Articles | Volume 16, issue 10
Atmos. Chem. Phys., 16, 6041–6070, 2016
https://doi.org/10.5194/acp-16-6041-2016
Atmos. Chem. Phys., 16, 6041–6070, 2016
https://doi.org/10.5194/acp-16-6041-2016

Research article 18 May 2016

Research article | 18 May 2016

Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005

Marje Prank et al.

Related authors

Multi-model ensemble simulations of olive pollen distribution in Europe in 2014: current status and outlook
Mikhail Sofiev, Olga Ritenberga, Roberto Albertini, Joaquim Arteta, Jordina Belmonte, Carmi Geller Bernstein, Maira Bonini, Sevcan Celenk, Athanasios Damialis, John Douros, Hendrik Elbern, Elmar Friese, Carmen Galan, Gilles Oliver, Ivana Hrga, Rostislav Kouznetsov, Kai Krajsek, Donat Magyar, Jonathan Parmentier, Matthieu Plu, Marje Prank, Lennart Robertson, Birthe Marie Steensen, Michel Thibaudon, Arjo Segers, Barbara Stepanovich, Alvaro M. Valdebenito, Julius Vira, and Despoina Vokou
Atmos. Chem. Phys., 17, 12341–12360, https://doi.org/10.5194/acp-17-12341-2017,https://doi.org/10.5194/acp-17-12341-2017, 2017
Short summary
Evaluation and error apportionment of an ensemble of atmospheric chemistry transport modeling systems: multivariable temporal and spatial breakdown
Efisio Solazzo, Roberto Bianconi, Christian Hogrefe, Gabriele Curci, Paolo Tuccella, Ummugulsum Alyuz, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Johannes Bieser, Jørgen Brandt, Jesper H. Christensen, Augistin Colette, Xavier Francis, Andrea Fraser, Marta Garcia Vivanco, Pedro Jiménez-Guerrero, Ulas Im, Astrid Manders, Uarporn Nopmongcol, Nutthida Kitwiroon, Guido Pirovano, Luca Pozzoli, Marje Prank, Ranjeet S. Sokhi, Alper Unal, Greg Yarwood, and Stefano Galmarini
Atmos. Chem. Phys., 17, 3001–3054, https://doi.org/10.5194/acp-17-3001-2017,https://doi.org/10.5194/acp-17-3001-2017, 2017
Short summary
Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin
M. Sofiev, J. Vira, R. Kouznetsov, M. Prank, J. Soares, and E. Genikhovich
Geosci. Model Dev., 8, 3497–3522, https://doi.org/10.5194/gmd-8-3497-2015,https://doi.org/10.5194/gmd-8-3497-2015, 2015
Short summary
MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe
M. Sofiev, U. Berger, M. Prank, J. Vira, J. Arteta, J. Belmonte, K.-C. Bergmann, F. Chéroux, H. Elbern, E. Friese, C. Galan, R. Gehrig, D. Khvorostyanov, R. Kranenburg, U. Kumar, V. Marécal, F. Meleux, L. Menut, A.-M. Pessi, L. Robertson, O. Ritenberga, V. Rodinkova, A. Saarto, A. Segers, E. Severova, I. Sauliene, P. Siljamo, B. M. Steensen, E. Teinemaa, M. Thibaudon, and V.-H. Peuch
Atmos. Chem. Phys., 15, 8115–8130, https://doi.org/10.5194/acp-15-8115-2015,https://doi.org/10.5194/acp-15-8115-2015, 2015
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Effectiveness of emission control in reducing PM2.5 pollution in central China during winter haze episodes under various potential synoptic controls
Yingying Yan, Yue Zhou, Shaofei Kong, Jintai Lin, Jian Wu, Huang Zheng, Zexuan Zhang, Aili Song, Yongqing Bai, Zhang Ling, Dantong Liu, and Tianliang Zhao
Atmos. Chem. Phys., 21, 3143–3162, https://doi.org/10.5194/acp-21-3143-2021,https://doi.org/10.5194/acp-21-3143-2021, 2021
Short summary
Assessment of meteorology vs. control measures in the China fine particular matter trend from 2013 to 2019 by an environmental meteorology index
Sunling Gong, Hongli Liu, Bihui Zhang, Jianjun He, Hengde Zhang, Yaqiang Wang, Shuxiao Wang, Lei Zhang, and Jie Wang
Atmos. Chem. Phys., 21, 2999–3013, https://doi.org/10.5194/acp-21-2999-2021,https://doi.org/10.5194/acp-21-2999-2021, 2021
Short summary
A global model perturbed parameter ensemble study of secondary organic aerosol formation
Kamalika Sengupta, Kirsty Pringle, Jill S. Johnson, Carly Reddington, Jo Browse, Catherine E. Scott, and Ken Carslaw
Atmos. Chem. Phys., 21, 2693–2723, https://doi.org/10.5194/acp-21-2693-2021,https://doi.org/10.5194/acp-21-2693-2021, 2021
Short summary
Assimilating aerosol optical properties related to size and absorption from POLDER/PARASOL with an ensemble data assimilation system
Athanasios Tsikerdekis, Nick A. J. Schutgens, and Otto P. Hasekamp
Atmos. Chem. Phys., 21, 2637–2674, https://doi.org/10.5194/acp-21-2637-2021,https://doi.org/10.5194/acp-21-2637-2021, 2021
Short summary
Changes in black carbon emissions over Europe due to COVID-19 lockdowns
Nikolaos Evangeliou, Stephen M. Platt, Sabine Eckhardt, Cathrine Lund Myhre, Paolo Laj, Lucas Alados-Arboledas, John Backman, Benjamin T. Brem, Markus Fiebig, Harald Flentje, Angela Marinoni, Marco Pandolfi, Jesus Yus-Dìez, Natalia Prats, Jean P. Putaud, Karine Sellegri, Mar Sorribas, Konstantinos Eleftheriadis, Stergios Vratolis, Alfred Wiedensohler, and Andreas Stohl
Atmos. Chem. Phys., 21, 2675–2692, https://doi.org/10.5194/acp-21-2675-2021,https://doi.org/10.5194/acp-21-2675-2021, 2021
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res. Atmos., 105, 6837–6844, 2000.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Alastuey, A., Minguillón, M. C., Pérez, N., Querol, X., Viana, M. and Leeuw, F. De: PM 10 measurement methods and correction factors?: 2009 status report, available at: http://acm.eionet.europa.eu/reports/ETCACM_TP_2011_21_PM10Equivalence (last access: 12 May 2016), 2012.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.
Download
Short summary
Aerosol composition in Europe was simulated by four chemistry transport models and compared to observations to identify the most prominent areas for model improvement. Notable differences were found between the models' predictions, attributable to different treatment or omission of aerosol sources and processes. All models underestimated the observed concentrations by 10–60 %, mostly due to under-predicting the carbonaceous and mineral particles and omitting the aerosol-bound water.
Altmetrics
Final-revised paper
Preprint