rate of sprites and their production of chemical species into a chemistry–climate model. While our results indicate that sprites have a minimal global influence on atmospheric chemistry, they underscore their noteworthy importance at a regional scale.
Xiaodan Ma, Jianping Huang, Michaela Hegglin, Patrick Joeckel, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2023-2411, https://doi.org/10.5194/egusphere-2023-2411, 2024
Short summary
Short summary
Our study examines 30 years of tropospheric ozone changes in the Northwest Pacific region. We found a significant increase in ozone levels during spring and summer in the middle-upper troposphere. This change is driven by a complex interplay between stratospheric and tropospheric ozone, with implications for climate and air quality in East Asia. Further research into these mechanisms is needed.
Ryan S. Williams, Michaela I. Hegglin, Patrick Jöckel, Hella Garny, and Keith P. Shine
Atmos. Chem. Phys., 24, 1389–1413, https://doi.org/10.5194/acp-24-1389-2024, https://doi.org/10.5194/acp-24-1389-2024, 2024
Short summary
Short summary
During winter, a brief but abrupt reversal of the mean stratospheric westerly flow (~30 km high) around the Arctic occurs ~6 times a decade. Using a chemistry–climate model, about half of these events are shown to induce large anomalies in Arctic ozone (>25 %) and water vapour (>±25 %) around ~8–12 km altitude for up to 2–3 months, important for weather forecasting. We also calculate a doubling to trebling of the risk in breaches of mid-latitude surface air quality (ozone) standards (~60 ppbv).
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Chaoyang Xue, Gisèle Krysztofiak, Vanessa Brocchi, Stéphane Chevrier, Michel Chartier, Patrick Jacquet, Claude Robert, and Valéry Catoire
Earth Syst. Sci. Data, 15, 4553–4569, https://doi.org/10.5194/essd-15-4553-2023, https://doi.org/10.5194/essd-15-4553-2023, 2023
Short summary
Short summary
To understand tropospheric air pollution at regional and global scales, an infrared laser spectrometer called SPIRIT was used on aircraft to rapidly and accurately measure carbon monoxide (CO), an important indicator of air pollution, during the last decade. Measurements were taken for more than 200 flight hours over three continents. Levels of CO are mapped with 3D trajectories for each flight. Additionally, this can be used to validate model performance and satellite measurements.
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchař, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
Geosci. Model Dev., 16, 5561–5583, https://doi.org/10.5194/gmd-16-5561-2023, https://doi.org/10.5194/gmd-16-5561-2023, 2023
Short summary
Short summary
The columnar approach of gravity wave (GW) schemes results in dynamical model biases, but parallel decomposition makes horizontal GW propagation computationally unfeasible. In the global model EMAC, we approximate it by GW redistribution at one altitude using tailor-made redistribution maps generated with a ray tracer. More spread-out GW drag helps reconcile the model with observations and close the 60°S GW gap. Polar vortex dynamics are improved, enhancing climate model credibility.
Marina Friedel, Gabriel Chiodo, Timofei Sukhodolov, James Keeble, Thomas Peter, Svenja Seeber, Andrea Stenke, Hideharu Akiyoshi, Eugene Rozanov, David Plummer, Patrick Jöckel, Guang Zeng, Olaf Morgenstern, and Béatrice Josse
Atmos. Chem. Phys., 23, 10235–10254, https://doi.org/10.5194/acp-23-10235-2023, https://doi.org/10.5194/acp-23-10235-2023, 2023
Short summary
Short summary
Previously, it has been suggested that springtime Arctic ozone depletion might worsen in the coming decades due to climate change, which might counteract the effect of reduced ozone-depleting substances. Here, we show with different chemistry–climate models that springtime Arctic ozone depletion will likely decrease in the future. Further, we explain why models show a large spread in the projected development of Arctic ozone depletion and use the model spread to constrain future projections.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, Almut Arneth, Stefanie Falk, Atul K. Jain, Fortunat Joos, Daniel Kennedy, Jürgen Knauer, Stephen Sitch, Michael O'Sullivan, Naiqing Pan, Qing Sun, Hanqin Tian, Nicolas Vuichard, and Sönke Zaehle
Earth Syst. Dynam., 14, 767–795, https://doi.org/10.5194/esd-14-767-2023, https://doi.org/10.5194/esd-14-767-2023, 2023
Short summary
Short summary
Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N processes across models is large. Models tended to overestimate C storage per unit N in vegetation and soil, which could have consequences for projecting the future terrestrial C sink. However, N cycling measurements are highly uncertain, and more are necessary to guide the development of N cycling in models.
Marc von Hobe, Christoph Brühl, Sinikka T. Lennartz, Mary E. Whelan, and Aleya Kaushik
Atmos. Chem. Phys., 23, 6591–6598, https://doi.org/10.5194/acp-23-6591-2023, https://doi.org/10.5194/acp-23-6591-2023, 2023
Short summary
Short summary
Carbonyl sulfide plays a role in the climate system as a greenhouse gas and as the major non-volcanic precursor of particles reflecting sunlight. Here, we comment on a proposal to increase the number of particles by emitting extra carbonyl sulfide at the surface. We show that the balance between aerosol cooling and greenhouse gas warming may not be as favorable as suggested and also that much of the carbonyl sulfide emissions will actually be taken up by the biosphere and the oceans.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Robin N. Thor, Mariano Mertens, Sigrun Matthes, Mattia Righi, Johannes Hendricks, Sabine Brinkop, Phoebe Graf, Volker Grewe, Patrick Jöckel, and Steven Smith
Geosci. Model Dev., 16, 1459–1466, https://doi.org/10.5194/gmd-16-1459-2023, https://doi.org/10.5194/gmd-16-1459-2023, 2023
Short summary
Short summary
We report on an inconsistency in the latitudinal distribution of aviation emissions between two versions of a data product which is widely used by researchers. From the available documentation, we do not expect such an inconsistency. We run a chemistry–climate model to compute the effect of the inconsistency in emissions on atmospheric chemistry and radiation and find that the radiative forcing associated with aviation ozone is 7.6 % higher when using the less recent version of the data.
Dominik Brunner, Gerrit Kuhlmann, Stephan Henne, Erik Koene, Bastian Kern, Sebastian Wolff, Christiane Voigt, Patrick Jöckel, Christoph Kiemle, Anke Roiger, Alina Fiehn, Sven Krautwurst, Konstantin Gerilowski, Heinrich Bovensmann, Jakob Borchardt, Michal Galkowski, Christoph Gerbig, Julia Marshall, Andrzej Klonecki, Pascal Prunet, Robert Hanfland, Margit Pattantyús-Ábrahám, Andrzej Wyszogrodzki, and Andreas Fix
Atmos. Chem. Phys., 23, 2699–2728, https://doi.org/10.5194/acp-23-2699-2023, https://doi.org/10.5194/acp-23-2699-2023, 2023
Short summary
Short summary
We evaluated six atmospheric transport models for their capability to simulate the CO2 plumes from two of the largest power plants in Europe by comparing the models against aircraft observations collected during the CoMet (Carbon Dioxide and Methane Mission) campaign in 2018. The study analyzed how realistically such plumes can be simulated at different model resolutions and how well the planned European satellite mission CO2M will be able to quantify emissions from power plants.
Manuel Schlund, Birgit Hassler, Axel Lauer, Bouwe Andela, Patrick Jöckel, Rémi Kazeroni, Saskia Loosveldt Tomas, Brian Medeiros, Valeriu Predoi, Stéphane Sénési, Jérôme Servonnat, Tobias Stacke, Javier Vegas-Regidor, Klaus Zimmermann, and Veronika Eyring
Geosci. Model Dev., 16, 315–333, https://doi.org/10.5194/gmd-16-315-2023, https://doi.org/10.5194/gmd-16-315-2023, 2023
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for routine evaluation of Earth system models. Originally, ESMValTool was designed to process reformatted output provided by large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP). Here, we describe a new extension of ESMValTool that allows for reading and processing native climate model output, i.e., data that have not been reformatted before.
Matthias Nützel, Sabine Brinkop, Martin Dameris, Hella Garny, Patrick Jöckel, Laura L. Pan, and Mijeong Park
Atmos. Chem. Phys., 22, 15659–15683, https://doi.org/10.5194/acp-22-15659-2022, https://doi.org/10.5194/acp-22-15659-2022, 2022
Short summary
Short summary
During the Asian summer monsoon season, a large high-pressure system is present at levels close to the tropopause above Asia. We analyse how air masses are transported from surface levels to this high-pressure system, which shows distinct features from the surrounding air masses. To this end, we employ multiannual data from two complementary models that allow us to analyse the climatology as well as the interannual and intraseasonal variability of these transport pathways.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Johannes Pletzer, Didier Hauglustaine, Yann Cohen, Patrick Jöckel, and Volker Grewe
Atmos. Chem. Phys., 22, 14323–14354, https://doi.org/10.5194/acp-22-14323-2022, https://doi.org/10.5194/acp-22-14323-2022, 2022
Short summary
Short summary
Very fast aircraft can travel long distances in extremely short times and can fly at high altitudes (15 to 35 km). These aircraft emit water vapour, nitrogen oxides, and hydrogen. Water vapour emissions remain for months to several years at these altitudes and have an important impact on temperature. We investigate two aircraft fleets flying at 26 and 35 km. Ozone is depleted more, and the water vapour perturbation and temperature change are larger for the aircraft flying at 35 km.
Jin Maruhashi, Volker Grewe, Christine Frömming, Patrick Jöckel, and Irene C. Dedoussi
Atmos. Chem. Phys., 22, 14253–14282, https://doi.org/10.5194/acp-22-14253-2022, https://doi.org/10.5194/acp-22-14253-2022, 2022
Short summary
Short summary
Aviation NOx emissions lead to the formation of ozone in the atmosphere in the short term, which has a climate warming effect. This study uses global-scale simulations to characterize the transport patterns between NOx emissions at an altitude of ~ 10.4 km and the resulting ozone. Results show a strong spatial and temporal dependence of NOx in disturbing atmospheric O3 concentrations, with the location that is most impacted in terms of warming not necessarily coinciding with the emission region.
Kostas Eleftheratos, John Kapsomenakis, Ilias Fountoulakis, Christos S. Zerefos, Patrick Jöckel, Martin Dameris, Alkiviadis F. Bais, Germar Bernhard, Dimitra Kouklaki, Kleareti Tourpali, Scott Stierle, J. Ben Liley, Colette Brogniez, Frédérique Auriol, Henri Diémoz, Stana Simic, Irina Petropavlovskikh, Kaisa Lakkala, and Kostas Douvis
Atmos. Chem. Phys., 22, 12827–12855, https://doi.org/10.5194/acp-22-12827-2022, https://doi.org/10.5194/acp-22-12827-2022, 2022
Short summary
Short summary
We present the future evolution of DNA-active ultraviolet (UV) radiation in view of increasing greenhouse gases (GHGs) and decreasing ozone depleting substances (ODSs). It is shown that DNA-active UV radiation might increase after 2050 between 50° N–50° S due to GHG-induced reductions in clouds and ozone, something that is likely not to happen at high latitudes, where DNA-active UV radiation will continue its downward trend mainly due to stratospheric ozone recovery from the reduction in ODSs.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Thilo Erbertseder, Diego Loyola, Pieter Valks, Song Liu, Dale J. Allen, Kenneth E. Pickering, Eric J. Bucsela, Patrick Jöckel, Jos van Geffen, Henk Eskes, Sergio Soler, Francisco J. Gordillo-Vázquez, and Jeff Lapierre
Atmos. Meas. Tech., 15, 3329–3351, https://doi.org/10.5194/amt-15-3329-2022, https://doi.org/10.5194/amt-15-3329-2022, 2022
Short summary
Short summary
Lightning, one of the major sources of nitrogen oxides in the atmosphere, contributes to the tropospheric concentration of ozone and to the oxidizing capacity of the atmosphere. In this work, we contribute to improving the estimation of lightning-produced nitrogen oxides in the Ebro Valley and the Pyrenees by using two different TROPOMI products and comparing the results.
Camille Abadie, Fabienne Maignan, Marine Remaud, Jérôme Ogée, J. Elliott Campbell, Mary E. Whelan, Florian Kitz, Felix M. Spielmann, Georg Wohlfahrt, Richard Wehr, Wu Sun, Nina Raoult, Ulli Seibt, Didier Hauglustaine, Sinikka T. Lennartz, Sauveur Belviso, David Montagne, and Philippe Peylin
Biogeosciences, 19, 2427–2463, https://doi.org/10.5194/bg-19-2427-2022, https://doi.org/10.5194/bg-19-2427-2022, 2022
Short summary
Short summary
A better constraint of the components of the carbonyl sulfide (COS) global budget is needed to exploit its potential as a proxy of gross primary productivity. In this study, we compare two representations of oxic soil COS fluxes, and we develop an approach to represent anoxic soil COS fluxes in a land surface model. We show the importance of atmospheric COS concentration variations on oxic soil COS fluxes and provide new estimates for oxic and anoxic soil contributions to the COS global budget.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022, https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Sören Johansson, Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Michael Höpfner, Anne Kleinert, Tom Neubert, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 22, 3675–3691, https://doi.org/10.5194/acp-22-3675-2022, https://doi.org/10.5194/acp-22-3675-2022, 2022
Short summary
Short summary
We present GLORIA airborne cross sections of PAN, C2H6, HCOOH, CH3OH, and C2H4 in the South Atlantic UTLS in September/October 2019. Filamentary structures and a large plume were observed. Backward trajectories indicate that measured pollutants come from South America and central Africa. Comparisons to CAMS show structural agreement of the measured distributions. PAN absolute VMRs agree with the GLORIA measurements, C2H6 and HCOOH are simulated too low, and CH3OH and C2H4 are too high.
Florian Haenel, Wolfgang Woiwode, Jennifer Buchmüller, Felix Friedl-Vallon, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Hermann Oelhaf, Johannes Orphal, Roland Ruhnke, Björn-Martin Sinnhuber, Jörn Ungermann, Michael Weimer, and Peter Braesicke
Atmos. Chem. Phys., 22, 2843–2870, https://doi.org/10.5194/acp-22-2843-2022, https://doi.org/10.5194/acp-22-2843-2022, 2022
Short summary
Short summary
We compare remote sensing observations of H2O, O3, HNO3 and clouds in the upper troposphere–lowermost stratosphere during an Arctic winter long-range research flight with simulations by two different state-of-the-art model systems. We find good agreement for dynamical structures, trace gas distributions and clouds. We investigate model biases and sensitivities, with the goal of aiding model development and improving our understanding of processes in the upper troposphere–lowermost stratosphere.
Marine Remaud, Frédéric Chevallier, Fabienne Maignan, Sauveur Belviso, Antoine Berchet, Alexandra Parouffe, Camille Abadie, Cédric Bacour, Sinikka Lennartz, and Philippe Peylin
Atmos. Chem. Phys., 22, 2525–2552, https://doi.org/10.5194/acp-22-2525-2022, https://doi.org/10.5194/acp-22-2525-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) has been recognized as a promising indicator of the plant gross primary production (GPP). Here, we assimilate both COS and CO2 measurements into an atmospheric transport model to obtain information on GPP, plant respiration and COS budget. A possible scenario for the period 2008–2019 leads to a global COS biospheric sink of 800 GgS yr−1 and higher oceanic emissions between 400 and 600 GgS yr−1.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Patrick Jöckel, and Francisco J. Gordillo-Vázquez
Geosci. Model Dev., 15, 1545–1565, https://doi.org/10.5194/gmd-15-1545-2022, https://doi.org/10.5194/gmd-15-1545-2022, 2022
Short summary
Short summary
This study reports the first parameterization of long-continuing-current lightning in a climate model. Long-continuing-current lightning is proposed to be the main precursor of lightning-ignited wildfires and sprites, a type of transient luminous event taking place in the mesosphere. This parameterization can significantly contribute to improving the implementation of wildfires in climate models.
Michael Höpfner, Oliver Kirner, Gerald Wetzel, Björn-Martin Sinnhuber, Florian Haenel, Sören Johansson, Johannes Orphal, Roland Ruhnke, Gabriele Stiller, and Thomas von Clarmann
Atmos. Chem. Phys., 21, 18433–18464, https://doi.org/10.5194/acp-21-18433-2021, https://doi.org/10.5194/acp-21-18433-2021, 2021
Short summary
Short summary
BrONO2 is an important reservoir gas for inorganic stratospheric bromine linked to the chemical cycles of stratospheric ozone depletion. Presently infrared limb sounding is the only way to measure BrONO2 in the atmosphere. We provide global distributions of BrONO2 derived from MIPAS observations 2002–2012. Comparisons with EMAC atmospheric modelling show an overall agreement and enable us to derive an independent estimate of stratospheric bromine of 21.2±1.4pptv based on the BrONO2 measurements.
Paul D. Hamer, Virginie Marécal, Ryan Hossaini, Michel Pirre, Gisèle Krysztofiak, Franziska Ziska, Andreas Engel, Stephan Sala, Timo Keber, Harald Bönisch, Elliot Atlas, Kirstin Krüger, Martyn Chipperfield, Valery Catoire, Azizan A. Samah, Marcel Dorf, Phang Siew Moi, Hans Schlager, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 16955–16984, https://doi.org/10.5194/acp-21-16955-2021, https://doi.org/10.5194/acp-21-16955-2021, 2021
Short summary
Short summary
Bromoform is a stratospheric ozone-depleting gas released by seaweed and plankton transported to the stratosphere via convection in the tropics. We study the chemical interactions of bromoform and its derivatives within convective clouds using a cloud-scale model and observations. Our findings are that soluble bromine gases are efficiently washed out and removed within the convective clouds and that most bromine is transported vertically to the upper troposphere in the form of bromoform.
Stefanie Falk, Ane V. Vollsnes, Aud B. Eriksen, Lisa Emberson, Connie O'Neill, Frode Stordal, and Terje Koren Berntsen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-260, https://doi.org/10.5194/bg-2021-260, 2021
Revised manuscript not accepted
Short summary
Short summary
Subarctic vegetation is threatened by climate change and ozone. We assess essential climate variables in 2018/19. 2018 was warmer and brighter than usual in Spring with forest fires and elevated ozone in summer. Visible damage was observed on plant species in 2018. We find that generic parameterizations used in modeling ozone dose do not suffice. We propose a method to acclimate these parameterizations and find an ozone-induced biomass loss of 2.5 to 17.4 % (up to 6 % larger than default).
Stefanie Falk, Ane V. Vollsnes, Aud B. Eriksen, Frode Stordal, and Terje Koren Berntsen
Atmos. Chem. Phys., 21, 15647–15661, https://doi.org/10.5194/acp-21-15647-2021, https://doi.org/10.5194/acp-21-15647-2021, 2021
Short summary
Short summary
We evaluate regional and global models for ozone modeling and damage risk mapping of vegetation over subarctic Europe. Our analysis suggests that low-resolution global models do not reproduce the observed ozone seasonal cycle at ground level, underestimating ozone by 30–50 %. High-resolution regional models capture the seasonal cycle well, still underestimating ozone by up to 20 %. Our proposed gap-filling method for site observations shows a 76 % accuracy compared to the regional model (80 %).
Stefanie Kremser, Mike Harvey, Peter Kuma, Sean Hartery, Alexia Saint-Macary, John McGregor, Alex Schuddeboom, Marc von Hobe, Sinikka T. Lennartz, Alex Geddes, Richard Querel, Adrian McDonald, Maija Peltola, Karine Sellegri, Israel Silber, Cliff S. Law, Connor J. Flynn, Andrew Marriner, Thomas C. J. Hill, Paul J. DeMott, Carson C. Hume, Graeme Plank, Geoffrey Graham, and Simon Parsons
Earth Syst. Sci. Data, 13, 3115–3153, https://doi.org/10.5194/essd-13-3115-2021, https://doi.org/10.5194/essd-13-3115-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions over the Southern Ocean are poorly understood and remain a major source of uncertainty in climate models. This study presents ship-borne measurements, collected during a 6-week voyage into the Southern Ocean in 2018, that are an important supplement to satellite-based measurements. For example, these measurements include data on low-level clouds and aerosol composition in the marine boundary layer, which can be used in climate model evaluation efforts.
Christine Frömming, Volker Grewe, Sabine Brinkop, Patrick Jöckel, Amund S. Haslerud, Simon Rosanka, Jesper van Manen, and Sigrun Matthes
Atmos. Chem. Phys., 21, 9151–9172, https://doi.org/10.5194/acp-21-9151-2021, https://doi.org/10.5194/acp-21-9151-2021, 2021
Short summary
Short summary
The influence of weather situations on non-CO2 aviation climate impact is investigated to identify systematic weather-related sensitivities. If aircraft avoid the most sensitive areas, climate impact might be reduced. Enhanced significance is found for emission in relation to high-pressure systems, jet stream, polar night, and tropopause altitude. The results represent a comprehensive data set for studies aiming at weather-dependent flight trajectory optimization to reduce total climate impact.
Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Jens-Uwe Grooß, Thomas Gulde, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Erik Kretschmer, Guido Maucher, Hans Nordmeyer, Hermann Oelhaf, Johannes Orphal, Christof Piesch, Björn-Martin Sinnhuber, Jörn Ungermann, and Bärbel Vogel
Atmos. Chem. Phys., 21, 8213–8232, https://doi.org/10.5194/acp-21-8213-2021, https://doi.org/10.5194/acp-21-8213-2021, 2021
Short summary
Short summary
Measurements of the pollutants C2H6, C2H2, HCOOH, and PAN were performed in the North Atlantic UTLS region with the airborne limb imager GLORIA in 2017. Enhanced amounts of these species were detected in the upper troposphere and even in the lowermost stratosphere (PAN). Main sources of these gases are forest fires in North America and anthropogenic pollution in South Asia. Simulations of EMAC and CAMS are qualitatively able to reproduce the measured data but underestimate the absolute amounts.
Sinikka T. Lennartz, Michael Gauss, Marc von Hobe, and Christa A. Marandino
Earth Syst. Sci. Data, 13, 2095–2110, https://doi.org/10.5194/essd-13-2095-2021, https://doi.org/10.5194/essd-13-2095-2021, 2021
Short summary
Short summary
This study provides a marine emission inventory for the sulphur gases carbonyl sulphide (OCS) and carbon disulphide (CS2), derived from a numerical model of the surface ocean at monthly resolution for the period 2000–2019. Comparison with a database of seaborne observations reveals very good agreement for OCS. Interannual variability in both gases seems to be mainly driven by the amount of chromophoric dissolved organic matter present in surface water.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Doug A. Degenstein, Felicia Kolonjari, David Plummer, Douglas E. Kinnison, Patrick Jöckel, and Thomas von Clarmann
Atmos. Meas. Tech., 14, 1425–1438, https://doi.org/10.5194/amt-14-1425-2021, https://doi.org/10.5194/amt-14-1425-2021, 2021
Short summary
Short summary
Output from climate chemistry models (CMAM, EMAC, and WACCM) is used to estimate the expected geophysical variability of ozone concentrations between coincident satellite instrument measurement times and geolocations. We use the Canadian ACE-FTS and OSIRIS instruments as a case study. Ensemble mean estimates are used to optimize coincidence criteria between the two instruments, allowing for the use of more coincident profiles while providing an estimate of the geophysical variation.
Franziska Winterstein and Patrick Jöckel
Geosci. Model Dev., 14, 661–674, https://doi.org/10.5194/gmd-14-661-2021, https://doi.org/10.5194/gmd-14-661-2021, 2021
Short summary
Short summary
Atmospheric methane is currently a hot topic in climate research. This is partly due to its chemically active nature. We introduce a simplified approach to simulate methane in climate models to enable large sensitivity studies by reducing computational cost but including the crucial feedback of methane on stratospheric water vapour. We further provide options to simulate the isotopic content of methane and to generate output for an inverse optimization technique for emission estimation.
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021, https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary
Short summary
This study investigates the impact of strongly increased atmospheric methane mixing ratios on the Earth's climate. An interactive model system including atmospheric dynamics, chemistry, and a mixed-layer ocean model is used to analyse the effect of doubled and quintupled methane mixing ratios. We assess feedbacks on atmospheric chemistry and changes in the stratospheric circulation, focusing on the impact of tropospheric warming, and their relevance for the model's climate sensitivity.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Edward J. Charlesworth, Ann-Kristin Dugstad, Frauke Fritsch, Patrick Jöckel, and Felix Plöger
Atmos. Chem. Phys., 20, 15227–15245, https://doi.org/10.5194/acp-20-15227-2020, https://doi.org/10.5194/acp-20-15227-2020, 2020
Short summary
Short summary
Modeling the stratosphere requires models with good representations of chemical transport. To do this, nearly all models divide the atmosphere into boxes. This creates some unwanted problems. However, the only other option is to divide the atmosphere into balloons, and this method is very complicated. Here, we use a model which uses this balloon-like method to estimate the impacts of this method on chemical transport. We find significant differences in sensitive regions of the stratosphere.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 20, 13011–13022, https://doi.org/10.5194/acp-20-13011-2020, https://doi.org/10.5194/acp-20-13011-2020, 2020
Short summary
Short summary
Decadal trends and variations in OH are critical for understanding atmospheric CH4 evolution. We quantify the impacts of OH trends and variations on the CH4 budget by conducting CH4 inversions on a decadal scale with an ensemble of OH fields. We find the negative OH anomalies due to enhanced fires can reduce the optimized CH4 emissions by up to 10 Tg yr−1 during El Niño years and the positive OH trend from 1986 to 2010 results in a ∼ 23 Tg yr−1 additional increase in optimized CH4 emissions.
Alina Fiehn, Julian Kostinek, Maximilian Eckl, Theresa Klausner, Michał Gałkowski, Jinxuan Chen, Christoph Gerbig, Thomas Röckmann, Hossein Maazallahi, Martina Schmidt, Piotr Korbeń, Jarosław Neçki, Pawel Jagoda, Norman Wildmann, Christian Mallaun, Rostyslav Bun, Anna-Leah Nickl, Patrick Jöckel, Andreas Fix, and Anke Roiger
Atmos. Chem. Phys., 20, 12675–12695, https://doi.org/10.5194/acp-20-12675-2020, https://doi.org/10.5194/acp-20-12675-2020, 2020
Short summary
Short summary
A severe reduction of greenhouse gas emissions is necessary to fulfill the Paris Agreement. We use aircraft- and ground-based in situ observations of trace gases and wind speed from two flights over the Upper Silesian Coal Basin, Poland, for independent emission estimation. The derived methane emission estimates are within the range of emission inventories, carbon dioxide estimates are in the lower range and carbon monoxide emission estimates are slightly higher than emission inventory values.
Markus Kilian, Sabine Brinkop, and Patrick Jöckel
Atmos. Chem. Phys., 20, 11697–11715, https://doi.org/10.5194/acp-20-11697-2020, https://doi.org/10.5194/acp-20-11697-2020, 2020
Short summary
Short summary
After the volcanic eruption of Mt Pinatubo in 1991, ozone decreased in the tropics and increased in the midlatitudes and polar regions for 1 year. The change in the ozone column is solely a result of the volcanic heating, followed by an ozone decrease in the higher latitudes. This is caused by the volcanic aerosol, which changes the heterogeneous chemistry and thus the catalytic ozone loss cycles. Vertical transport of water vapour is enhanced by volcanic heating and increases methane.
Hiroshi Yamashita, Feijia Yin, Volker Grewe, Patrick Jöckel, Sigrun Matthes, Bastian Kern, Katrin Dahlmann, and Christine Frömming
Geosci. Model Dev., 13, 4869–4890, https://doi.org/10.5194/gmd-13-4869-2020, https://doi.org/10.5194/gmd-13-4869-2020, 2020
Short summary
Short summary
This paper describes the updated submodel AirTraf 2.0 which simulates global air traffic in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. Nine aircraft routing options have been integrated, including contrail avoidance, minimum economic costs, and minimum climate impact. Example simulations reveal characteristics of different routing options on air traffic performances. The consistency of the AirTraf simulations is verified with literature data.
Matt Amos, Paul J. Young, J. Scott Hosking, Jean-François Lamarque, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Markus Kunze, Marion Marchand, David A. Plummer, David Saint-Martin, Kengo Sudo, Simone Tilmes, and Yousuke Yamashita
Atmos. Chem. Phys., 20, 9961–9977, https://doi.org/10.5194/acp-20-9961-2020, https://doi.org/10.5194/acp-20-9961-2020, 2020
Short summary
Short summary
We present an updated projection of Antarctic ozone hole recovery using an ensemble of chemistry–climate models. To do so, we employ a method, more advanced and skilful than the current multi-model mean standard, which is applicable to other ensemble analyses. It calculates the performance and similarity of the models, which we then use to weight the model. Calculating model similarity allows us to account for models which are constructed from similar components.
Mariano Mertens, Astrid Kerkweg, Volker Grewe, Patrick Jöckel, and Robert Sausen
Atmos. Chem. Phys., 20, 7843–7873, https://doi.org/10.5194/acp-20-7843-2020, https://doi.org/10.5194/acp-20-7843-2020, 2020
Short summary
Short summary
We investigate the contribution of land transport emissions to ozone and ozone precursors in Europe and Germany. Our results show that land transport emissions are one of the most important contributors to reactive nitrogen in Europe. The contribution to ozone is in the range of 8 % to 16 % and varies strongly for different seasons. The hots-pots with the largest ozone concentrations are the Po Valley, while the largest concentration to reactive nitrogen is located mainly in western Europe.
Xiao Ma, Mingshuang Sun, Sinikka T. Lennartz, and Hermann W. Bange
Biogeosciences, 17, 3427–3438, https://doi.org/10.5194/bg-17-3427-2020, https://doi.org/10.5194/bg-17-3427-2020, 2020
Short summary
Short summary
Monthly measurements of dissolved methane (CH4), a potent greenhouse gas, were conducted at Boknis Eck (BE), a time-series station in the southwestern Baltic Sea, from June 2006. In general CH4 concentrations increased with depth. High concentrations in the upper layer were linked to saline water inflow. Eckernförde Bay emitted CH4 to the atmosphere throughout the monitoring period. No significant trend was detected in CH4 concentrations or emissions during 2006–2017.
Daniele Visioni, Giovanni Pitari, Vincenzo Rizi, Marco Iarlori, Irene Cionni, Ilaria Quaglia, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando Garcia, Patrick Joeckel, Douglas Kinnison, Jean-François Lamarque, Marion Marchand, Martine Michou, Olaf Morgenstern, Tatsuya Nagashima, Fiona M. O'Connor, Luke D. Oman, David Plummer, Eugene Rozanov, David Saint-Martin, Robyn Schofield, John Scinocca, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Holger Tost, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-525, https://doi.org/10.5194/acp-2020-525, 2020
Preprint withdrawn
Short summary
Short summary
In this work we analyse the trend in ozone profiles taken at L'Aquila (Italy, 42.4° N) for seventeen years, between 2000 and 2016 and compare them against already available measured ozone trends. We try to understand and explain the observed trends at various heights in light of the simulations from seventeen different model, highlighting the contribution of changes in circulation and chemical ozone loss during this time period.
Marta Abalos, Clara Orbe, Douglas E. Kinnison, David Plummer, Luke D. Oman, Patrick Jöckel, Olaf Morgenstern, Rolando R. Garcia, Guang Zeng, Kane A. Stone, and Martin Dameris
Atmos. Chem. Phys., 20, 6883–6901, https://doi.org/10.5194/acp-20-6883-2020, https://doi.org/10.5194/acp-20-6883-2020, 2020
Short summary
Short summary
A set of state-of-the art chemistry–climate models is used to examine future changes in downward transport from the stratosphere, a key contributor to tropospheric ozone. The acceleration of the stratospheric circulation results in increased stratosphere-to-troposphere transport. In the subtropics, downward advection into the troposphere is enhanced due to climate change. At higher latitudes, the ozone reservoir above the tropopause is enlarged due to the stronger circulation and ozone recovery.
Peter H. Zimmermann, Carl A. M. Brenninkmeijer, Andrea Pozzer, Patrick Jöckel, Franziska Winterstein, Andreas Zahn, Sander Houweling, and Jos Lelieveld
Atmos. Chem. Phys., 20, 5787–5809, https://doi.org/10.5194/acp-20-5787-2020, https://doi.org/10.5194/acp-20-5787-2020, 2020
Short summary
Short summary
The atmospheric abundance of the greenhouse gas methane is determined by interacting emission sources and sinks in a dynamic global environment. In this study, its global budget from 1997 to 2016 is simulated with a general circulation model using emission estimates of 11 source categories. The model results are evaluated against 17 ground station and 320 intercontinental flight observation series. Deviations are used to re-scale the emission quantities with the aim of matching observations.
Anna-Leah Nickl, Mariano Mertens, Anke Roiger, Andreas Fix, Axel Amediek, Alina Fiehn, Christoph Gerbig, Michal Galkowski, Astrid Kerkweg, Theresa Klausner, Maximilian Eckl, and Patrick Jöckel
Geosci. Model Dev., 13, 1925–1943, https://doi.org/10.5194/gmd-13-1925-2020, https://doi.org/10.5194/gmd-13-1925-2020, 2020
Short summary
Short summary
Based on the global and regional chemistry–climate model system MECO(n), we implemented a forecast system to support the planning of measurement campaign research flights with chemical weather forecasts. We applied this system for the first time to provide 6 d forecasts in support of the CoMet 1.0
campaign targeting methane emitted from coal mining ventilation shafts in the Upper Silesian Coal Basin in Poland. We describe the new forecast system and evaluate its forecast skill.
Timo Keber, Harald Bönisch, Carl Hartick, Marius Hauck, Fides Lefrancois, Florian Obersteiner, Akima Ringsdorf, Nils Schohl, Tanja Schuck, Ryan Hossaini, Phoebe Graf, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 20, 4105–4132, https://doi.org/10.5194/acp-20-4105-2020, https://doi.org/10.5194/acp-20-4105-2020, 2020
Short summary
Short summary
In this paper we summarize observations of short-lived halocarbons in the tropopause region. We show that, especially during winter, the levels of short-lived bromine gases at the extratropical tropopause are higher than at the tropical tropopause. We discuss the impact of the distributions on stratospheric bromine levels and compare our observations to two models with four different emission scenarios.
Clara Orbe, David A. Plummer, Darryn W. Waugh, Huang Yang, Patrick Jöckel, Douglas E. Kinnison, Beatrice Josse, Virginie Marecal, Makoto Deushi, Nathan Luke Abraham, Alexander T. Archibald, Martyn P. Chipperfield, Sandip Dhomse, Wuhu Feng, and Slimane Bekki
Atmos. Chem. Phys., 20, 3809–3840, https://doi.org/10.5194/acp-20-3809-2020, https://doi.org/10.5194/acp-20-3809-2020, 2020
Short summary
Short summary
Atmospheric composition is strongly influenced by global-scale winds that are not always properly simulated in computer models. A common approach to correct for this bias is to relax or
nudgeto the observed winds. Here we systematically evaluate how well this technique performs across a large suite of chemistry–climate models in terms of its ability to reproduce key aspects of both the tropospheric and stratospheric circulations.
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Meinrat O. Andreae, Kazushi Aranami, Elliot Atlas, Max Berkelhammer, Heinz Bingemer, Dennis Booge, Gregory Cutter, Pau Cortes, Stefanie Kremser, Cliff S. Law, Andrew Marriner, Rafel Simó, Birgit Quack, Günther Uher, Huixiang Xie, and Xiaobin Xu
Earth Syst. Sci. Data, 12, 591–609, https://doi.org/10.5194/essd-12-591-2020, https://doi.org/10.5194/essd-12-591-2020, 2020
Short summary
Short summary
Sulfur-containing trace gases in the atmosphere influence atmospheric chemistry and the energy budget of the Earth by forming aerosols. The ocean is an important source of the most abundant sulfur gas in the atmosphere, carbonyl sulfide (OCS) and its most important precursor carbon disulfide (CS2). In order to assess global variability of the sea surface concentrations of both gases to calculate their oceanic emissions, we have compiled a database of existing shipborne measurements.
Julie M. Nicely, Bryan N. Duncan, Thomas F. Hanisco, Glenn M. Wolfe, Ross J. Salawitch, Makoto Deushi, Amund S. Haslerud, Patrick Jöckel, Béatrice Josse, Douglas E. Kinnison, Andrew Klekociuk, Michael E. Manyin, Virginie Marécal, Olaf Morgenstern, Lee T. Murray, Gunnar Myhre, Luke D. Oman, Giovanni Pitari, Andrea Pozzer, Ilaria Quaglia, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Kane Stone, Susan Strahan, Simone Tilmes, Holger Tost, Daniel M. Westervelt, and Guang Zeng
Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, https://doi.org/10.5194/acp-20-1341-2020, 2020
Short summary
Short summary
Differences in methane lifetime among global models are large and poorly understood. We use a neural network method and simulations from the Chemistry Climate Model Initiative to quantify the factors influencing methane lifetime spread among models and variations over time. UV photolysis, tropospheric ozone, and nitrogen oxides drive large model differences, while the same factors plus specific humidity contribute to a decreasing trend in methane lifetime between 1980 and 2015.
Mariano Mertens, Astrid Kerkweg, Volker Grewe, Patrick Jöckel, and Robert Sausen
Geosci. Model Dev., 13, 363–383, https://doi.org/10.5194/gmd-13-363-2020, https://doi.org/10.5194/gmd-13-363-2020, 2020
Short summary
Short summary
This study investigates if ozone source apportionment results using a tagged tracer approach depend on the resolutions of the applied model and/or emission inventory. For this we apply a global to regional atmospheric chemistry model, which allows us to compare the results on global and regional scales. Our results show that differences on the continental scale (e.g. Europe) are rather small (10 %); on the regional scale, however, differences of up to 30 % were found.
Le Kuai, Kevin W. Bowman, Kazuyuki Miyazaki, Makoto Deushi, Laura Revell, Eugene Rozanov, Fabien Paulot, Sarah Strode, Andrew Conley, Jean-François Lamarque, Patrick Jöckel, David A. Plummer, Luke D. Oman, Helen Worden, Susan Kulawik, David Paynter, Andrea Stenke, and Markus Kunze
Atmos. Chem. Phys., 20, 281–301, https://doi.org/10.5194/acp-20-281-2020, https://doi.org/10.5194/acp-20-281-2020, 2020
Short summary
Short summary
The tropospheric ozone increase from pre-industrial to the present day leads to a radiative forcing. The top-of-atmosphere outgoing fluxes at the ozone band are controlled by ozone, water vapor, and temperature. We demonstrate a method to attribute the models’ flux biases to these key players using satellite-constrained instantaneous radiative kernels. The largest spread between models is found in the tropics, mainly driven by ozone and then water vapor.
Martin Dameris, Patrick Jöckel, and Matthias Nützel
Atmos. Chem. Phys., 19, 13759–13771, https://doi.org/10.5194/acp-19-13759-2019, https://doi.org/10.5194/acp-19-13759-2019, 2019
Short summary
Short summary
A chemistry–climate model (CCM) study is performed, investigating the consequences of a constant CFC-11 surface mixing ratio for stratospheric ozone in the future. The total column ozone is particularly affected in both polar regions in winter and spring. It turns out that the calculated ozone changes, especially in the upper stratosphere, are smaller than expected. In this attitudinal region the additional ozone depletion due to the catalysis by reactive chlorine is partly compensated for.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019, https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Short summary
The role of hydroxyl radical changes in methane trends is debated, hindering our understanding of the methane cycle. This study quantifies how uncertainties in the hydroxyl radical may influence methane abundance in the atmosphere based on the inter-model comparison of hydroxyl radical fields and model simulations of CH4 abundance with different hydroxyl radical scenarios during 2000–2016. We show that hydroxyl radical changes could contribute up to 54 % of model-simulated methane biases.
Marleen Braun, Jens-Uwe Grooß, Wolfgang Woiwode, Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Hermann Oelhaf, Peter Preusse, Jörn Ungermann, Björn-Martin Sinnhuber, Helmut Ziereis, and Peter Braesicke
Atmos. Chem. Phys., 19, 13681–13699, https://doi.org/10.5194/acp-19-13681-2019, https://doi.org/10.5194/acp-19-13681-2019, 2019
Short summary
Short summary
We analyse nitrification of the LMS in the Arctic winter 2015–2016 based on GLORIA measurements. Vertical cross sections of HNO3 for several flights show complex fine–scale structures and enhanced values down to 9 km. The extent of overall nitrification is quantified based on HNO3–O3 correlations and reaches between 5 ppbv and 7 ppbv at potential temperature levels between 350 and 380 K. Further, we compare our result with the atmospheric model CLaMS.
Stefanie Falk and Amund Søvde Haslerud
Geosci. Model Dev., 12, 4705–4728, https://doi.org/10.5194/gmd-12-4705-2019, https://doi.org/10.5194/gmd-12-4705-2019, 2019
Short summary
Short summary
High concentrations of ozone in ambient air are hazardous to the whole ecosystem. The impact of ozone-induced damage on vegetation and agricultural plants in combination with advancing climate change may affect food security in the future. The process of dry deposition is important for predicting and understanding the observed surface ozone concentrations. We have updated the dry deposition scheme in Oslo CTM3 to a more process-based parameterization and assess the effect on modeled ozone.
Xiao Ma, Sinikka T. Lennartz, and Hermann W. Bange
Biogeosciences, 16, 4097–4111, https://doi.org/10.5194/bg-16-4097-2019, https://doi.org/10.5194/bg-16-4097-2019, 2019
Short summary
Short summary
Monthly measurements of nitrous oxide (N2O), a potent greenhouse gas and ozone depletion agent, were conducted at Boknis Eck (BE), a time series station in the southwestern Baltic Sea, since July 2005. Low N2O concentrations were observed in autumn and high in winter and early spring. Dissolved nutrients and oxygen played important roles in N2O distribution. Although we did not observe a significant N2O trend during 2005–2017, a decrease in N2O concentration and emission seems likely in future.
Andreas Luther, Ralph Kleinschek, Leon Scheidweiler, Sara Defratyka, Mila Stanisavljevic, Andreas Forstmaier, Alexandru Dandocsi, Sebastian Wolff, Darko Dubravica, Norman Wildmann, Julian Kostinek, Patrick Jöckel, Anna-Leah Nickl, Theresa Klausner, Frank Hase, Matthias Frey, Jia Chen, Florian Dietrich, Jarosław Nȩcki, Justyna Swolkień, Andreas Fix, Anke Roiger, and André Butz
Atmos. Meas. Tech., 12, 5217–5230, https://doi.org/10.5194/amt-12-5217-2019, https://doi.org/10.5194/amt-12-5217-2019, 2019
Short summary
Short summary
Methane ventilated from hard coal mines in the Upper Silesian
Coal Basin in Poland is measured with a mobile Fourier transform spectrometer EM27/SUN. The instrument was mounted on a truck driving in stop-and-go patterns downwind of the methane sources. The emissions are estimated with the cross-sectional flux method. Calculated emissions are in broad agreement with the E-PRTR database. Wind-related errors on the methane estimates dominate the error budget and typically amount to 20 %.
Andreas Chrysanthou, Amanda C. Maycock, Martyn P. Chipperfield, Sandip Dhomse, Hella Garny, Douglas Kinnison, Hideharu Akiyoshi, Makoto Deushi, Rolando R. Garcia, Patrick Jöckel, Oliver Kirner, Giovanni Pitari, David A. Plummer, Laura Revell, Eugene Rozanov, Andrea Stenke, Taichu Y. Tanaka, Daniele Visioni, and Yousuke Yamashita
Atmos. Chem. Phys., 19, 11559–11586, https://doi.org/10.5194/acp-19-11559-2019, https://doi.org/10.5194/acp-19-11559-2019, 2019
Short summary
Short summary
We perform the first multi-model comparison of the impact of nudged meteorology on the stratospheric residual circulation (RC) in chemistry–climate models. Nudging meteorology does not constrain the mean strength of RC compared to free-running simulations, and despite the lack of agreement in the mean circulation, nudging tightly constrains the inter-annual variability in the tropical upward mass flux in the lower stratosphere. In summary, nudging strongly affects the representation of RC.
Vanessa Brocchi, Gisèle Krysztofiak, Adrien Deroubaix, Greta Stratmann, Daniel Sauer, Hans Schlager, Konrad Deetz, Guillaume Dayma, Claude Robert, Stéphane Chevrier, and Valéry Catoire
Atmos. Chem. Phys., 19, 11401–11411, https://doi.org/10.5194/acp-19-11401-2019, https://doi.org/10.5194/acp-19-11401-2019, 2019
Short summary
Short summary
This study reports the first flaring in situ measurements in southern West Africa. According to the measurements, oil rig flaring plumes in Ghana lead to increases in NO2 and aerosols but not always in CO and not in SO2. Flaring measurements can be reproduced using FLEXPART model, adjusting both the emission flux and the injection height. The DACCIWA satellite flaring inventory provides a reasonable estimate of flaring emission.
Sinikka T. Lennartz, Marc von Hobe, Dennis Booge, Henry C. Bittig, Tim Fischer, Rafael Gonçalves-Araujo, Kerstin B. Ksionzek, Boris P. Koch, Astrid Bracher, Rüdiger Röttgers, Birgit Quack, and Christa A. Marandino
Ocean Sci., 15, 1071–1090, https://doi.org/10.5194/os-15-1071-2019, https://doi.org/10.5194/os-15-1071-2019, 2019
Short summary
Short summary
The ocean emits the gases carbonyl sulfide (OCS) and carbon disulfide (CS2), which affect our climate. The goal of this study was to quantify the rates at which both gases are produced in the eastern tropical South Pacific (ETSP), one of the most productive oceanic regions worldwide. Both gases are produced by reactions triggered by sunlight, but we found that the amount produced depends on different factors. Our results improve numerical models to predict oceanic concentrations of both gases.
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
Ohad Harari, Chaim I. Garfinkel, Shlomi Ziskin Ziv, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, Fiona M. O'Connor, and Sean Davis
Atmos. Chem. Phys., 19, 9253–9268, https://doi.org/10.5194/acp-19-9253-2019, https://doi.org/10.5194/acp-19-9253-2019, 2019
Short summary
Short summary
Ozone depletion in the Antarctic has been shown to influence surface conditions, but the effects of ozone depletion in the Arctic on surface climate are unclear. We show that Arctic ozone does influence surface climate in both polar regions and tropical regions, though the proximate cause of these surface impacts is not yet clear.
Sören Johansson, Michelle L. Santee, Jens-Uwe Grooß, Michael Höpfner, Marleen Braun, Felix Friedl-Vallon, Farahnaz Khosrawi, Oliver Kirner, Erik Kretschmer, Hermann Oelhaf, Johannes Orphal, Björn-Martin Sinnhuber, Ines Tritscher, Jörn Ungermann, Kaley A. Walker, and Wolfgang Woiwode
Atmos. Chem. Phys., 19, 8311–8338, https://doi.org/10.5194/acp-19-8311-2019, https://doi.org/10.5194/acp-19-8311-2019, 2019
Short summary
Short summary
We present a study based on GLORIA aircraft and MLS/ACE-FTS/CALIOP satellite measurements during the Arctic winter 2015/16, which demonstrate (for the Arctic) unusual chlorine deactivation into HCl instead of ClONO2 due to low ozone abundances in the lowermost stratosphere, with a focus at 380 K potential temperature. The atmospheric models CLaMS and EMAC are evaluated, and measured ClONO2 is linked with transport and in situ deactivation in the lowermost stratosphere.
Petr Šácha, Roland Eichinger, Hella Garny, Petr Pišoft, Simone Dietmüller, Laura de la Torre, David A. Plummer, Patrick Jöckel, Olaf Morgenstern, Guang Zeng, Neal Butchart, and Juan A. Añel
Atmos. Chem. Phys., 19, 7627–7647, https://doi.org/10.5194/acp-19-7627-2019, https://doi.org/10.5194/acp-19-7627-2019, 2019
Short summary
Short summary
Climate models robustly project a Brewer–Dobson circulation (BDC) acceleration in the course of climate change. Analyzing mean age of stratospheric air (AoA) from a subset of climate projection simulations, we find a remarkable agreement in simulating the largest AoA trends in the extratropical stratosphere. This is shown to be related with the upward shift of the circulation, resulting in a so-called stratospheric shrinkage, which could be one of the so-far-omitted BDC acceleration drivers.
Franziska Winterstein, Fabian Tanalski, Patrick Jöckel, Martin Dameris, and Michael Ponater
Atmos. Chem. Phys., 19, 7151–7163, https://doi.org/10.5194/acp-19-7151-2019, https://doi.org/10.5194/acp-19-7151-2019, 2019
Short summary
Short summary
The atmospheric concentrations of the anthropogenic greenhouse gas methane are predicted to rise in the future. In this paper we investigate how very strong methane concentrations will impact the atmosphere. We analyse two experiments, one with doubled and one with quintupled methane concentrations and focus on the rapid atmospheric changes before the ocean adjusts to the induced
forcing. In particular these are changes in temperature, ozone, the hydroxyl radical and stratospheric water vapour.
Sabine Brinkop and Patrick Jöckel
Geosci. Model Dev., 12, 1991–2008, https://doi.org/10.5194/gmd-12-1991-2019, https://doi.org/10.5194/gmd-12-1991-2019, 2019
Short summary
Short summary
We have extended ATTILA (Atmospheric Tracer Transport in a LAgrangian model), a Lagrangian tracer transport scheme which is online coupled to the global ECHAM/MESSy Atmospheric Chemistry (EMAC) model, with a combination of newly developed and modified physical routines and new diagnostic and infrastructure submodels. The results show an improvement of the tracer transport into and within the stratosphere due to the newly implemented diabatic vertical velocity.
Huang Yang, Darryn W. Waugh, Clara Orbe, Guang Zeng, Olaf Morgenstern, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, David A. Plummer, Patrick Jöckel, Susan E. Strahan, Kane A. Stone, and Robyn Schofield
Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019, https://doi.org/10.5194/acp-19-5511-2019, 2019
Short summary
Short summary
We evaluate the performance of a suite of models in simulating the large-scale transport from the northern midlatitudes to the Arctic using a CO-like idealized tracer. We find a large multi-model spread of the Arctic concentration of this CO-like tracer that is well correlated with the differences in the location of the midlatitude jet as well as the northern Hadley Cell edge. Our results suggest the Hadley Cell is key and zonal-mean transport by surface meridional flow needs better constraint.
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019, https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary
Short summary
We present the atmospheric chemistry box model CAABA/MECCA which
now includes a number of new features: skeletal mechanism
reduction, the MOM chemical mechanism for volatile organic
compounds, an option to include reactions from the Master
Chemical Mechanism (MCM) and other chemical mechanisms, updated
isotope tagging, improved and new photolysis modules, and the new
feature of coexisting multiple chemistry mechanisms.
CAABA/MECCA is a community model published under the GPL.
Ryan S. Williams, Michaela I. Hegglin, Brian J. Kerridge, Patrick Jöckel, Barry G. Latter, and David A. Plummer
Atmos. Chem. Phys., 19, 3589–3620, https://doi.org/10.5194/acp-19-3589-2019, https://doi.org/10.5194/acp-19-3589-2019, 2019
Short summary
Short summary
Tropospheric ozone has important implications for air quality and climate change but is poorly understood at a regional and seasonal level. Analysis of model simulations indicates that downward transport of ozone from the stratosphere has a larger influence than previously thought (as much as ~50 % even near the surface). Recent estimated changes in tropospheric ozone (1980–89 to 2001–10) are generally positive, with substantial attribution from the stratosphere identified over some regions.
J. Christopher Kaiser, Johannes Hendricks, Mattia Righi, Patrick Jöckel, Holger Tost, Konrad Kandler, Bernadett Weinzierl, Daniel Sauer, Katharina Heimerl, Joshua P. Schwarz, Anne E. Perring, and Thomas Popp
Geosci. Model Dev., 12, 541–579, https://doi.org/10.5194/gmd-12-541-2019, https://doi.org/10.5194/gmd-12-541-2019, 2019
Short summary
Short summary
The implementation of the aerosol microphysics submodel MADE3 into the global atmospheric chemistry model EMAC is described and evaluated against an extensive pool of observational data, focusing on aerosol mass and number concentrations, size distributions, composition, and optical properties. EMAC (MADE3) is able to reproduce main aerosol properties reasonably well, in line with the performance of other global aerosol models.
Roland Eichinger, Simone Dietmüller, Hella Garny, Petr Šácha, Thomas Birner, Harald Bönisch, Giovanni Pitari, Daniele Visioni, Andrea Stenke, Eugene Rozanov, Laura Revell, David A. Plummer, Patrick Jöckel, Luke Oman, Makoto Deushi, Douglas E. Kinnison, Rolando Garcia, Olaf Morgenstern, Guang Zeng, Kane Adam Stone, and Robyn Schofield
Atmos. Chem. Phys., 19, 921–940, https://doi.org/10.5194/acp-19-921-2019, https://doi.org/10.5194/acp-19-921-2019, 2019
Short summary
Short summary
To shed more light upon the changes in stratospheric circulation in the 21st century, climate projection simulations of 10 state-of-the-art global climate models, spanning from 1960 to 2100, are analyzed. The study shows that in addition to changes in transport, mixing also plays an important role in stratospheric circulation and that the properties of mixing vary over time. Furthermore, the influence of mixing is quantified and a dynamical framework is provided to understand the changes.
Laura E. Revell, Andrea Stenke, Fiona Tummon, Aryeh Feinberg, Eugene Rozanov, Thomas Peter, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Neal Butchart, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, Robyn Schofield, Kane Stone, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 16155–16172, https://doi.org/10.5194/acp-18-16155-2018, https://doi.org/10.5194/acp-18-16155-2018, 2018
Short summary
Short summary
Global models such as those participating in the Chemistry-Climate Model Initiative (CCMI) consistently simulate biases in tropospheric ozone compared with observations. We performed an advanced statistical analysis with one of the CCMI models to understand the cause of the bias. We found that emissions of ozone precursor gases are the dominant driver of the bias, implying either that the emissions are too large, or that the way in which the model handles emissions needs to be improved.
Christiane Voigt, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Michael C. Pitts, Lamont R. Poole, Robert Baumann, Benedikt Ehard, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 15623–15641, https://doi.org/10.5194/acp-18-15623-2018, https://doi.org/10.5194/acp-18-15623-2018, 2018
Short summary
Short summary
The 2015–2016 stratospheric winter was the coldest in the 36-year climatological data record. The extreme conditions promoted the formation of persistent Arctic polar stratospheric ice clouds. An extended ice PSC detected by airborne lidar in January 2016 shows a second mode with higher particle depolarization ratios. Back-trajectories from the high-depol ice matched to CALIOP PSC curtains provide evidence for ice nucleation on NAT. The novel data consolidate our understanding of PSC formation.
Wolfgang Woiwode, Andreas Dörnbrack, Martina Bramberger, Felix Friedl-Vallon, Florian Haenel, Michael Höpfner, Sören Johansson, Erik Kretschmer, Isabell Krisch, Thomas Latzko, Hermann Oelhaf, Johannes Orphal, Peter Preusse, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 18, 15643–15667, https://doi.org/10.5194/acp-18-15643-2018, https://doi.org/10.5194/acp-18-15643-2018, 2018
Short summary
Short summary
GLORIA observations during two crossings of the polar front jet stream resolve the fine mesoscale structure of a tropopause fold in high detail. Tracer–tracer correlations of H2O and O3 are presented as a function of potential temperature and reveal an active mixing region. Our study confirms conceptual models of tropopause folds, validates the high quality of ECMWF IFS forecasts, and suggests that mountain waves are capable of modulating exchange processes in the vicinity of tropopause folds.
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, https://doi.org/10.5194/amt-11-4737-2018, 2018
Short summary
Short summary
We present two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 from measurements of the GLORIA infrared limb imager during the POLSTRACC/GW-LCYCLE/SALSA aircraft campaigns in the Arctic winter 2015/2016. GLORIA sounded the atmosphere between 5 and 14 km with vertical resolutions of 0.4–1 km. Estimated errors are in the range of 1–2 K (temperature) and 10 %–20 % (trace gases). Comparisons to in situ instruments onboard the aircraft and to Aura/MLS are shown.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
Franziska Frank, Patrick Jöckel, Sergey Gromov, and Martin Dameris
Atmos. Chem. Phys., 18, 9955–9973, https://doi.org/10.5194/acp-18-9955-2018, https://doi.org/10.5194/acp-18-9955-2018, 2018
Short summary
Short summary
It is frequently assumed that one methane molecule produces two water molecules. Applying various modeling concepts, we find that the yield of water from methane is vertically not constantly 2. In the upper stratosphere and lower mesosphere, transport of intermediate H2 molecules even led to a yield greater than 2. We conclude that for a realistic chemical source of stratospheric water vapor, one must also take other sources (H2), intermediates and the chemical removal of water into account.
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 18, 9831–9843, https://doi.org/10.5194/acp-18-9831-2018, https://doi.org/10.5194/acp-18-9831-2018, 2018
Short summary
Short summary
Using the observational data on 13C (CO) and 13C (CH4) from the extra-tropical Southern Hemisphere (ETSH) and EMAC model we (1) provide an independent, observation-based evaluation of Cl atom concentration variations in the ETSH throughout 1994–2000, (2) show that the role of tropospheric Cl as a sink of CH4 is seriously overestimated in the literature, (3) demonstrate that the 13C/12C ratio of CO is a sensitive indicator for the isotopic composition of reacted CH4 and therefore for its sources.
Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, https://doi.org/10.5194/bg-15-3625-2018, 2018
Short summary
Short summary
Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Stefan Lossow, Dale F. Hurst, Karen H. Rosenlof, Gabriele P. Stiller, Thomas von Clarmann, Sabine Brinkop, Martin Dameris, Patrick Jöckel, Doug E. Kinnison, Johannes Plieninger, David A. Plummer, Felix Ploeger, William G. Read, Ellis E. Remsberg, James M. Russell, and Mengchu Tao
Atmos. Chem. Phys., 18, 8331–8351, https://doi.org/10.5194/acp-18-8331-2018, https://doi.org/10.5194/acp-18-8331-2018, 2018
Short summary
Short summary
Trend estimates of lower stratospheric H2O derived from the FPH observations at Boulder and a merged zonal mean satellite data set clearly differ for the time period from the late 1980s to 2010. We investigate if a sampling bias between Boulder and the zonal mean around the Boulder latitude can explain these trend discrepancies. Typically they are small and not sufficient to explain the trend discrepancies in the observational database.
Stefanie Meul, Ulrike Langematz, Philipp Kröger, Sophie Oberländer-Hayn, and Patrick Jöckel
Atmos. Chem. Phys., 18, 7721–7738, https://doi.org/10.5194/acp-18-7721-2018, https://doi.org/10.5194/acp-18-7721-2018, 2018
Short summary
Short summary
Using a chemistry--climate model future changes in the stratosphere-to-troposphere ozone mass flux, their drivers, and the future distribution of stratospheric ozone in the troposphere are investigated. In an extreme greenhouse gas (GHG) scenario, the global influx of stratospheric ozone into the troposphere is projected to grow between 2000 and 2100 by 53%. The increase is due to the recovery of stratospheric ozone owing to declining halogens and GHG induced circulation and temperature changes.
Clara Orbe, Huang Yang, Darryn W. Waugh, Guang Zeng, Olaf Morgenstern, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, David A. Plummer, John F. Scinocca, Beatrice Josse, Virginie Marecal, Patrick Jöckel, Luke D. Oman, Susan E. Strahan, Makoto Deushi, Taichu Y. Tanaka, Kohei Yoshida, Hideharu Akiyoshi, Yousuke Yamashita, Andreas Stenke, Laura Revell, Timofei Sukhodolov, Eugene Rozanov, Giovanni Pitari, Daniele Visioni, Kane A. Stone, Robyn Schofield, and Antara Banerjee
Atmos. Chem. Phys., 18, 7217–7235, https://doi.org/10.5194/acp-18-7217-2018, https://doi.org/10.5194/acp-18-7217-2018, 2018
Short summary
Short summary
In this study we compare a few atmospheric transport properties among several numerical models that are used to study the influence of atmospheric chemistry on climate. We show that there are large differences among models in terms of the timescales that connect the Northern Hemisphere midlatitudes, where greenhouse gases and ozone-depleting substances are emitted, to the Southern Hemisphere. Our results may have important implications for how models represent atmospheric composition.
Vanessa Brocchi, Gisèle Krysztofiak, Valéry Catoire, Jonathan Guth, Virginie Marécal, Régina Zbinden, Laaziz El Amraoui, François Dulac, and Philippe Ricaud
Atmos. Chem. Phys., 18, 6887–6906, https://doi.org/10.5194/acp-18-6887-2018, https://doi.org/10.5194/acp-18-6887-2018, 2018
Short summary
Short summary
The Mediterranean Basin still suffers from a limited amount of in situ measurements for a good characterization of its environmental state. This study shows that intercontinental transport of very high CO concentrations can affect the upper Mediterranean Basin troposphere. By using modeling, 5- to 12-day eastward transport of biomass burning starting from North America and Siberia impacts the mid-troposphere of the Mediterranean Basin.
Simone Dietmüller, Roland Eichinger, Hella Garny, Thomas Birner, Harald Boenisch, Giovanni Pitari, Eva Mancini, Daniele Visioni, Andrea Stenke, Laura Revell, Eugene Rozanov, David A. Plummer, John Scinocca, Patrick Jöckel, Luke Oman, Makoto Deushi, Shibata Kiyotaka, Douglas E. Kinnison, Rolando Garcia, Olaf Morgenstern, Guang Zeng, Kane Adam Stone, and Robyn Schofield
Atmos. Chem. Phys., 18, 6699–6720, https://doi.org/10.5194/acp-18-6699-2018, https://doi.org/10.5194/acp-18-6699-2018, 2018
Jens Krause, Peter Hoor, Andreas Engel, Felix Plöger, Jens-Uwe Grooß, Harald Bönisch, Timo Keber, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018, https://doi.org/10.5194/acp-18-6057-2018, 2018
Short summary
Short summary
We present tracer measurements of CO and N2O measured during the POLSTRACC aircraft campaign in winter 2015–2016. We found enhanced CO values relative to N2O in the polar lower stratosphere in addition to the ageing of this region during winter. By using model simulations it was possible to link this enhancement to an increased mixing of the tropical tropopause. We thus conclude that the polar lower stratosphere in late winter is strongly influenced by quasi-isentropic mixing from the tropics.
Klaus-Dirk Gottschaldt, Hans Schlager, Robert Baumann, Duy Sinh Cai, Veronika Eyring, Phoebe Graf, Volker Grewe, Patrick Jöckel, Tina Jurkat-Witschas, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 18, 5655–5675, https://doi.org/10.5194/acp-18-5655-2018, https://doi.org/10.5194/acp-18-5655-2018, 2018
Short summary
Short summary
This study places aircraft trace gas measurements from within the Asian summer monsoon anticyclone into the context of regional, intra- and interannual variability. We find that the processes reflected in the measurements are present throughout multiple simulated monsoon seasons. Dynamical instabilities, photochemical ozone production, lightning and entrainments from the lower troposphere and from the tropopause region determine the distinct composition of the anticyclone and its outflow.
Mariano Mertens, Volker Grewe, Vanessa S. Rieger, and Patrick Jöckel
Atmos. Chem. Phys., 18, 5567–5588, https://doi.org/10.5194/acp-18-5567-2018, https://doi.org/10.5194/acp-18-5567-2018, 2018
Short summary
Short summary
We quantified the contribution of land transport and shipping emissions to tropospheric ozone using a global chemistry–climate model. Our results indicate a contribution to ground-level ozone from land transport emissions of up to 18 % in North America and Southern Europe as well as a contribution from shipping emissions of up to 30 % in the Pacific. Our estimates of the radiative ozone forcing due to land transport and shipping emissions are 92 mW m−2 and 62 mW m−2, respectively.
Stefanie Falk and Björn-Martin Sinnhuber
Geosci. Model Dev., 11, 1115–1131, https://doi.org/10.5194/gmd-11-1115-2018, https://doi.org/10.5194/gmd-11-1115-2018, 2018
Short summary
Short summary
Ozone depletion events (ODEs) in the polar boundary layer are observed frequently in spring. ODEs serve as a source of tropospheric BrO at high latitudes. A treatment of bromine release and recycling on sea-ice- and snow-covered surfaces is implemented in global chemistry–climate model EMAC based on a scheme of Toyota et al. (2011). Many aspects of bromine enhancement and associated ODEs are reproduced in both polar regions. Further bromine release mechanisms can now be tested in a global model.
Astrid Kerkweg, Christiane Hofmann, Patrick Jöckel, Mariano Mertens, and Gregor Pante
Geosci. Model Dev., 11, 1059–1076, https://doi.org/10.5194/gmd-11-1059-2018, https://doi.org/10.5194/gmd-11-1059-2018, 2018
Short summary
Short summary
As part of the model documentation of the MECO(n) system, this article documents the basics of the Multi-Model-Driver expansion (MMD v2.0) to two-way coupling and the newly developed generic MESSy submodel GRID (v1.0), which is used by MMD v2.0 for the generalised definition of arbitrary grids and for the
transformation of data between them.
Annika Günther, Michael Höpfner, Björn-Martin Sinnhuber, Sabine Griessbach, Terry Deshler, Thomas von Clarmann, and Gabriele Stiller
Atmos. Chem. Phys., 18, 1217–1239, https://doi.org/10.5194/acp-18-1217-2018, https://doi.org/10.5194/acp-18-1217-2018, 2018
Short summary
Short summary
Satellite-borne data of sulfur dioxide and a new data set of sulfate aerosol volume densities, as retrieved from MIPAS measurements, are studied in the upper-troposphere–lower-stratosphere region. General patterns of enhanced aerosol are in agreement with SO2. Via chemical transport model simulations for two volcanic eruptions in the Northern Hemisphere midlatitudes, we show that the volcanic enhancements in MIPAS SO2 and sulfate aerosol are consistent in terms of mass and transport patterns.
Andreas Engel, Harald Bönisch, Jennifer Ostermöller, Martyn P. Chipperfield, Sandip Dhomse, and Patrick Jöckel
Atmos. Chem. Phys., 18, 601–619, https://doi.org/10.5194/acp-18-601-2018, https://doi.org/10.5194/acp-18-601-2018, 2018
Short summary
Short summary
We present a new method to derive equivalent effective stratospheric chlorine (EESC), which is based on an improved formulation of the propagation of trends of species with chemical loss from the troposphere to the stratosphere. EESC calculated with the new method shows much better agreement with model-derived ESC. Based on this new formulation, we expect the halogen impact on midlatitude stratospheric ozone to return to 1980 values about 10 years later, then using the current formulation.
Gerald Wetzel, Hermann Oelhaf, Michael Höpfner, Felix Friedl-Vallon, Andreas Ebersoldt, Thomas Gulde, Sebastian Kazarski, Oliver Kirner, Anne Kleinert, Guido Maucher, Hans Nordmeyer, Johannes Orphal, Roland Ruhnke, and Björn-Martin Sinnhuber
Atmos. Chem. Phys., 17, 14631–14643, https://doi.org/10.5194/acp-17-14631-2017, https://doi.org/10.5194/acp-17-14631-2017, 2017
Short summary
Short summary
We report the first stratospheric measurements of the diurnal variation in the inorganic bromine (Bry) reservoir species BrONO2 around sunrise and sunset. The main goal of these observations was to check the current understanding of stratospheric bromine chemistry and to estimate the amount of lower-stratospheric Bry. The calculated temporal variation in BrONO2 largely reproduces the balloon-borne observations. The amount of Bry was estimated to be about 21–25 pptv in the lower stratosphere.
Tilman Hüneke, Oliver-Alex Aderhold, Jannik Bounin, Marcel Dorf, Eric Gentry, Katja Grossmann, Jens-Uwe Grooß, Peter Hoor, Patrick Jöckel, Mareike Kenntner, Marvin Knapp, Matthias Knecht, Dominique Lörks, Sabrina Ludmann, Sigrun Matthes, Rasmus Raecke, Marcel Reichert, Jannis Weimar, Bodo Werner, Andreas Zahn, Helmut Ziereis, and Klaus Pfeilsticker
Atmos. Meas. Tech., 10, 4209–4234, https://doi.org/10.5194/amt-10-4209-2017, https://doi.org/10.5194/amt-10-4209-2017, 2017
Short summary
Short summary
This paper describes a novel instrument for the aircraft-borne remote sensing of trace gases and liquid and solid water. Until recently, such measurements could only be evaluated under clear-sky conditions. We present a characterization and error assessment of the novel "scaling method", which allows for the retrieval of absolute trace gas concentrations under all sky conditions, significantly expanding the applicability of such measurements to study atmospheric photochemistry.
Farahnaz Khosrawi, Oliver Kirner, Björn-Martin Sinnhuber, Sören Johansson, Michael Höpfner, Michelle L. Santee, Lucien Froidevaux, Jörn Ungermann, Roland Ruhnke, Wolfgang Woiwode, Hermann Oelhaf, and Peter Braesicke
Atmos. Chem. Phys., 17, 12893–12910, https://doi.org/10.5194/acp-17-12893-2017, https://doi.org/10.5194/acp-17-12893-2017, 2017
Short summary
Short summary
The 2015/2016 Arctic winter was one of the coldest winters in recent years, allowing extensive PSC formation and chlorine activation. Model simulations of the 2015/2016 Arctic winter were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). We find that ozone loss was quite strong but not as strong as in 2010/2011; denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.
Stefan Lossow, Hella Garny, and Patrick Jöckel
Atmos. Chem. Phys., 17, 11521–11539, https://doi.org/10.5194/acp-17-11521-2017, https://doi.org/10.5194/acp-17-11521-2017, 2017
Cathleen Schlundt, Susann Tegtmeier, Sinikka T. Lennartz, Astrid Bracher, Wee Cheah, Kirstin Krüger, Birgit Quack, and Christa A. Marandino
Atmos. Chem. Phys., 17, 10837–10854, https://doi.org/10.5194/acp-17-10837-2017, https://doi.org/10.5194/acp-17-10837-2017, 2017
Short summary
Short summary
For the first time, oxygenated volatile organic carbon (OVOC) in the ocean and overlaying atmosphere in the western Pacific Ocean has been measured. OVOCs are important for atmospheric chemistry. They are involved in ozone production in the upper troposphere (UT), and they have a climate cooling effect. We showed that phytoplankton was an important source for OVOCs in the surface ocean, and when OVOCs are emitted into the atmosphere, they could reach the UT and might influence ozone formation.
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 17, 8525–8552, https://doi.org/10.5194/acp-17-8525-2017, https://doi.org/10.5194/acp-17-8525-2017, 2017
Short summary
Short summary
We revisit the proxies/uncertainties for the 13C/12C ratios of emissions of reactive C into the atmosphere. Our main findings are (i) a factor of 2 less uncertain estimate of tropospheric CO surface sources δ13C, (ii) a confirmed disagreement between the bottom-up and top-down 13CO-inclusive emission estimates, and (iii) a novel estimate of the δ13C signatures of a range of NMHCs/VOCs to be used in modelling studies. Results are based on the EMAC model emission set-up evaluated for 2000.
Volker Grewe, Eleni Tsati, Mariano Mertens, Christine Frömming, and Patrick Jöckel
Geosci. Model Dev., 10, 2615–2633, https://doi.org/10.5194/gmd-10-2615-2017, https://doi.org/10.5194/gmd-10-2615-2017, 2017
Short summary
Short summary
We present a diagnostics, implemented in an Earth system model, which keeps track of the contribution of source categories (mainly emission sectors) to various concentrations (O3 and HOx). For the first time, it takes into account chemically competing effects, e.g., the competition between ozone precursors in the production of ozone. We show that the results are in-line with results from other tagging schemes and provide plausibility checks for OH and HO2, which have not previously been tagged.
Simone Dietmüller, Hella Garny, Felix Plöger, Patrick Jöckel, and Duy Cai
Atmos. Chem. Phys., 17, 7703–7719, https://doi.org/10.5194/acp-17-7703-2017, https://doi.org/10.5194/acp-17-7703-2017, 2017
Klaus-D. Gottschaldt, Hans Schlager, Robert Baumann, Heiko Bozem, Veronika Eyring, Peter Hoor, Patrick Jöckel, Tina Jurkat, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 17, 6091–6111, https://doi.org/10.5194/acp-17-6091-2017, https://doi.org/10.5194/acp-17-6091-2017, 2017
Short summary
Short summary
We present upper-tropospheric trace gas measurements in the Asian summer monsoon anticyclone, obtained with the HALO research aircraft in September 2012. The anticyclone is one of the largest atmospheric features on Earth, but many aspects of it are not well understood. With the help of model simulations we find that entrainments from the tropopause region and the lower troposphere, combined with photochemistry and dynamical instabilities, can explain the observations.
Jennifer Ostermöller, Harald Bönisch, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 17, 3785–3797, https://doi.org/10.5194/acp-17-3785-2017, https://doi.org/10.5194/acp-17-3785-2017, 2017
Short summary
Short summary
We analysed the temporal evolution of fractional release factors (FRFs) from EMAC model simulations for several halocarbons and nitrous oxide. The current formulation of FRFs yields values that depend on the tropospheric trend of the species. This is a problematic issue for the application of FRF in the calculation of steady-state quantities (e.g. ODP). Including a loss term in the calculation, we develop a new formulation of FRF and find that the time dependence can almost be compensated.
Norbert Glatthor, Michael Höpfner, Adrian Leyser, Gabriele P. Stiller, Thomas von Clarmann, Udo Grabowski, Sylvia Kellmann, Andrea Linden, Björn-Martin Sinnhuber, Gisèle Krysztofiak, and Kaley A. Walker
Atmos. Chem. Phys., 17, 2631–2652, https://doi.org/10.5194/acp-17-2631-2017, https://doi.org/10.5194/acp-17-2631-2017, 2017
Short summary
Short summary
To date, information on the global distribution of atmospheric carbonyl sulfide (OCS) is still rather sparse.
However, detailed knowledge of the OCS distribution is of scientific interest, because this trace gas is on one of the major sources of atmospheric sulfur, which is a prerequisite of the stratospheric aerosol layer. Under this aspect we present a comprehensive space-borne data set of global OCS concentrations covering the period from June 2002 to April 2012.
Gwenaël Berthet, Fabrice Jégou, Valéry Catoire, Gisèle Krysztofiak, Jean-Baptiste Renard, Adam E. Bourassa, Doug A. Degenstein, Colette Brogniez, Marcel Dorf, Sebastian Kreycy, Klaus Pfeilsticker, Bodo Werner, Franck Lefèvre, Tjarda J. Roberts, Thibaut Lurton, Damien Vignelles, Nelson Bègue, Quentin Bourgeois, Daniel Daugeron, Michel Chartier, Claude Robert, Bertrand Gaubicher, and Christophe Guimbaud
Atmos. Chem. Phys., 17, 2229–2253, https://doi.org/10.5194/acp-17-2229-2017, https://doi.org/10.5194/acp-17-2229-2017, 2017
Short summary
Short summary
Since the last major volcanic event, i.e. the Pinatubo eruption in 1991, only
moderateeruptions have regularly injected sulfur into the stratosphere, typically enhancing the aerosol loading for several months. We investigate here for the first time the chemical perturbation associated with the Sarychev eruption in June 2009, using balloon-borne instruments and model calculations. Some chemical compounds are significantly affected by the aerosols, but the impact on stratospheric ozone is weak.
Olaf Morgenstern, Michaela I. Hegglin, Eugene Rozanov, Fiona M. O'Connor, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Neal Butchart, Martyn P. Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando R. Garcia, Steven C. Hardiman, Larry W. Horowitz, Patrick Jöckel, Beatrice Josse, Douglas Kinnison, Meiyun Lin, Eva Mancini, Michael E. Manyin, Marion Marchand, Virginie Marécal, Martine Michou, Luke D. Oman, Giovanni Pitari, David A. Plummer, Laura E. Revell, David Saint-Martin, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, https://doi.org/10.5194/gmd-10-639-2017, 2017
Short summary
Short summary
We present a review of the make-up of 20 models participating in the Chemistry–Climate Model Initiative (CCMI). In comparison to earlier such activities, most of these models comprise a whole-atmosphere chemistry, and several of them include an interactive ocean module. This makes them suitable for studying the interactions of tropospheric air quality, stratospheric ozone, and climate. The paper lays the foundation for other studies using the CCMI simulations for scientific analysis.
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Pau Cortes, Birgit Quack, Rafel Simo, Dennis Booge, Andrea Pozzer, Tobias Steinhoff, Damian L. Arevalo-Martinez, Corinna Kloss, Astrid Bracher, Rüdiger Röttgers, Elliot Atlas, and Kirstin Krüger
Atmos. Chem. Phys., 17, 385–402, https://doi.org/10.5194/acp-17-385-2017, https://doi.org/10.5194/acp-17-385-2017, 2017
Short summary
Short summary
We present new sea surface and marine boundary layer measurements of carbonyl sulfide, the most abundant sulfur gas in the atmosphere, and calculate an oceanic emission estimate. Our results imply that oceanic emissions are very unlikely to account for the missing source in the atmospheric budget that is currently discussed for OCS.
Christiane Voigt, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Robert Baumann, Benedikt Ehard, Michael C. Pitts, Lamont R. Poole, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1082, https://doi.org/10.5194/acp-2016-1082, 2016
Revised manuscript not accepted
Short summary
Short summary
The letter describes unprecedented observations of widespread and persistent polar stratospheric ice clouds (ice PSCs) in the exceptionally cold Arctic stratospheric winter 2015/16. The unique observations are of global relevance because trends in Arctic ozone loss and in polar temperatures are highly uncertain. The new observations at cold conditions serve to enhance our knowledge on ice PSC formation, Arctic ozone loss and polar stratrospheric temperatures in a changing climate.
Elisa Castelli, Marco Ridolfi, Massimo Carlotti, Björn-Martin Sinnhuber, Oliver Kirner, Michael Kiefer, and Bianca Maria Dinelli
Atmos. Meas. Tech., 9, 5499–5508, https://doi.org/10.5194/amt-9-5499-2016, https://doi.org/10.5194/amt-9-5499-2016, 2016
Short summary
Short summary
MIPAS is a satellite-borne limb emission sounder. The algorithm used to infer atmospheric composition from its measurements exploits the assumption that the atmosphere is horizontally homogeneous. This assumption can cause significant errors. We use synthetic observations to quantify these errors. Furthermore we show that the inclusion of any kind of horizontal variability model improves all the retrieval targets and that the two-dimensional approach implies the smallest errors.
Duy Cai, Martin Dameris, Hella Garny, Felix Bunzel, Patrick Jöckel, and Phoebe Graf
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-870, https://doi.org/10.5194/acp-2016-870, 2016
Revised manuscript not accepted
Short summary
Short summary
Reliable information on weather and climate are of increasing interest for economy, politics and society.
In particular decadal timescales become more and more important. This study focuses on stratospheric processes relevant for the dynamical variability on intra decadal timescale. We apply a so called power spectra analysis. With this method and further analyses we could determine a minimum vertical resolution for numerical models, which is required to capture these processes.
Bastian Kern and Patrick Jöckel
Geosci. Model Dev., 9, 3639–3654, https://doi.org/10.5194/gmd-9-3639-2016, https://doi.org/10.5194/gmd-9-3639-2016, 2016
Short summary
Short summary
Input and output of large data limit the performance of numerical models on supercomputers. We present an interface for the calculation of online diagnostics in a weather and climate model. These diagnostics are calculated online during the simulation instead of as subsequent post-processing. Depending on the diagnostic, we can reduce the amount of model output.
Mariano Mertens, Astrid Kerkweg, Patrick Jöckel, Holger Tost, and Christiane Hofmann
Geosci. Model Dev., 9, 3545–3567, https://doi.org/10.5194/gmd-9-3545-2016, https://doi.org/10.5194/gmd-9-3545-2016, 2016
Short summary
Short summary
This fourth part in a series of publications describing the newly developed regional chemistry–climate system MECO(n) is dedicated to the evaluation of MECO(n) with respect to tropospheric gas-phase chemistry. For this, a simulation incorporating two regional instances, one over Europe with 50 km resolution and one over Germany with 12 km resolution, is conducted. The model results are compared with satellite, ground-based and aircraft in situ observations.
Hiroshi Yamashita, Volker Grewe, Patrick Jöckel, Florian Linke, Martin Schaefer, and Daisuke Sasaki
Geosci. Model Dev., 9, 3363–3392, https://doi.org/10.5194/gmd-9-3363-2016, https://doi.org/10.5194/gmd-9-3363-2016, 2016
Short summary
Short summary
This study introduces AirTraf v1.0 for climate impact evaluations, which performs global air traffic simulations in the ECHAM5/MESSy Atmospheric Chemistry model. AirTraf simulations were demonstrated with great circle and flight time routing options for a specific winter day, assuming an Airbus A330 aircraft. The results confirmed that AirTraf simulates the air traffic properly for the two options. Calculated flight time, fuel consumption and NOx emission index are comparable to reference data.
R. Hossaini, P. K. Patra, A. A. Leeson, G. Krysztofiak, N. L. Abraham, S. J. Andrews, A. T. Archibald, J. Aschmann, E. L. Atlas, D. A. Belikov, H. Bönisch, L. J. Carpenter, S. Dhomse, M. Dorf, A. Engel, W. Feng, S. Fuhlbrügge, P. T. Griffiths, N. R. P. Harris, R. Hommel, T. Keber, K. Krüger, S. T. Lennartz, S. Maksyutov, H. Mantle, G. P. Mills, B. Miller, S. A. Montzka, F. Moore, M. A. Navarro, D. E. Oram, K. Pfeilsticker, J. A. Pyle, B. Quack, A. D. Robinson, E. Saikawa, A. Saiz-Lopez, S. Sala, B.-M. Sinnhuber, S. Taguchi, S. Tegtmeier, R. T. Lidster, C. Wilson, and F. Ziska
Atmos. Chem. Phys., 16, 9163–9187, https://doi.org/10.5194/acp-16-9163-2016, https://doi.org/10.5194/acp-16-9163-2016, 2016
Sabine Brinkop, Martin Dameris, Patrick Jöckel, Hella Garny, Stefan Lossow, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8125–8140, https://doi.org/10.5194/acp-16-8125-2016, https://doi.org/10.5194/acp-16-8125-2016, 2016
Short summary
Short summary
This study investigates the water vapour decline in the stratosphere beginning in the year 2000 and other similarly strong stratospheric water vapour reductions. The driving forces are tropical sea surface temperature (SST) changes due to coincidence with a preceding ENSO event and supported by the west to east change of the QBO.
There are indications that both SSTs and the specific dynamical state of the atmosphere contribute to the long period of low water vapour values from 2001 to 2006.
Steffen Beirle, Christoph Hörmann, Patrick Jöckel, Song Liu, Marloes Penning de Vries, Andrea Pozzer, Holger Sihler, Pieter Valks, and Thomas Wagner
Atmos. Meas. Tech., 9, 2753–2779, https://doi.org/10.5194/amt-9-2753-2016, https://doi.org/10.5194/amt-9-2753-2016, 2016
Simone Dietmüller, Patrick Jöckel, Holger Tost, Markus Kunze, Catrin Gellhorn, Sabine Brinkop, Christine Frömming, Michael Ponater, Benedikt Steil, Axel Lauer, and Johannes Hendricks
Geosci. Model Dev., 9, 2209–2222, https://doi.org/10.5194/gmd-9-2209-2016, https://doi.org/10.5194/gmd-9-2209-2016, 2016
Short summary
Short summary
Four new radiation related submodels (RAD, AEROPT, CLOUDOPT, and ORBIT) are available within the MESSy framework now. They are largely based on the original radiation scheme of ECHAM5. RAD simulates radiative transfer, AEROPT calculates aerosol optical properties, CLOUDOPT calculates cloud optical properties, and ORBIT is responsible for Earth orbit calculations. Multiple diagnostic calls of the radiation routine are possible, so radiative forcing can be calculated during the model simulation.
Michael Löffler, Sabine Brinkop, and Patrick Jöckel
Atmos. Chem. Phys., 16, 6547–6562, https://doi.org/10.5194/acp-16-6547-2016, https://doi.org/10.5194/acp-16-6547-2016, 2016
Short summary
Short summary
After the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991, stratospheric water vapour is significantly increased. This results from increased stratospheric heating rates due to volcanic aerosol and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as important sources for the additional water vapour in the stratosphere.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
A. J. G. Baumgaertner, P. Jöckel, A. Kerkweg, R. Sander, and H. Tost
Geosci. Model Dev., 9, 125–135, https://doi.org/10.5194/gmd-9-125-2016, https://doi.org/10.5194/gmd-9-125-2016, 2016
Short summary
Short summary
The Community Earth System Model (CESM1) is connected to the the Modular Earth Submodel System (MESSy) as a new base model. This allows MESSy users the option to utilize either the state-of-the art spectral element atmosphere dynamical core or the finite volume core of CESM1. Additionally, this makes several other component models available to MESSy users.
Christiane Hofmann, Astrid Kerkweg, Peter Hoor, and Patrick Jöckel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2015-949, https://doi.org/10.5194/acp-2015-949, 2016
Revised manuscript not accepted
Short summary
Short summary
Ozone enhancements at the surface, caused by descending stratospheric air masses along deep tropopause folds, can be reproduced using the model system MECO(n). It is shown that stratosphere-troposphere-exchange (STE) in the vicinity of a tropopause fold occurs in regions of turbulence and diabatic processes. The efficiency of mixing is quantified, showing that almost all of the air masses originating in the tropopause fold are transported into the troposphere during the following two days.
S. T. Lennartz, G. Krysztofiak, C. A. Marandino, B.-M. Sinnhuber, S. Tegtmeier, F. Ziska, R. Hossaini, K. Krüger, S. A. Montzka, E. Atlas, D. E. Oram, T. Keber, H. Bönisch, and B. Quack
Atmos. Chem. Phys., 15, 11753–11772, https://doi.org/10.5194/acp-15-11753-2015, https://doi.org/10.5194/acp-15-11753-2015, 2015
Short summary
Short summary
Marine-produced short-lived trace gases such as halocarbons and DMS significantly impact atmospheric chemistry. To assess this impact on ozone depletion and the radiative budget, it is critical that their marine emissions in atmospheric chemistry models are quantified as accurately as possible. We show that calculating emissions online with an interactive atmosphere improves the agreement with current observations and should be employed regularly in models where marine sources are important.
A. Kerkweg and P. Jöckel
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-8607-2015, https://doi.org/10.5194/gmdd-8-8607-2015, 2015
Revised manuscript not accepted
V. Catoire, G. Krysztofiak, C. Robert, M. Chartier, P. Jacquet, C. Guimbaud, P. D. Hamer, and V. Marécal
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-9165-2015, https://doi.org/10.5194/amtd-8-9165-2015, 2015
Preprint withdrawn
Short summary
Short summary
A three-channel infrared laser absorption spectrometer has been developed for airborne measurements of trace gases up to the upper troposphere. More than three different species can be measured simultaneously with high time resolution using three individual Continuous Wave Quantum Cascade Lasers coupled to a single Robert multipass optical cell. The first deployment of this spectrometer was realized in convective outflows over South China Sea where enhancements of CO were detected.
G. Wetzel, H. Oelhaf, M. Birk, A. de Lange, A. Engel, F. Friedl-Vallon, O. Kirner, A. Kleinert, G. Maucher, H. Nordmeyer, J. Orphal, R. Ruhnke, B.-M. Sinnhuber, and P. Vogt
Atmos. Chem. Phys., 15, 8065–8076, https://doi.org/10.5194/acp-15-8065-2015, https://doi.org/10.5194/acp-15-8065-2015, 2015
R. Eichinger, P. Jöckel, and S. Lossow
Atmos. Chem. Phys., 15, 7003–7015, https://doi.org/10.5194/acp-15-7003-2015, https://doi.org/10.5194/acp-15-7003-2015, 2015
H. Fischer, A. Pozzer, T. Schmitt, P. Jöckel, T. Klippel, D. Taraborrelli, and J. Lelieveld
Atmos. Chem. Phys., 15, 6971–6980, https://doi.org/10.5194/acp-15-6971-2015, https://doi.org/10.5194/acp-15-6971-2015, 2015
R. Eichinger, P. Jöckel, S. Brinkop, M. Werner, and S. Lossow
Atmos. Chem. Phys., 15, 5537–5555, https://doi.org/10.5194/acp-15-5537-2015, https://doi.org/10.5194/acp-15-5537-2015, 2015
M. Righi, V. Eyring, K.-D. Gottschaldt, C. Klinger, F. Frank, P. Jöckel, and I. Cionni
Geosci. Model Dev., 8, 733–768, https://doi.org/10.5194/gmd-8-733-2015, https://doi.org/10.5194/gmd-8-733-2015, 2015
A. Ostler, R. Sussmann, M. Rettinger, N. M. Deutscher, S. Dohe, F. Hase, N. Jones, M. Palm, and B.-M. Sinnhuber
Atmos. Meas. Tech., 7, 4081–4101, https://doi.org/10.5194/amt-7-4081-2014, https://doi.org/10.5194/amt-7-4081-2014, 2014
Short summary
Short summary
Ground-based FTIR soundings of column-average methane from NDACC and TCCON can be combined without the need to apply an overall calibration factor. NDACC and TCCON measurements complement one another and provide valuable information for satellite validation, evaluation of chemical-transport models, and source-sink inversions. The impact of dynamical variability on NDACC and TCCON retrievals of column-average methane is reflected in different smoothing effects.
S. T. Lennartz, A. Lehmann, J. Herrford, F. Malien, H.-P. Hansen, H. Biester, and H. W. Bange
Biogeosciences, 11, 6323–6339, https://doi.org/10.5194/bg-11-6323-2014, https://doi.org/10.5194/bg-11-6323-2014, 2014
Short summary
Short summary
A time series of nine oceanic parameters from the coastal time series station Boknis Eck (BE, southwestern Baltic Sea) in the period of 1957-2013 is analysed with respect to seasonal cycles and long-term trends. Most striking was a paradoxical decreasing trend in oxygen with a simultaneous decline in eutrophication. Possible reasons for this paradox, e.g. processes related to warming temperatures such as increased decomposition of organic matter or altered ventilation, are discussed.
R. Sander, P. Jöckel, O. Kirner, A. T. Kunert, J. Landgraf, and A. Pozzer
Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014, https://doi.org/10.5194/gmd-7-2653-2014, 2014
C. M. Hoppe, L. Hoffmann, P. Konopka, J.-U. Grooß, F. Ploeger, G. Günther, P. Jöckel, and R. Müller
Geosci. Model Dev., 7, 2639–2651, https://doi.org/10.5194/gmd-7-2639-2014, https://doi.org/10.5194/gmd-7-2639-2014, 2014
P. Valks, N. Hao, S. Gimeno Garcia, D. Loyola, M. Dameris, P. Jöckel, and A. Delcloo
Atmos. Meas. Tech., 7, 2513–2530, https://doi.org/10.5194/amt-7-2513-2014, https://doi.org/10.5194/amt-7-2513-2014, 2014
R. Eichinger and P. Jöckel
Geosci. Model Dev., 7, 1573–1582, https://doi.org/10.5194/gmd-7-1573-2014, https://doi.org/10.5194/gmd-7-1573-2014, 2014
S. Meul, U. Langematz, S. Oberländer, H. Garny, and P. Jöckel
Atmos. Chem. Phys., 14, 2959–2971, https://doi.org/10.5194/acp-14-2959-2014, https://doi.org/10.5194/acp-14-2959-2014, 2014
C. Liu, S. Beirle, T. Butler, P. Hoor, C. Frankenberg, P. Jöckel, M. Penning de Vries, U. Platt, A. Pozzer, M. G. Lawrence, J. Lelieveld, H. Tost, and T. Wagner
Atmos. Chem. Phys., 14, 1717–1732, https://doi.org/10.5194/acp-14-1717-2014, https://doi.org/10.5194/acp-14-1717-2014, 2014
P. Bohlinger, B.-M. Sinnhuber, R. Ruhnke, and O. Kirner
Atmos. Chem. Phys., 14, 1679–1688, https://doi.org/10.5194/acp-14-1679-2014, https://doi.org/10.5194/acp-14-1679-2014, 2014
V. Grewe, C. Frömming, S. Matthes, S. Brinkop, M. Ponater, S. Dietmüller, P. Jöckel, H. Garny, E. Tsati, K. Dahlmann, O. A. Søvde, J. Fuglestvedt, T. K. Berntsen, K. P. Shine, E. A. Irvine, T. Champougny, and P. Hullah
Geosci. Model Dev., 7, 175–201, https://doi.org/10.5194/gmd-7-175-2014, https://doi.org/10.5194/gmd-7-175-2014, 2014
E. Regelin, H. Harder, M. Martinez, D. Kubistin, C. Tatum Ernest, H. Bozem, T. Klippel, Z. Hosaynali-Beygi, H. Fischer, R. Sander, P. Jöckel, R. Königstedt, and J. Lelieveld
Atmos. Chem. Phys., 13, 10703–10720, https://doi.org/10.5194/acp-13-10703-2013, https://doi.org/10.5194/acp-13-10703-2013, 2013
K. Gottschaldt, C. Voigt, P. Jöckel, M. Righi, R. Deckert, and S. Dietmüller
Atmos. Chem. Phys., 13, 3003–3025, https://doi.org/10.5194/acp-13-3003-2013, https://doi.org/10.5194/acp-13-3003-2013, 2013
J. Aschmann and B.-M. Sinnhuber
Atmos. Chem. Phys., 13, 1203–1219, https://doi.org/10.5194/acp-13-1203-2013, https://doi.org/10.5194/acp-13-1203-2013, 2013
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Analytical approximation of the definite Chapman integral for arbitrary zenith angles
Moist bias in the Pacific upper troposphere and lower stratosphere (UTLS) in climate models affects regional circulation patterns
Evaluation of vertical transport in ERA5 and ERA-Interim reanalysis using high-altitude aircraft measurements in the Asian summer monsoon 2017
Injection strategy – a driver of atmospheric circulation and ozone response to stratospheric aerosol geoengineering
Quantifying stratospheric ozone trends over 1984–2020: a comparison of ordinary and regularized multivariate regression models
Surface ozone over the Tibetan Plateau controlled by stratospheric intrusion
The role of tropical upwelling in explaining discrepancies between recent modeled and observed lower-stratospheric ozone trends
The roles of the Quasi-Biennial Oscillation and El Niño for entry stratospheric water vapor in observations and coupled chemistry–ocean CCMI and CMIP6 models
Improved estimation of volcanic SO2 injections from satellite retrievals and Lagrangian transport simulations: the 2019 Raikoke eruption
Hemispheric asymmetries in recent changes in the stratospheric circulation
A stratospheric prognostic ozone for seamless Earth system models: performance, impacts and future
The 2019 Raikoke volcanic eruption – Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide
The stratospheric Brewer–Dobson circulation inferred from age of air in the ERA5 reanalysis
Simulations of anthropogenic bromoform indicate high emissions at the coast of East Asia
Sensitivity of stratospheric water vapour to variability in tropical tropopause temperatures and large-scale transport
Technical note: Lowermost-stratosphere moist bias in ECMWF IFS model diagnosed from airborne GLORIA observations during winter–spring 2016
The response of stratospheric water vapor to climate change driven by different forcing agents
Influence of convection on stratospheric water vapor in the North American monsoon region
Electricity savings and greenhouse gas emission reductions from global phase-down of hydrofluorocarbons
Impact of convectively lofted ice on the seasonal cycle of water vapor in the tropical tropopause layer
Simulating the atmospheric response to the 11-year solar cycle forcing with the UM-UKCA model: the role of detection method and natural variability
Transport of trace gases via eddy shedding from the Asian summer monsoon anticyclone and associated impacts on ozone heating rates
Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings
Multi-decadal records of stratospheric composition and their relationship to stratospheric circulation change
Contribution of different processes to changes in tropical lower-stratospheric water vapor in chemistry–climate models
Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere
A new time-independent formulation of fractional release
The millennium water vapour drop in chemistry–climate model simulations
Impact of major volcanic eruptions on stratospheric water vapour
Variability of water vapour in the Arctic stratosphere
On the hiatus in the acceleration of tropical upwelling since the beginning of the 21st century
Trends in peroxyacetyl nitrate (PAN) in the upper troposphere and lower stratosphere over southern Asia during the summer monsoon season: regional impacts
Spatial regression analysis on 32 years of total column ozone data
Ozone seasonality above the tropical tropopause: reconciling the Eulerian and Lagrangian perspectives of transport processes
Modeling upper tropospheric and lower stratospheric water vapor anomalies
Evolution of Antarctic ozone in September–December predicted by CCMVal-2 model simulations for the 21st century
Assessment of the interannual variability and influence of the QBO and upwelling on tracer–tracer distributions of N2O and O3 in the tropical lower stratosphere
OCS photolytic isotope effects from first principles: sulfur and carbon isotopes, temperature dependence and implications for the stratosphere
On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 2: The effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes
Relationships between Brewer-Dobson circulation, double tropopauses, ozone and stratospheric water vapour
Simulation of stratospheric water vapor and trends using three reanalyses
Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach
Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses
Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index
Forecasts and assimilation experiments of the Antarctic ozone hole 2008
Extreme events in total ozone over Arosa – Part 2: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes
Technical Note: Trend estimation from irregularly sampled, correlated data
Modeling the transport of very short-lived substances into the tropical upper troposphere and lower stratosphere
Dongxiao Yue
Atmos. Chem. Phys., 24, 5093–5097, https://doi.org/10.5194/acp-24-5093-2024, https://doi.org/10.5194/acp-24-5093-2024, 2024
Short summary
Short summary
The stunning colors of the sky and clouds result from light scattering in the atmosphere, whose density changes with height. Previously, calculating these colors involves costly, sometimes inaccurate methods. This paper presents a silver bullet: a single elegant formula that simplifies these complex calculations. What is the result? We have faster, more precise predictions of atmospheric colors, from Earth's blue skies and red sunsets to Venus's golden hues.
Felix Ploeger, Thomas Birner, Edward Charlesworth, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 24, 2033–2043, https://doi.org/10.5194/acp-24-2033-2024, https://doi.org/10.5194/acp-24-2033-2024, 2024
Short summary
Short summary
We present a novel mechanism of how regional anomalies in water vapour concentrations in the upper troposphere and lower stratosphere impact regional atmospheric circulation systems. These impacts include a displaced upper-level Asian monsoon circulation and strengthened prevailing westerlies in the Pacific region. Current climate models have biases in simulating these regional water vapour anomalies and circulation impacts, but the biases can be avoided by improving the model transport.
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024, https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Short summary
Over the Indian subcontinent, polluted air is rapidly uplifted to higher altitudes during the Asian monsoon season. We present an assessment of vertical transport in this region using different wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as high-resolution aircraft measurements. In general, our findings confirm that the newest ECMWF reanalysis product, ERA5, yields a better representation of transport compared to the predecessor, ERA-Interim.
Ewa M. Bednarz, Amy H. Butler, Daniele Visioni, Yan Zhang, Ben Kravitz, and Douglas G. MacMartin
Atmos. Chem. Phys., 23, 13665–13684, https://doi.org/10.5194/acp-23-13665-2023, https://doi.org/10.5194/acp-23-13665-2023, 2023
Short summary
Short summary
We use a state-of-the-art Earth system model and a set of stratospheric aerosol injection (SAI) strategies to achieve the same level of global mean surface cooling through different combinations of location and/or timing of the injection. We demonstrate that the choice of SAI strategy can lead to contrasting impacts on stratospheric and tropospheric temperatures, circulation, and chemistry (including stratospheric ozone), thereby leading to different impacts on regional surface climate.
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Jianchun Bian, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 23, 13029–13047, https://doi.org/10.5194/acp-23-13029-2023, https://doi.org/10.5194/acp-23-13029-2023, 2023
Short summary
Short summary
For the first time a regularized multivariate regression model is used to estimate stratospheric ozone trends. Regularized regression avoids the over-fitting issue due to correlation among explanatory variables. We demonstrate that there are considerable differences in satellite-based and chemical-model-based ozone trends, highlighting large uncertainties in our understanding about ozone variability. We argue that caution is needed when interpreting results with different methods and datasets.
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023, https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Short summary
The monthly mean surface ozone concentrations peaked earlier in the south in April and May and later in the north in June and July over the Tibetan Plateau. The migration of monthly surface ozone peaks was coupled with the synchronous movement of tropopause folds and the westerly jet that created conditions conducive to stratospheric ozone intrusion. Stratospheric ozone intrusion significantly contributed to surface ozone across the Tibetan Plateau.
Sean M. Davis, Nicholas Davis, Robert W. Portmann, Eric Ray, and Karen Rosenlof
Atmos. Chem. Phys., 23, 3347–3361, https://doi.org/10.5194/acp-23-3347-2023, https://doi.org/10.5194/acp-23-3347-2023, 2023
Short summary
Short summary
Ozone in the lower part of the stratosphere has not increased and has perhaps even continued to decline in recent decades. This study demonstrates that the amount of ozone in this region is highly sensitive to the amount of air upwelling into the stratosphere in the tropics and that simulations from a climate model nudged to historical meteorological fields often fail to accurately capture the variations in tropical upwelling that control short-term trends in lower-stratospheric ozone.
Shlomi Ziskin Ziv, Chaim I. Garfinkel, Sean Davis, and Antara Banerjee
Atmos. Chem. Phys., 22, 7523–7538, https://doi.org/10.5194/acp-22-7523-2022, https://doi.org/10.5194/acp-22-7523-2022, 2022
Short summary
Short summary
Stratospheric water vapor is important for Earth's overall greenhouse effect and for ozone chemistry; however the factors governing its variability on interannual timescales are not fully known, and previous modeling studies have indicated that models struggle to capture this interannual variability. We demonstrate that nonlinear interactions are important for determining overall water vapor concentrations and also that models have improved in their ability to capture these connections.
Zhongyin Cai, Sabine Griessbach, and Lars Hoffmann
Atmos. Chem. Phys., 22, 6787–6809, https://doi.org/10.5194/acp-22-6787-2022, https://doi.org/10.5194/acp-22-6787-2022, 2022
Short summary
Short summary
Using AIRS and TROPOMI sulfur dioxide retrievals and the Lagrangian transport model MPTRAC, we present an improved reconstruction of injection parameters of the 2019 Raikoke eruption. Reconstructions agree well between using AIRS nighttime and TROPOMI daytime retrievals, showing the potential of our approach to create a long-term volcanic sulfur dioxide inventory from nearly 20 years of AIRS retrievals.
Felix Ploeger and Hella Garny
Atmos. Chem. Phys., 22, 5559–5576, https://doi.org/10.5194/acp-22-5559-2022, https://doi.org/10.5194/acp-22-5559-2022, 2022
Short summary
Short summary
We investigate hemispheric asymmetries in stratospheric circulation changes in the last 2 decades in model simulations and atmospheric observations. We find that observed trace gas changes can be explained by a structural circulation change related to a deepening circulation in the Northern Hemisphere relative to the Southern Hemisphere. As this asymmetric signal is small compared to internal variability observed circulation trends over the recent past are not in contradiction to climate models.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
Johannes de Leeuw, Anja Schmidt, Claire S. Witham, Nicolas Theys, Isabelle A. Taylor, Roy G. Grainger, Richard J. Pope, Jim Haywood, Martin Osborne, and Nina I. Kristiansen
Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021, https://doi.org/10.5194/acp-21-10851-2021, 2021
Short summary
Short summary
Using the NAME dispersion model in combination with high-resolution SO2 satellite data from TROPOMI, we investigate the dispersion of volcanic SO2 from the 2019 Raikoke eruption. NAME accurately simulates the dispersion of SO2 during the first 2–3 weeks after the eruption and illustrates the potential of using high-resolution satellite data to identify potential limitations in dispersion models, which will ultimately help to improve efforts to forecast the dispersion of volcanic clouds.
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021, https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Short summary
We investigate the global stratospheric circulation (Brewer–Dobson circulation) in the new ECMWF ERA5 reanalysis based on age of air simulations, and we compare it to results from the preceding ERA-Interim reanalysis. Our results show a slower stratospheric circulation and higher age for ERA5. The age of air trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, related to multi-annual variability and a potential contribution from changes in the reanalysis system.
Josefine Maas, Susann Tegtmeier, Yue Jia, Birgit Quack, Jonathan V. Durgadoo, and Arne Biastoch
Atmos. Chem. Phys., 21, 4103–4121, https://doi.org/10.5194/acp-21-4103-2021, https://doi.org/10.5194/acp-21-4103-2021, 2021
Short summary
Short summary
Cooling-water disinfection at coastal power plants is a known source of atmospheric bromoform. A large source of anthropogenic bromoform is the industrial regions in East Asia. In current bottom-up flux estimates, these anthropogenic emissions are missing, underestimating the global air–sea flux of bromoform. With transport simulations, we show that by including anthropogenic bromoform from cooling-water treatment, the bottom-up flux estimates significantly improve in East and Southeast Asia.
Jacob W. Smith, Peter H. Haynes, Amanda C. Maycock, Neal Butchart, and Andrew C. Bushell
Atmos. Chem. Phys., 21, 2469–2489, https://doi.org/10.5194/acp-21-2469-2021, https://doi.org/10.5194/acp-21-2469-2021, 2021
Short summary
Short summary
This paper informs realistic simulation of stratospheric water vapour by clearly attributing each of the two key influences on water vapour entry to the stratosphere. Presenting modified trajectory models, the results of this paper show temperatures dominate on annual and inter-annual variations; however, transport has a significant effect in reducing the annual cycle maximum. Furthermore, sub-seasonal variations in temperature have an important overall influence.
Wolfgang Woiwode, Andreas Dörnbrack, Inna Polichtchouk, Sören Johansson, Ben Harvey, Michael Höpfner, Jörn Ungermann, and Felix Friedl-Vallon
Atmos. Chem. Phys., 20, 15379–15387, https://doi.org/10.5194/acp-20-15379-2020, https://doi.org/10.5194/acp-20-15379-2020, 2020
Short summary
Short summary
The lowermost-stratosphere moist bias in ECMWF analyses and 12 h forecasts is diagnosed for the Arctic winter-spring 2016 period by using two-dimensional GLORIA water vapor observations. The bias is already present in the initial conditions (i.e., the analyses), and sensitivity forecasts on time scales of < 12 h show hardly any sensitivity to modified spatial resolution and output frequency.
Xun Wang and Andrew E. Dessler
Atmos. Chem. Phys., 20, 13267–13282, https://doi.org/10.5194/acp-20-13267-2020, https://doi.org/10.5194/acp-20-13267-2020, 2020
Short summary
Short summary
We investigate the response of stratospheric water vapor (SWV) to different forcing agents, including greenhouse gases and aerosols. For most forcing agents, the SWV response is dominated by a slow response, which is coupled to surface temperature changes and exhibits a similar sensitivity to the surface temperature across all forcing agents. The fast SWV adjustment due to forcing is important when the forcing agent directly heats the cold-point region, e.g., black carbon.
Wandi Yu, Andrew E. Dessler, Mijeong Park, and Eric J. Jensen
Atmos. Chem. Phys., 20, 12153–12161, https://doi.org/10.5194/acp-20-12153-2020, https://doi.org/10.5194/acp-20-12153-2020, 2020
Short summary
Short summary
The stratospheric water vapor mixing ratio over North America (NA) region is up to ~ 1 ppmv higher when deep convection occurs. We find substantial consistency in the interannual variations of NA water vapor anomaly and deep convection and explain both the summer seasonal cycle and interannual variability of the convective moistening efficiency. We show that the NA anticyclone and tropical upper tropospheric temperature determine how much deep convection moistens the lower stratosphere.
Pallav Purohit, Lena Höglund-Isaksson, John Dulac, Nihar Shah, Max Wei, Peter Rafaj, and Wolfgang Schöpp
Atmos. Chem. Phys., 20, 11305–11327, https://doi.org/10.5194/acp-20-11305-2020, https://doi.org/10.5194/acp-20-11305-2020, 2020
Short summary
Short summary
This study shows that if energy efficiency improvements in cooling technologies are addressed simultaneously with a phase-down of hydrofluorocarbons (HFCs), not only will global warming be mitigated through the elimination of HFCs but also by saving about a fifth of future global electricity consumption. This means preventing between 411 and 631 Pg CO2 equivalent of greenhouse gases between today and 2100, thereby offering a significant contribution towards staying well below 2 °C warming.
Xun Wang, Andrew E. Dessler, Mark R. Schoeberl, Wandi Yu, and Tao Wang
Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019, https://doi.org/10.5194/acp-19-14621-2019, 2019
Short summary
Short summary
We use a trajectory model to diagnose mechanisms that produce the observed and modeled tropical lower stratospheric water vapor seasonal cycle. We confirm that the seasonal cycle of water vapor is primarily determined by the seasonal cycle of tropical tropopause layer (TTL) temperatures. However, between 10° N and 40° N, we find that evaporation of convective ice in the TTL plays a key role contributing to the water vapor seasonal cycle there. The Asian monsoon region is the most important region.
Ewa M. Bednarz, Amanda C. Maycock, Paul J. Telford, Peter Braesicke, N. Luke Abraham, and John A. Pyle
Atmos. Chem. Phys., 19, 5209–5233, https://doi.org/10.5194/acp-19-5209-2019, https://doi.org/10.5194/acp-19-5209-2019, 2019
Short summary
Short summary
Following model improvements, the atmospheric response to the 11-year solar cycle forcing simulated in the UM-UKCA chemistry–climate model is discussed for the first time. In contrast to most previous studies in the literature, we compare the results diagnosed using both a composite and a MLR methodology, and we show that apparently different signals can be diagnosed in the troposphere. In addition, we look at the role of internal atmospheric variability for the detection of the solar response.
Suvarna Fadnavis, Chaitri Roy, Rajib Chattopadhyay, Christopher E. Sioris, Alexandru Rap, Rolf Müller, K. Ravi Kumar, and Raghavan Krishnan
Atmos. Chem. Phys., 18, 11493–11506, https://doi.org/10.5194/acp-18-11493-2018, https://doi.org/10.5194/acp-18-11493-2018, 2018
Short summary
Short summary
Rapid industrialization, traffic growth and urbanization resulted in a significant increase in the tropospheric trace gases over Asia. There is global concern about rising levels of these trace gases. The monsoon convection transports these gases to the upper-level-anticyclone. In this study, we show transport of these gases to the extratropics via eddy-shedding from the anticyclone. We also deliberate on changes in ozone heating rates due to the transport of Asian trace gases.
Justin Bandoro, Susan Solomon, Benjamin D. Santer, Douglas E. Kinnison, and Michael J. Mills
Atmos. Chem. Phys., 18, 143–166, https://doi.org/10.5194/acp-18-143-2018, https://doi.org/10.5194/acp-18-143-2018, 2018
Short summary
Short summary
We studied the attribution of stratospheric ozone changes and identified similarities between observations and human fingerprints from both emissions of ozone-depleting substances (ODSs) and greenhouse gases (GHGs). We developed an improvement on the traditional pattern correlation method that accounts for nonlinearities in the climate forcing time evolution. Use of the latter resulted in increased S / N ratios for the ODS fingerprint. The GHG fingerprint was not identifiable.
Anne R. Douglass, Susan E. Strahan, Luke D. Oman, and Richard S. Stolarski
Atmos. Chem. Phys., 17, 12081–12096, https://doi.org/10.5194/acp-17-12081-2017, https://doi.org/10.5194/acp-17-12081-2017, 2017
Short summary
Short summary
Data records from instruments on satellites and on the ground are compared with a simulation for 1980–2016 that is made using winds and temperatures that are derived from measurements. The simulation tracks the observations faithfully after about 2000, but there are systematic errors for earlier years. Scientists must take this into account when trying to detect and quantify changes in the stratospheric circulation that are caused by climate change.
Kevin M. Smalley, Andrew E. Dessler, Slimane Bekki, Makoto Deushi, Marion Marchand, Olaf Morgenstern, David A. Plummer, Kiyotaka Shibata, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 17, 8031–8044, https://doi.org/10.5194/acp-17-8031-2017, https://doi.org/10.5194/acp-17-8031-2017, 2017
Short summary
Short summary
This paper explains a new way to evaluate simulated lower-stratospheric water vapor. We use a multivariate linear regression to predict 21st century lower stratospheric water vapor within 12 chemistry climate models using tropospheric warming, the Brewer–Dobson circulation, and the quasi-biennial oscillation as predictors. This methodology produce strong fits to simulated water vapor, and potentially represents a superior method to evaluate model trends in lower-stratospheric water vapor.
Felix Ploeger, Paul Konopka, Kaley Walker, and Martin Riese
Atmos. Chem. Phys., 17, 7055–7066, https://doi.org/10.5194/acp-17-7055-2017, https://doi.org/10.5194/acp-17-7055-2017, 2017
Short summary
Short summary
Pollution transport from the surface to the stratosphere within the Asian summer monsoon circulation may cause harmful effects on stratospheric chemistry and climate. We investigate air mass transport from the monsoon anticyclone into the stratosphere, combining model simulations with satellite trace gas measurements. We show evidence for two transport pathways from the monsoon: (i) into the tropical stratosphere and (ii) into the Northern Hemisphere extratropical lower stratosphere.
Jennifer Ostermöller, Harald Bönisch, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 17, 3785–3797, https://doi.org/10.5194/acp-17-3785-2017, https://doi.org/10.5194/acp-17-3785-2017, 2017
Short summary
Short summary
We analysed the temporal evolution of fractional release factors (FRFs) from EMAC model simulations for several halocarbons and nitrous oxide. The current formulation of FRFs yields values that depend on the tropospheric trend of the species. This is a problematic issue for the application of FRF in the calculation of steady-state quantities (e.g. ODP). Including a loss term in the calculation, we develop a new formulation of FRF and find that the time dependence can almost be compensated.
Sabine Brinkop, Martin Dameris, Patrick Jöckel, Hella Garny, Stefan Lossow, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8125–8140, https://doi.org/10.5194/acp-16-8125-2016, https://doi.org/10.5194/acp-16-8125-2016, 2016
Short summary
Short summary
This study investigates the water vapour decline in the stratosphere beginning in the year 2000 and other similarly strong stratospheric water vapour reductions. The driving forces are tropical sea surface temperature (SST) changes due to coincidence with a preceding ENSO event and supported by the west to east change of the QBO.
There are indications that both SSTs and the specific dynamical state of the atmosphere contribute to the long period of low water vapour values from 2001 to 2006.
Michael Löffler, Sabine Brinkop, and Patrick Jöckel
Atmos. Chem. Phys., 16, 6547–6562, https://doi.org/10.5194/acp-16-6547-2016, https://doi.org/10.5194/acp-16-6547-2016, 2016
Short summary
Short summary
After the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991, stratospheric water vapour is significantly increased. This results from increased stratospheric heating rates due to volcanic aerosol and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as important sources for the additional water vapour in the stratosphere.
Laura Thölix, Leif Backman, Rigel Kivi, and Alexey Yu. Karpechko
Atmos. Chem. Phys., 16, 4307–4321, https://doi.org/10.5194/acp-16-4307-2016, https://doi.org/10.5194/acp-16-4307-2016, 2016
J. Aschmann, J. P. Burrows, C. Gebhardt, A. Rozanov, R. Hommel, M. Weber, and A. M. Thompson
Atmos. Chem. Phys., 14, 12803–12814, https://doi.org/10.5194/acp-14-12803-2014, https://doi.org/10.5194/acp-14-12803-2014, 2014
Short summary
Short summary
This study compares observations and simulation results of ozone in the lower tropical stratosphere. It shows that ozone in this region decreased from 1985 up to about 2002, which is consistent with an increase in tropical upwelling predicted by climate models. However, the decrease effectively stops after 2002, indicating that significant changes in tropical upwelling have occurred. The most important factor appears to be that the vertical ascent in the tropics is no longer accelerating.
S. Fadnavis, M. G. Schultz, K. Semeniuk, A. S. Mahajan, L. Pozzoli, S. Sonbawne, S. D. Ghude, M. Kiefer, and E. Eckert
Atmos. Chem. Phys., 14, 12725–12743, https://doi.org/10.5194/acp-14-12725-2014, https://doi.org/10.5194/acp-14-12725-2014, 2014
Short summary
Short summary
The Asian summer monsoon transports pollutants from local emission sources to the upper troposphere and lower stratosphere (UTLS). The increasing trend of these pollutants may have climatic impact. This study addresses the impact of convectively lifted Indian and Chinese emissions on the ULTS. Sensitivity experiments with emission changes in particular regions show that Chinese emissions have a greater impact on the concentrations of NOY species than Indian emissions.
J. S. Knibbe, R. J. van der A, and A. T. J. de Laat
Atmos. Chem. Phys., 14, 8461–8482, https://doi.org/10.5194/acp-14-8461-2014, https://doi.org/10.5194/acp-14-8461-2014, 2014
M. Abalos, F. Ploeger, P. Konopka, W. J. Randel, and E. Serrano
Atmos. Chem. Phys., 13, 10787–10794, https://doi.org/10.5194/acp-13-10787-2013, https://doi.org/10.5194/acp-13-10787-2013, 2013
M. R. Schoeberl, A. E. Dessler, and T. Wang
Atmos. Chem. Phys., 13, 7783–7793, https://doi.org/10.5194/acp-13-7783-2013, https://doi.org/10.5194/acp-13-7783-2013, 2013
J. M. Siddaway, S. V. Petelina, D. J. Karoly, A. R. Klekociuk, and R. J. Dargaville
Atmos. Chem. Phys., 13, 4413–4427, https://doi.org/10.5194/acp-13-4413-2013, https://doi.org/10.5194/acp-13-4413-2013, 2013
F. Khosrawi, R. Müller, J. Urban, M. H. Proffitt, G. Stiller, M. Kiefer, S. Lossow, D. Kinnison, F. Olschewski, M. Riese, and D. Murtagh
Atmos. Chem. Phys., 13, 3619–3641, https://doi.org/10.5194/acp-13-3619-2013, https://doi.org/10.5194/acp-13-3619-2013, 2013
J. A. Schmidt, M. S. Johnson, S. Hattori, N. Yoshida, S. Nanbu, and R. Schinke
Atmos. Chem. Phys., 13, 1511–1520, https://doi.org/10.5194/acp-13-1511-2013, https://doi.org/10.5194/acp-13-1511-2013, 2013
H. E. Rieder, L. Frossard, M. Ribatet, J. Staehelin, J. A. Maeder, S. Di Rocco, A. C. Davison, T. Peter, P. Weihs, and F. Holawe
Atmos. Chem. Phys., 13, 165–179, https://doi.org/10.5194/acp-13-165-2013, https://doi.org/10.5194/acp-13-165-2013, 2013
J. M. Castanheira, T. R. Peevey, C. A. F. Marques, and M. A. Olsen
Atmos. Chem. Phys., 12, 10195–10208, https://doi.org/10.5194/acp-12-10195-2012, https://doi.org/10.5194/acp-12-10195-2012, 2012
M. R. Schoeberl, A. E. Dessler, and T. Wang
Atmos. Chem. Phys., 12, 6475–6487, https://doi.org/10.5194/acp-12-6475-2012, https://doi.org/10.5194/acp-12-6475-2012, 2012
B. Chen, X. D. Xu, S. Yang, and T. L. Zhao
Atmos. Chem. Phys., 12, 5827–5839, https://doi.org/10.5194/acp-12-5827-2012, https://doi.org/10.5194/acp-12-5827-2012, 2012
S. Dhomse, M. P. Chipperfield, W. Feng, and J. D. Haigh
Atmos. Chem. Phys., 11, 12773–12786, https://doi.org/10.5194/acp-11-12773-2011, https://doi.org/10.5194/acp-11-12773-2011, 2011
A. J. G. Baumgaertner, A. Seppälä, P. Jöckel, and M. A. Clilverd
Atmos. Chem. Phys., 11, 4521–4531, https://doi.org/10.5194/acp-11-4521-2011, https://doi.org/10.5194/acp-11-4521-2011, 2011
J. Flemming, A. Inness, L. Jones, H. J. Eskes, V. Huijnen, M. G. Schultz, O. Stein, D. Cariolle, D. Kinnison, and G. Brasseur
Atmos. Chem. Phys., 11, 1961–1977, https://doi.org/10.5194/acp-11-1961-2011, https://doi.org/10.5194/acp-11-1961-2011, 2011
H. E. Rieder, J. Staehelin, J. A. Maeder, T. Peter, M. Ribatet, A. C. Davison, R. Stübi, P. Weihs, and F. Holawe
Atmos. Chem. Phys., 10, 10033–10045, https://doi.org/10.5194/acp-10-10033-2010, https://doi.org/10.5194/acp-10-10033-2010, 2010
T. von Clarmann, G. Stiller, U. Grabowski, E. Eckert, and J. Orphal
Atmos. Chem. Phys., 10, 6737–6747, https://doi.org/10.5194/acp-10-6737-2010, https://doi.org/10.5194/acp-10-6737-2010, 2010
J. Aschmann, B.-M. Sinnhuber, E. L. Atlas, and S. M. Schauffler
Atmos. Chem. Phys., 9, 9237–9247, https://doi.org/10.5194/acp-9-9237-2009, https://doi.org/10.5194/acp-9-9237-2009, 2009
Cited articles
Aschmann, J., Sinnhuber, B.-M., Atlas, E. L., and Schauffler, S. M.: Modeling the transport of very short-lived substances into the tropical upper troposphere and lower stratosphere, Atmos. Chem. Phys., 9, 9237–9247, https://doi.org/10.5194/acp-9-9237-2009, 2009.
Austin, J., Wilson, J., Li, F., and Vomel, H.: Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry-climate model simulations, J. Atmos. Sci., 64, 905–921, https://doi.org/10.1175/JAS3866.1, 2007.
Austin, J., Horowitz, L. W., Schwarzkopf, M. D., Wilson, R. J., and Levy, H.: Stratospheric ozone and temperature simulated from the preindustrial era to the present day, J. Climate, 26, 3528–3543, https://doi.org/10.1175/JCLI-D-12-00162.1, 2013.
Braesicke, P., Keeble, J., Yang, X., Stiller, G., Kellmann, S., Abraham, N. L., Archibald, A., Telford, P., and Pyle, J. A.: Circulation anomalies in the Southern Hemisphere and ozone changes, Atmos. Chem. Phys., 13, 10677–10688, https://doi.org/10.5194/acp-13-10677-2013, 2013.
Brühl, C., Lelieveld, J., Crutzen, P. J., and Tost, H.: The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate, Atmos. Chem. Phys., 12, 1239–1253, https://doi.org/10.5194/acp-12-1239-2012, 2012.
Brühl, C., Lelieveld, J., Tost, H., Höpfner, M., and Glatthor, N.: Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC, J. Geophys. Res.-Atmos., 120, 2103–2118, https://doi.org/10.1002/2014JD022430, 2015.
Butchart, N., Scaife, A. A., Bourqui, M., de Grandpre, J., Hare, S. H. E., Kettleborough, J., Langematz, U., Manzini, E., Sassi, F., Shibata, K., Shindell, D., and Sigmond, M.: Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation, Clim. Dynam., 27, 727–741, https://doi.org/10.1007/s00382-006-0162-4, 2006.
Fernandez, R. P., Kinnison, D. E., Lamarque, J.-F., Tilmes, S., and Saiz-Lopez, A.: Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century, Atmos. Chem. Phys., 17, 1673–1688, https://doi.org/10.5194/acp-17-1673-2017, 2017.
Fujino, J., Nair, R., Kainuma, M., Masui, T., and Matsuoka, Y.: Multi-gas mitigation analysis on stabilization scenarios using aim global model, Energ. J., 343–353, 2006.
Glatthor, N., Höpfner, M., Baker, I. T., Berry, J., Campbell, J. E., Kawa, S. R., Krysztofiak, G., Leyser, A., Sinnhuber, B.-M., Stiller, G. P., Stinecipher, J., and von Clarmann, T.: Tropical sources and sinks of carbonyl sulfide observed from space, Geophys. Res. Lett., 2015GL066293, https://doi.org/10.1002/2015GL066293, 2015.
Global Ozone Research and Monitoring Project: Scientific Assessment of Ozone Depletion: 2010, 2011.
Global Ozone Research and Monitoring Project: Scientific Assessment of Ozone Depletion: 2014, 2014.
Hijioka, Y., Matsuoka, Y., Nishimoto, H., Masui, M., and Kainuma, M.: Global GHG emissions scenarios under GHG concentration stabilization targets, J. Glob. Env. Eng., 13, 97–108, 2008.
Hossaini, R., Chipperfield, M. P., Monge-Sanz, B. M., Richards, N. A. D., Atlas, E., and Blake, D. R.: Bromoform and dibromomethane in the tropics: a 3-D model study of chemistry and transport, Atmos. Chem. Phys., 10, 719–735, https://doi.org/10.5194/acp-10-719-2010, 2010.
Hossaini, R., Chipperfield, M. P., Dhomse, S., Ordonez, C., Saiz-Lopez, A., Abraham, N. L., Archibald, A., Braesicke, P., Telford, P., Warwick, N., Yang, X., and Pyle, J.: Modelling future changes to the stratospheric source gas injection of biogenic bromocarbons, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL053401, 2012.
Hossaini, R., Chipperfield, M. P., Montzka, S. A., Rap, A., Dhomse, S., and Feng, W.: Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone, Nat. Geosci., 8, 186–190, https://doi.org/10.1038/NGEO2363, 2015.
Hossaini, R., Patra, P. K., Leeson, A. A., Krysztofiak, G., Abraham, N. L., Andrews, S. J., Archibald, A. T., Aschmann, J., Atlas, E. L., Belikov, D. A., Bönisch, H., Carpenter, L. J., Dhomse, S., Dorf, M., Engel, A., Feng, W., Fuhlbrügge, S., Griffiths, P. T., Harris, N. R. P., Hommel, R., Keber, T., Krüger, K., Lennartz, S. T., Maksyutov, S., Mantle, H., Mills, G. P., Miller, B., Montzka, S. A., Moore, F., Navarro, M. A., Oram, D. E., Pfeilsticker, K., Pyle, J. A., Quack, B., Robinson, A. D., Saikawa, E., Saiz-Lopez, A., Sala, S., Sinnhuber, B.-M., Taguchi, S., Tegtmeier, S., Lidster, R. T., Wilson, C., and Ziska, F.: A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine, Atmos. Chem. Phys., 16, 9163-9187, https://doi.org/10.5194/acp-16-9163-2016, 2016.
Hughes, C., Johnson, M., Utting, R., Turner, S., Malin, G., Clarke, A., and Liss, P. S.: Microbial control of bromocarbon concentrations in coastal waters of the western Antarctic Peninsula, Mar. Chem., 151, 35–46, https://doi.org/10.1016/j.marchem.2013.01.007, 2013.
IPCC – Intergovernmental Panel on Climate Change: Climate Change 2013: The Physical Science Basis, 2013.
Jöckel, P., Kerkweg, A., Buchholz-Dietsch, J., Tost, H., Sander, R., and Pozzer, A.: Technical Note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER, Atmos. Chem. Phys., 8, 1677–1687, https://doi.org/10.5194/acp-8-1677-2008, 2008.
Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717–752, https://doi.org/10.5194/gmd-3-717-2010, 2010.
Jöckel, P., Tost, H., Pozzer, A., Kunze, M., Kirner, O., Brenninkmeijer, C. A. M., Brinkop, S., Cai, D. S., Dyroff, C., Eckstein, J., Frank, F., Garny, H., Gottschaldt, K.-D., Graf, P., Grewe, V., Kerkweg, A., Kern, B., Matthes, S., Mertens, M., Meul, S., Neumaier, M., Nützel, M., Oberländer-Hayn, S., Ruhnke, R., Runde, T., Sander, R., Scharffe, D., and Zahn, A.: Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version_2.51, Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, 2016.
Kerkweg, A., Buchholz, J., Ganzeveld, L., Pozzer, A., Tost, H., and Jöckel, P.: Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy), Atmos. Chem. Phys., 6, 4617–4632, https://doi.org/10.5194/acp-6-4617-2006, 2006a.
Kerkweg, A., Sander, R., Tost, H., and Jöckel, P.: Technical note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the Modular Earth Submodel System (MESSy), Atmos. Chem. Phys., 6, 3603–3609, https://doi.org/10.5194/acp-6-3603-2006, 2006b.
Kettle, A. J., Kuhn, U., von Hobe, M., Kesselmeier, J., and Andreae, M. O.: Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks, J. Geophys. Res.-Atmos., 107, 1–16, https://doi.org/10.1029/2002JD002187, 2002.
Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L., Buitenhuis, E., Doney, S. C., Dunne, J., Hashioka, T., Hauck, J., Hirata, T., John, J., Le Quéré, C., Lima, I. D., Nakano, H., Seferian, R., Totterdell, I., Vichi, M., and Völker, C.: Drivers and uncertainties of future global marine primary production in marine ecosystem models, Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, 2015.
Laufkötter, C., Vogt, M., Gruber, N., Aumont, O., Bopp, L., Doney, S. C., Dunne, J. P., Hauck, J., John, J. G., Lima, I. D., Seferian, R., and Völker, C.: Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem, Biogeosciences, 13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, 2016.
Lennartz, S. T., Krysztofiak, G., Marandino, C. A., Sinnhuber, B.-M., Tegtmeier, S., Ziska, F., Hossaini, R., Krüger, K., Montzka, S. A., Atlas, E., Oram, D. E., Keber, T., Bönisch, H., and Quack, B.: Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions, Atmos. Chem. Phys., 15, 11753–11772, https://doi.org/10.5194/acp-15-11753-2015, 2015.
Li, F., Austin, J., and Wilson, J.: The strength of the Brewer-Dobson circulation in a changing climate: coupled chemistry-climate model simulations, J. Climate, 21, 40–57, https://doi.org/10.1175/2007JCLI1663.1, 2008.
Liang, Q., Stolarski, R. S., Kawa, S. R., Nielsen, J. E., Douglass, A. R., Rodriguez, J. M., Blake, D. R., Atlas, E. L., and Ott, L. E.: Finding the missing stratospheric Bry: a global modeling study of CHBr3 and CH2Br2, Atmos. Chem. Phys., 10, 2269–2286, https://doi.org/10.5194/acp-10-2269-2010, 2010.
Liang, Q., Atlas, E., Blake, D., Dorf, M., Pfeilsticker, K., and Schauffler, S.: Convective transport of very short lived bromocarbons to the stratosphere, Atmos. Chem. Phys., 14, 5781–5792, https://doi.org/10.5194/acp-14-5781-2014, 2014.
Lin, C. Y. and Manley, S. L.: Bromoform production from seawater treated with bromoperoxidase, Limnol. Oceanogr., 57, 1857–1866, https://doi.org/10.4319/lo.2012.57.6.1857, 2012.
Löffler, M., Brinkop, S., and Jöckel, P.: Impact of major volcanic eruptions on stratospheric water vapour, Atmos. Chem. Phys., 16, 6547–6562, https://doi.org/10.5194/acp-16-6547-2016, 2016.
Michou, M., Saint-Martin, D., Teyssèdre, H., Alias, A., Karcher, F., Olivié, D., Voldoire, A., Josse, B., Peuch, V.-H., Clark, H., Lee, J. N., and Chéroux, F.: A new version of the CNRM Chemistry-Climate Model, CNRM-CCM: description and improvements from the CCMVal-2 simulations, Geosci. Model Dev., 4, 873–900, https://doi.org/10.5194/gmd-4-873-2011, 2011.
Moore, R. M., Webb, M., Tokarczyk, R., and Wever, R.: Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures, J. Geophys. Res.-Oceans, 101, 20899–20908, https://doi.org/10.1029/96JC01248, 1996.
Morgenstern, O., Hegglin, M. I., Rozanov, E., O'Connor, F. M., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Butchart, N., Chipperfield, M. P., Deushi, M., Dhomse, S. S., Garcia, R. R., Hardiman, S. C., Horowitz, L. W., Jöckel, P., Josse, B., Kinnison, D., Lin, M., Mancini, E., Manyin, M. E., Marchand, M., Marécal, V., Michou, M., Oman, L. D., Pitari, G., Plummer, D. A., Revell, L. E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tanaka, T. Y., Tilmes, S., Yamashita, Y., Yoshida, K., and Zeng, G.: Review of the global models used within phase 1 of the ChemistryClimate Model Initiative (CCMI), Geosci. Model Dev., 10, 639-671, https://doi.org/10.5194/gmd-10-639-2017, 2017.
Muthers, S., Kuchar, A., Stenke, A., Schmitt, J., Anet, J. G., Raible, C. C., and Stocker, T. F.: Stratospheric age of air variations between 1600 and 2100, Geophys. Res. Lett., 43, 5409–5418, https://doi.org/10.1002/2016GL068734, 2016.
Nightingale, P. D., Liss, P. S., and Schlosser, P.: Measurements of air-sea gas transfer during an open ocean algal bloom, Geophys. Res. Lett., 27, 2117–2120, https://doi.org/10.1029/2000GL011541, 2000.
Oberländer-Hayn, S., Gerber, E. P., Abalichin, J., Akiyoshi, H., Kerschbaumer, A., Kubin, A., Kunze, M., Langematz, U., Meul, S., Michou, M., Morgenstern, O., and Oman, L. D.: Is the Brewer-Dobson circulation increasing or moving upward?, Geophys. Res. Lett., 43, 1772–1779, https://doi.org/10.1002/2015GL067545, 2016.
Oman, L. D., Douglass, A. R., Salawitch, R. J., Canty, T. P., Ziemke, J. R., and Manyin, M.: The effect of representing bromine from VSLS on the simulation and evolution of Antarctic ozone, Geophys. Res. Lett., 43, 9869–9876, https://doi.org/10.1002/2016GL070471, 2016.
Ordóñez, C., Lamarque, J.-F., Tilmes, S., Kinnison, D. E., Atlas, E. L., Blake, D. R., Sousa Santos, G., Brasseur, G., and Saiz-Lopez, A.: Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources, Atmos. Chem. Phys., 12, 1423–1447, https://doi.org/10.5194/acp-12-1423-2012, 2012.
Pozzer, A., Jöckel, P., Sander, R., Williams, J., Ganzeveld, L., and Lelieveld, J.: Technical Note: The MESSy-submodel AIRSEA calculating the air-sea exchange of chemical species, Atmos. Chem. Phys., 6, 5435–5444, https://doi.org/10.5194/acp-6-5435-2006, 2006.
Pringle, K. J., Tost, H., Message, S., Steil, B., Giannadaki, D., Nenes, A., Fountoukis, C., Stier, P., Vignati, E., and Lelieveld, J.: Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1), Geosci. Model Dev., 3, 391–412, https://doi.org/10.5194/gmd-3-391-2010, 2010.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W. Q.: An improved in situ and satellite SST analysis for climate, J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Sander, R., Baumgaertner, A., Gromov, S., Harder, H., Jöckel, P., Kerkweg, A., Kubistin, D., Regelin, E., Riede, H., Sandu, A., Taraborrelli, D., Tost, H., and Xie, Z.-Q.: The atmospheric chemistry box model CAABA/MECCA-3.0, Geosci. Model Dev., 4, 373–380, https://doi.org/10.5194/gmd-4-373-2011, 2011a.
Sander, S. P., Burkholder, J. B., Abbatt, J. P. D., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Tech. Rep. 17, National Aeronautics and Space Administration, Jet Propulsion Laboratory, 2011b.
Sander, R., Jöckel, P., Kirner, O., Kunert, A. T., Landgraf, J., and Pozzer, A.: The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP), Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014, 2014.
Sinnhuber, B.-M. and Meul, S.: Simulating the impact of emissions of brominated very short lived substances on past stratospheric ozone trends, Geophys. Res. Lett., 42, 2449–2456, https://doi.org/10.1002/2014GL062975, 2015.
Sinnhuber, B.-M., Sheode, N., Sinnhuber, M., Chipperfield, M. P., and Feng, W.: The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study, Atmos. Chem. Phys., 9, 2863–2871, https://doi.org/10.5194/acp-9-2863-2009, 2009.
Stemmler, I., Hense, I., and Quack, B.: Marine sources of bromoform in the global open ocean – global patterns and emissions, Biogeosciences, 12, 1967–1981, https://doi.org/10.5194/bg-12-1967-2015, 2015.
Tost, H., Jöckel, P., Kerkweg, A., Sander, R., and Lelieveld, J.: Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling, Atmos. Chem. Phys., 6, 565–574, https://doi.org/10.5194/acp-6-565-2006, 2006.
Voldoire, A., Sanchez-Gomez, E., Salas y Melia, D., Decharme, B., Cassou, C., Senesi, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Deque, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin, F.: The CNRM-CM5.1 global climate model: description and basic evaluation, Clim. Dynam., 40, 2091–2121, https://doi.org/10.1007/s00382-011-1259-y, 2013.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res.-Oceans, 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
Wanninkhof, R. and McGillis, W. R.: A cubic relationship between air-sea CO2 exchange and wind speed, Geophys. Res. Lett., 26, 1889–1892, https://doi.org/10.1029/1999GL900363, 1999.
Warwick, N. J., Pyle, J. A., Carver, G. D., Yang, X., Savage, N. H., O'Connor, F. M., and Cox, R. A.: Global modeling of biogenic bromocarbons, J. Geophys. Res.-Atmos., 111, https://doi.org/10.1029/2006JD007264, 2006.
Wilcox, L. J., Hoskins, B. J., and Shine, K. P.: A global blended tropopause based on ERA data. Part II: Trends and tropical broadening, Q. J. Roy. Meteor. Soc., 138, 576–584, https://doi.org/10.1002/qj.910, 2012.
Yang, X., Abraham, N. L., Archibald, A. T., Braesicke, P., Keeble, J., Telford, P. J., Warwick, N. J., and Pyle, J. A.: How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short-lived bromocarbons?, Atmos. Chem. Phys., 14, 10431–10438, https://doi.org/10.5194/acp-14-10431-2014, 2014.
Ziska, F., Quack, B., Abrahamsson, K., Archer, S. D., Atlas, E., Bell, T., Butler, J. H., Carpenter, L. J., Jones, C. E., Harris, N. R. P., Hepach, H., Heumann, K. G., Hughes, C., Kuss, J., Krüger, K., Liss, P., Moore, R. M., Orlikowska, A., Raimund, S., Reeves, C. E., Reifenhäuser, W., Robinson, A. D., Schall, C., Tanhua, T., Tegtmeier, S., Turner, S., Wang, L., Wallace, D., Williams, J., Yamamoto, H., Yvon-Lewis, S., and Yokouchi, Y.: Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide, Atmos. Chem. Phys., 13, 8915–8934, https://doi.org/10.5194/acp-13-8915-2013, 2013.
Ziska, F., Quack, B., Tegtmeier, S., Stemmler, I., and Krüger, K.: Future emissions of marine halogenated very-short lived substances under climate change, J. Atmos. Chem., 74, 245–260, https://doi.org/10.1007/s10874-016-9355-3, 2017.
Short summary
Brominated very short-lived source gases (VSLS) contribute significantly to the tropospheric and stratospheric bromine loading. We find an increase of future ocean–atmosphere flux of brominated VSLS of 8–10 % compared to present day. A decrease in the tropospheric mixing ratios of VSLS and an increase in the lower stratosphere are attributed to changes in atmospheric chemistry and transport. Bromine impact on stratospheric ozone at the end of the 21st century is reduced compared to present day.
Brominated very short-lived source gases (VSLS) contribute significantly to the tropospheric and...
Altmetrics
Final-revised paper
Preprint