Articles | Volume 16, issue 2
https://doi.org/10.5194/acp-16-417-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-417-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Global tropospheric ozone variations from 2003 to 2011 as seen by SCIAMACHY
F. Ebojie
CORRESPONDING AUTHOR
Institute of Environmental Physics (IUP), University of Bremen,
P.O. Box 330440, 28334 Bremen, Germany
J. P. Burrows
Institute of Environmental Physics (IUP), University of Bremen,
P.O. Box 330440, 28334 Bremen, Germany
C. Gebhardt
Institute of Environmental Physics (IUP), University of Bremen,
P.O. Box 330440, 28334 Bremen, Germany
A. Ladstätter-Weißenmayer
Institute of Environmental Physics (IUP), University of Bremen,
P.O. Box 330440, 28334 Bremen, Germany
C. von Savigny
Institute of Physics,
Ernst-Moritz-Arndt University of Greifswald, Felix-Hausdorff-Str. 6, 17489
Greifswald, Germany
A. Rozanov
Institute of Environmental Physics (IUP), University of Bremen,
P.O. Box 330440, 28334 Bremen, Germany
Institute of Environmental Physics (IUP), University of Bremen,
P.O. Box 330440, 28334 Bremen, Germany
H. Bovensmann
Institute of Environmental Physics (IUP), University of Bremen,
P.O. Box 330440, 28334 Bremen, Germany
Related authors
F. Ebojie, C. von Savigny, A. Ladstätter-Weißenmayer, A. Rozanov, M. Weber, K.-U. Eichmann, S. Bötel, N. Rahpoe, H. Bovensmann, and J. P. Burrows
Atmos. Meas. Tech., 7, 2073–2096, https://doi.org/10.5194/amt-7-2073-2014, https://doi.org/10.5194/amt-7-2073-2014, 2014
Maximilian Reuter, Michael Hilker, Stefan Noël, Antonio Di Noia, Michael Weimer, Oliver Schneising, Michael Buchwitz, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 18, 241–264, https://doi.org/10.5194/amt-18-241-2025, https://doi.org/10.5194/amt-18-241-2025, 2025
Short summary
Short summary
Carbon dioxide (CO2) and methane (CH4) are the main anthropogenic greenhouse gases. The European Copernicus CO2 monitoring satellite mission CO2M will provide measurements of their atmospheric concentrations, but the accuracy requirements are demanding and conventional retrieval methods computationally expensive. We present a new retrieval algorithm based on artificial neural networks that has the potential to meet the stringent requirements of the CO2M mission with minimal computational effort.
Seunghwan Seo, Si-Wan Kim, Kyoung-Min Kim, Andreas Richter, Kezia Lange, John P. Burrows, Junsung Park, Hyunkee Hong, Hanlim Lee, Ukkyo Jeong, Jung-Hun Woo, and Jhoon Kim
Atmos. Meas. Tech., 18, 115–128, https://doi.org/10.5194/amt-18-115-2025, https://doi.org/10.5194/amt-18-115-2025, 2025
Short summary
Short summary
Over the Seoul metropolitan area, tropospheric NO2 vertical column densities from the Geostationary Environment Monitoring Spectrometer show distinct seasonal features. Also, varying a priori data have substantial impacts on the observed NO2 columns. The a priori data from different chemical transport models resulted in differences of up to −18.3 %. Notably, diurnal patterns of observed NO2 columns are similar for all datasets, although their a priori data exhibit contrasting diurnal patterns.
Carlo Arosio, Viktoria Sofieva, Andrea Orfanoz-Cheuquelaf, Alexei Rozanov, Klaus-Peter Heue, Edward Malina, Ryan M. Stauffer, David Tarasick, Roeland Van Malderen, Jerry R. Ziemke, and Mark Weber
EGUsphere, https://doi.org/10.5194/egusphere-2024-3737, https://doi.org/10.5194/egusphere-2024-3737, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Tropospheric ozone affects air quality and climate, being a pollutant and a greenhouse gas. We analysed satellite data of tropospheric ozone that combine two types of observations: one providing stratospheric ozone and another measuring total ozone. We compare common climatological features and study the influence of the tropopause (troposphere to stratosphere boundary) on the results. We also examine trends over the last 20 years and compare satellite data with ozonesondes to identify drifts.
Phuc Thi Minh Ha, Yugo Kanaya, Kazuyo Yamaji, Syuichi Itahashi, Satoru Chatani, Takashi Sekiya, Maria Dolores Andrés Hernández, John Philip Burrows, Hans Schlager, Michael Lichtenstern, Mira Poehlker, and Bruna Holanda
EGUsphere, https://doi.org/10.5194/egusphere-2024-2064, https://doi.org/10.5194/egusphere-2024-2064, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Black carbon and CO are important to climate change. EMeRGe airborne observation can identify the suitability of emission inventories used in CMAQv5.0.2 model for Asian polluted regions. GFEDv4.1s is suitable for fire emissions. Anthropogenic BC and CO emissions from Philippines (REASv2.1) are insufficient. The estimated Chinese emissions in 2018 are 0.65±0.25 TgBC, 166±65 TgCO and 12.4±4.8 PgCO2, suggesting a reduction and increment for China's BC and CO emissions in the HTAPv2.2z inventory.
Alexei Rozanov, Christine Pohl, Carlo Arosio, Adam Bourassa, Klaus Bramstedt, Elizaveta Malinina, Landon Rieger, and John P. Burrows
Atmos. Meas. Tech., 17, 6677–6695, https://doi.org/10.5194/amt-17-6677-2024, https://doi.org/10.5194/amt-17-6677-2024, 2024
Short summary
Short summary
We developed a new algorithm to retrieve vertical distributions of aerosol extinction coefficients in the stratosphere. The algorithm is applied to measurements of scattered solar light from the spaceborne OMPS-LP (Ozone Mapper and Profiler Suite Limb Profiler) instrument. The retrieval results are compared to data from other spaceborne instruments and used to investigate the evolution of the aerosol plume following the eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022.
Viktoria F. Sofieva, Alexei Rozanov, Monika Szelag, John P. Burrows, Christian Retscher, Robert Damadeo, Doug Degenstein, Landon A. Rieger, and Adam Bourassa
Earth Syst. Sci. Data, 16, 5227–5241, https://doi.org/10.5194/essd-16-5227-2024, https://doi.org/10.5194/essd-16-5227-2024, 2024
Short summary
Short summary
Climate-related studies need information about the distribution of stratospheric aerosols, which influence the energy balance of the Earth’s atmosphere. In this work, we present a merged dataset of vertically resolved stratospheric aerosol extinction coefficients, which is derived from data of six limb and occultation satellite instruments. The created aerosol climate record covers the period from October 1984 to December 2023. It can be used in various climate-related studies.
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024, https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Short summary
CHORA, an advanced cloud convective differential technique, enhances the accuracy of tropospheric-ozone retrievals. Unlike the traditional Pacific cloud reference sector scheme, CHORA introduces a local-cloud reference sector and an alternative approach (CLCT) for precision. Analysing monthly averaged TROPOMI data from 2018 to 2022 and validating with SHADOZ ozonesonde data, CLCT outperforms other methods and so is the preferred choice, especially in future geostationary satellite missions.
Kezia Lange, Andreas Richter, Tim Bösch, Bianca Zilker, Miriam Latsch, Lisa K. Behrens, Chisom M. Okafor, Hartmut Bösch, John P. Burrows, Alexis Merlaud, Gaia Pinardi, Caroline Fayt, Martina M. Friedrich, Ermioni Dimitropoulou, Michel Van Roozendael, Steffen Ziegler, Simona Ripperger-Lukosiunaite, Leon Kuhn, Bianca Lauster, Thomas Wagner, Hyunkee Hong, Donghee Kim, Lim-Seok Chang, Kangho Bae, Chang-Keun Song, Jong-Uk Park, and Hanlim Lee
Atmos. Meas. Tech., 17, 6315–6344, https://doi.org/10.5194/amt-17-6315-2024, https://doi.org/10.5194/amt-17-6315-2024, 2024
Short summary
Short summary
Instruments for air quality observations on geostationary satellites provide multiple observations per day and allow for the analysis of the diurnal variation of important air pollutants such as nitrogen dioxide (NO2) over large areas. The South Korean instrument GEMS, launched in February 2020, is the first instrument in geostationary orbit and covers a large part of Asia. Our investigations show the observed diurnal evolution of NO2 at different measurement sites.
Sven Krautwurst, Christian Fruck, Sebastian Wolff, Jakob Borchardt, Oke Huhs, Konstantin Gerilowski, Michał Gałkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Christian Mallaun, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3182, https://doi.org/10.5194/egusphere-2024-3182, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Anomalously high CH4 emissions from landfills in Madrid, Spain, have been observed by satellite measurements in recent years. Our investigations of these waste facilities using passive and active airborne remote sensing measurements confirm these high emission rates with values of up to 13 th-1 during the overflight and show excellent agreement between the two techniques. A large fraction of the emissions is attributed to active landfill sites.
Sandra Wallis, Matthew DeLand, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2165, https://doi.org/10.5194/egusphere-2024-2165, 2024
Short summary
Short summary
The 2022 Hunga eruption emitted about 150 Tg H2O that partly reached the upper polar SH mesosphere in the beginning of 2024. Noctilucent clouds (NLC) did not show a clear perturbation in their occurrence frequency, but the slight increase from mid-January to February could potentially be caused by the additional H2O. It needs 2 years to reach the summer polar mesopause region, analogous to the 1883 Krakatau eruption that is argued to have caused the first sightings of NCLs.
Felix Wrana, Terry Deshler, Christian Löns, Larry W. Thomason, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2942, https://doi.org/10.5194/egusphere-2024-2942, 2024
Short summary
Short summary
There is a natural and globally occurring layer of small droplets (aerosols) in roughly 20 km altitude in the atmosphere. In this work, the size of these aerosols is calculated from satellite measurements for the years 2002 to 2005, which is important for the aerosols cooling effect on Earth's climate. These years are interesting, because there were no large volcanic eruptions that would change the background state of the aerosols. The results are compared to reliable balloon-borne measurements.
Steffen Vanselow, Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Hartmut Boesch, and John P. Burrows
Atmos. Chem. Phys., 24, 10441–10473, https://doi.org/10.5194/acp-24-10441-2024, https://doi.org/10.5194/acp-24-10441-2024, 2024
Short summary
Short summary
We developed an algorithm to automatically detect persistent methane source regions, to quantify their emissions and to determine their source types, by analyzing TROPOMI data from 2018–2021. The over 200 globally detected natural and anthropogenic source regions include small-scale point sources such as individual coal mines and larger-scale source regions such as wetlands and large oil and gas fields.
Falco Monsees, Alexei Rozanov, John P. Burrows, Mark Weber, Annette Rinke, Ralf Jaiser, and Peter von der Gathen
Atmos. Chem. Phys., 24, 9085–9099, https://doi.org/10.5194/acp-24-9085-2024, https://doi.org/10.5194/acp-24-9085-2024, 2024
Short summary
Short summary
Cyclones strongly influence weather predictability but still cannot be fully characterised in the Arctic because of the sparse coverage of meteorological measurements. A potential approach to compensate for this is the use of satellite measurements of ozone, because cyclones impact the tropopause and therefore also ozone. In this study we used this connection to investigate the correlation between ozone and the tropopause in the Arctic and to identify cyclones with satellite ozone observations.
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024, https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary
Short summary
Knowledge of stratospheric aerosol characteristics is important for understanding chemical and climate aerosol feedbacks. Two particle size distribution parameters, the aerosol extinction coefficient and the effective radius, are obtained from SCIAMACHY limb observations. The aerosol characteristics show good agreement with independent data sets from balloon-borne and satellite observations. This data set expands the limited knowledge of stratospheric aerosol characteristics.
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Michael Weimer, Heinrich Bovensmann, John P. Burrows, and Hartmut Bösch
Atmos. Chem. Phys., 24, 7609–7621, https://doi.org/10.5194/acp-24-7609-2024, https://doi.org/10.5194/acp-24-7609-2024, 2024
Short summary
Short summary
Large quantities of CO and CO2 are emitted during conventional steel production. As satellite-based estimates of CO2 emissions at the facility level are challenging, co-emitted CO can indicate the carbon footprint of steel plants. We estimate CO emissions for German steelworks and use CO2 emissions from emissions trading data to derive a sector-specific CO/CO2 emission ratio for the steel industry; it is a prerequisite to use CO as a proxy for CO2 emissions from similar steel production sites.
Mark Weber
Atmos. Meas. Tech., 17, 3597–3604, https://doi.org/10.5194/amt-17-3597-2024, https://doi.org/10.5194/amt-17-3597-2024, 2024
Short summary
Short summary
We investigate how stable the performance of a satellite instrument has to be to be useful for assessing long-term trends in stratospheric ozone. The stability of an instrument is specified in percent per decade and is also called instrument drift. Instrument drifts add to uncertainties of long-term trends. From simulated time series of ozone based on the Monte Carlo approach, we determine stability requirements that are needed to achieve the desired long-term trend uncertainty.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Matthew S. Johnson, Alexei Rozanov, Mark Weber, Nora Mettig, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, Fernando Chouza, Timothy A. Berkoff, Guillaume Gronoff, Kevin B. Strawbridge, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Brandi McCarty, and Larry Twigg
Atmos. Meas. Tech., 17, 2559–2582, https://doi.org/10.5194/amt-17-2559-2024, https://doi.org/10.5194/amt-17-2559-2024, 2024
Short summary
Short summary
Monitoring tropospheric ozone (O3), a harmful pollutant negatively impacting human health, is primarily done using ground-based measurements and ozonesondes. However, these observation types lack the coverage to fully understand tropospheric O3. Satellites can retrieve tropospheric ozone with near-daily global coverage; however, they are known to have biases and errors. This study uses ground-based lidars to validate multiple satellites' ability to observe tropospheric O3.
Stefan Noël, Michael Buchwitz, Michael Hilker, Maximilian Reuter, Michael Weimer, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 17, 2317–2334, https://doi.org/10.5194/amt-17-2317-2024, https://doi.org/10.5194/amt-17-2317-2024, 2024
Short summary
Short summary
FOCAL-CO2M is one of the three operational retrieval algorithms which will be used to derive XCO2 and XCH4 from measurements of the forthcoming European CO2M mission. We present results of applications of FOCAL-CO2M to simulated spectra, from which confidence is gained that the algorithm is able to fulfil the challenging requirements on systematic errors for the CO2M mission (spatio-temporal bias ≤ 0.5 ppm for XCO2 and ≤ 5 ppb for XCH4).
Andrea Orfanoz-Cheuquelaf, Carlo Arosio, Alexei Rozanov, Mark Weber, Annette Ladstätter-Weißenmayer, John P. Burrows, Anne M. Thompson, Ryan M. Stauffer, and Debra E. Kollonige
Atmos. Meas. Tech., 17, 1791–1809, https://doi.org/10.5194/amt-17-1791-2024, https://doi.org/10.5194/amt-17-1791-2024, 2024
Short summary
Short summary
Valuable information on the tropospheric ozone column (TrOC) can be obtained globally by combining space-borne limb and nadir measurements (limb–nadir matching, LNM). This study describes the retrieval of TrOC from the OMPS instrument (since 2012) using the LNM technique. The OMPS-LNM TrOC was compared with ozonesondes and other satellite measurements, showing a good agreement with a negative bias within 1 to 4 DU. This new dataset is suitable for pollution studies.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-516, https://doi.org/10.5194/egusphere-2024-516, 2024
Preprint archived
Short summary
Short summary
This study assesses atmospheric composition using air quality models during aircraft campaigns in Europe and Asia, focusing on carbonaceous aerosols and trace gases. While carbon monoxide is well modeled, other pollutants have moderate to weak agreement with observations. Wind speed modeling is reliable for identifying pollution plumes, where models tend to overestimate concentrations. This highlights challenges in accurately modeling aerosol and trace gas composition, particularly in cities.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-521, https://doi.org/10.5194/egusphere-2024-521, 2024
Preprint archived
Short summary
Short summary
This study explores the proportional relationships between carbonaceous aerosols (black and organic carbon) and trace gases using airborne measurements from two campaigns in Europe and East Asia. Differences between regions were found, but air quality models struggled to reproduce them accurately. We show that these proportional relationships can help to constrain models and can be used to infer aerosol concentrations from satellite observations of trace gases, especially in urban areas.
Christian von Savigny, Anna Lange, Christoph G. Hoffmann, and Alexei Rozanov
Atmos. Chem. Phys., 24, 2415–2422, https://doi.org/10.5194/acp-24-2415-2024, https://doi.org/10.5194/acp-24-2415-2024, 2024
Short summary
Short summary
It is well known that volcanic eruptions strongly affect the colours of the twilight sky. Typically, volcanic eruptions lead to enhanced reddish and violet twilight colours. In rare cases, however, volcanic eruptions can also lead to green sunsets. This study provides an explanation for the occurrence of these unusual green sunsets based on simulations with a radiative transfer model. Green volcanic sunsets require a sufficient stratospheric aerosol optical depth and specific aerosol sizes.
Blanca Fuentes Andrade, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Andreas Richter, Hartmut Boesch, and John P. Burrows
Atmos. Meas. Tech., 17, 1145–1173, https://doi.org/10.5194/amt-17-1145-2024, https://doi.org/10.5194/amt-17-1145-2024, 2024
Short summary
Short summary
We developed a method to estimate CO2 emissions from localized sources, such as power plants, using satellite data and applied it to estimate CO2 emissions from the Bełchatów Power Station (Poland). As the detection of CO2 emission plumes from satellite data is difficult, we used observations of co-emitted NO2 to constrain the emission plume region. Our results agree with CO2 emission estimations based on the power-plant-generated power and emission factors.
Basudev Swain, Marco Vountas, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Soheila Jafariserajehlou, Sachin S. Gunthe, Andreas Herber, Christoph Ritter, Hartmut Bösch, and John P. Burrows
Atmos. Meas. Tech., 17, 359–375, https://doi.org/10.5194/amt-17-359-2024, https://doi.org/10.5194/amt-17-359-2024, 2024
Short summary
Short summary
Aerosols are suspensions of particles dispersed in the air. In this study, we use a novel retrieval of satellite data to investigate an optical property of aerosols, the aerosol optical depth, in the high Arctic to assess their direct and indirect roles in climate change. This study demonstrates that the presented approach shows good quality and very promising potential.
Jonas Hachmeister, Oliver Schneising, Michael Buchwitz, John P. Burrows, Justus Notholt, and Matthias Buschmann
Atmos. Chem. Phys., 24, 577–595, https://doi.org/10.5194/acp-24-577-2024, https://doi.org/10.5194/acp-24-577-2024, 2024
Short summary
Short summary
We quantified changes in atmospheric methane concentrations using satellite data and a dynamic linear model approach. We calculated global annual methane increases for the years 2019–2022, which are in good agreement with other sources. For zonal methane growth rates, we identified strong inter-hemispheric differences in 2019 and 2022. For 2022, we could attribute decreases in the global growth rate to the Northern Hemisphere, possibly related to a reduction in anthropogenic emissions.
Anna Lange, Alexei Rozanov, and Christian von Savigny
Atmos. Chem. Phys., 23, 14829–14839, https://doi.org/10.5194/acp-23-14829-2023, https://doi.org/10.5194/acp-23-14829-2023, 2023
Short summary
Short summary
We were able to demonstrate quantitatively that the blue colour of the sky cannot be solely attributed to Rayleigh scattering. The influence of ozone on the blue colour of the sky is calculated for different viewing geometries, total ozone columns and an enhanced stratospheric aerosol scenario. Furthermore, the effects of polarisation, surface albedo and observer height are investigated.
John M. C. Plane, Jörg Gumbel, Konstantinos S. Kalogerakis, Daniel R. Marsh, and Christian von Savigny
Atmos. Chem. Phys., 23, 13255–13282, https://doi.org/10.5194/acp-23-13255-2023, https://doi.org/10.5194/acp-23-13255-2023, 2023
Short summary
Short summary
The mesosphere or lower thermosphere region of the atmosphere borders the edge of space. It is subject to extreme ultraviolet photons and charged particles from the Sun and atmospheric gravity waves from below, which tend to break in this region. The pressure is very low, which facilitates chemistry involving species in excited states, and this is also the region where cosmic dust ablates and injects various metals. The result is a unique and exotic chemistry.
Christoph G. Hoffmann, Lena G. Buth, and Christian von Savigny
Atmos. Chem. Phys., 23, 12781–12799, https://doi.org/10.5194/acp-23-12781-2023, https://doi.org/10.5194/acp-23-12781-2023, 2023
Short summary
Short summary
The Madden–Julian oscillation is an important feature of weather in the tropics. Although it is mainly active in the troposphere, we show that it systematically influences the air temperature in the layers above, up to about 100 km altitude and from pole to pole. We have linked this to another known far-reaching process, interhemispheric coupling. This is basic research on atmospheric couplings and variability but might also be of interest for intraseasonal weather forecasting models.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
Bianca Zilker, Andreas Richter, Anne-Marlene Blechschmidt, Peter von der Gathen, Ilias Bougoudis, Sora Seo, Tim Bösch, and John Philip Burrows
Atmos. Chem. Phys., 23, 9787–9814, https://doi.org/10.5194/acp-23-9787-2023, https://doi.org/10.5194/acp-23-9787-2023, 2023
Short summary
Short summary
During Arctic spring, near-surface ozone is depleted by bromine released from salty sea ice and/or snow-covered areas under certain meteorological conditions. To study this ozone depletion and the prevailing meteorological conditions, two ozone data sets from Ny-Ålesund, Svalbard, have been evaluated. We found that during ozone depletion events lower pressure over the Barents Sea and higher pressure in the Icelandic Low area led to a transport of cold polar air from the north to Ny-Ålesund.
Felix Wrana, Ulrike Niemeier, Larry W. Thomason, Sandra Wallis, and Christian von Savigny
Atmos. Chem. Phys., 23, 9725–9743, https://doi.org/10.5194/acp-23-9725-2023, https://doi.org/10.5194/acp-23-9725-2023, 2023
Short summary
Short summary
The stratospheric aerosol layer is a naturally occurring and permanent layer of aerosol, in this case very small droplets of mostly sulfuric acid and water, that has a cooling effect on our climate. To quantify this effect and for our general understanding of stratospheric microphysical processes, knowledge of the size of those aerosol particles is needed. Using satellite measurements and atmospheric models we show that some volcanic eruptions can lead to on average smaller aerosol sizes.
Midhun George, Maria Dolores Andrés Hernández, Vladyslav Nenakhov, Yangzhuoran Liu, John Philip Burrows, Birger Bohn, Eric Förster, Florian Obersteiner, Andreas Zahn, Theresa Harlaß, Helmut Ziereis, Hans Schlager, Benjamin Schreiner, Flora Kluge, Katja Bigge, and Klaus Pfeilsticker
Atmos. Chem. Phys., 23, 7799–7822, https://doi.org/10.5194/acp-23-7799-2023, https://doi.org/10.5194/acp-23-7799-2023, 2023
Short summary
Short summary
The applicability of photostationary steady-state (PSS) assumptions to estimate the amount of the sum of peroxy radicals (RO2*) during the EMeRGe airborne observations from the known radical chemistry and onboard measurements of RO2* precursors, photolysis frequencies, and other trace gases such as NOx and O3 was investigated. The comparison of the calculated RO2* with the actual measurements provides an insight into the main processes controlling their concentration in the air masses measured.
Sandra Wallis, Hauke Schmidt, and Christian von Savigny
Atmos. Chem. Phys., 23, 7001–7014, https://doi.org/10.5194/acp-23-7001-2023, https://doi.org/10.5194/acp-23-7001-2023, 2023
Short summary
Short summary
Strong volcanic eruptions are able to alter the temperature and the circulation of the middle atmosphere. This study simulates the atmospheric response to an idealized strong tropical eruption and focuses on the impact on the mesosphere. The simulations show a warming of the polar summer mesopause in the first November after the eruption. Our study indicates that this is mainly due to dynamical coupling in the summer hemisphere with a potential contribution from interhemispheric coupling.
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech., 16, 2903–2918, https://doi.org/10.5194/amt-16-2903-2023, https://doi.org/10.5194/amt-16-2903-2023, 2023
Short summary
Short summary
Clouds play an important role in Arctic amplification. Cloud data from ground-based sites are valuable but cannot represent the whole Arctic. Therefore the use of satellite products is a measure to cover the entire Arctic. However, the quality of such cloud measurements from space is not well known. The paper discusses the differences and commonalities between satellite and ground-based measurements. We conclude that the satellite dataset, with a few exceptions, can be used in the Arctic.
Basudev Swain, Marco Vountas, Adrien Deroubaix, Luca Lelli, Aishwarya Singh, Yanick Ziegler, Sachin S. Gunthe, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2023-730, https://doi.org/10.5194/egusphere-2023-730, 2023
Preprint archived
Short summary
Short summary
Aerosols are suspensions of particles distributed in the air. Depending on their chemical composition, they scatter and/or absorb sunlight and thus cool or warm the earth's atmosphere and its surface. They also provide as a surface in the atmosphere upon which ice or liquid clouds droplets nucleate and grow. In this study, we use satellite observations and model simulations to investigate the properties of aerosols with the goal of assessing their direct and indirect role in climate change.
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Carlo Arosio, Alexei Rozanov, Mark Weber, Doug Degenstein, Adam Bourassa, Daniel Zawada, Michael Kiefer, Alexandra Laeng, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Christian Retscher, Robert Damadeo, and Jerry D. Lumpe
Atmos. Meas. Tech., 16, 1881–1899, https://doi.org/10.5194/amt-16-1881-2023, https://doi.org/10.5194/amt-16-1881-2023, 2023
Short summary
Short summary
The paper presents the updated SAGE-CCI-OMPS+ climate data record of monthly zonal mean ozone profiles. This dataset covers the stratosphere and combines measurements by nine limb and occultation satellite instruments (SAGE II, OSIRIS, MIPAS, SCIAMACHY, GOMOS, ACE-FTS, OMPS-LP, POAM III, and SAGE III/ISS). The update includes new versions of MIPAS, ACE-FTS, and OSIRIS datasets and introduces data from additional sensors (POAM III and SAGE III/ISS) and retrieval processors (OMPS-LP).
Kai Krause, Folkard Wittrock, Andreas Richter, Dieter Busch, Anton Bergen, John P. Burrows, Steffen Freitag, and Olesia Halbherr
Atmos. Meas. Tech., 16, 1767–1787, https://doi.org/10.5194/amt-16-1767-2023, https://doi.org/10.5194/amt-16-1767-2023, 2023
Short summary
Short summary
Inland shipping is an important source of nitrogen oxides (NOx). The amount of emitted NOx depends on the characteristics of the individual vessels and the traffic density. Ship emissions are often characterised by the amount of emitted NOx per unit of burnt fuel, and further knowledge about fuel consumption is needed to quantify the total emissions caused by ship traffic. In this study, a new approach to derive absolute emission rates (in g s−1) from onshore measurements is presented.
Linlu Mei, Vladimir Rozanov, Alexei Rozanov, and John P. Burrows
Geosci. Model Dev., 16, 1511–1536, https://doi.org/10.5194/gmd-16-1511-2023, https://doi.org/10.5194/gmd-16-1511-2023, 2023
Short summary
Short summary
This paper summarizes recent developments of aerosol, cloud and surface reflectance databases and models in the framework of the software package SCIATRAN. These updates and developments extend the capabilities of the radiative transfer modeling, especially by accounting for different kinds of vertical inhomogeneties. Vertically inhomogeneous clouds and different aerosol types can be easily accounted for within SCIATRAN (V4.6). The widely used surface models and databases are now available.
Kezia Lange, Andreas Richter, Anja Schönhardt, Andreas C. Meier, Tim Bösch, André Seyler, Kai Krause, Lisa K. Behrens, Folkard Wittrock, Alexis Merlaud, Frederik Tack, Caroline Fayt, Martina M. Friedrich, Ermioni Dimitropoulou, Michel Van Roozendael, Vinod Kumar, Sebastian Donner, Steffen Dörner, Bianca Lauster, Maria Razi, Christian Borger, Katharina Uhlmannsiek, Thomas Wagner, Thomas Ruhtz, Henk Eskes, Birger Bohn, Daniel Santana Diaz, Nader Abuhassan, Dirk Schüttemeyer, and John P. Burrows
Atmos. Meas. Tech., 16, 1357–1389, https://doi.org/10.5194/amt-16-1357-2023, https://doi.org/10.5194/amt-16-1357-2023, 2023
Short summary
Short summary
We present airborne imaging DOAS and ground-based stationary and car DOAS measurements conducted during the S5P-VAL-DE-Ruhr campaign in the Rhine-Ruhr region. The measurements are used to validate spaceborne NO2 data products from the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI). Auxiliary data of the TROPOMI NO2 retrieval, such as spatially higher resolved a priori NO2 vertical profiles, surface reflectivity, and cloud treatment are investigated to evaluate their impact.
Dominik Brunner, Gerrit Kuhlmann, Stephan Henne, Erik Koene, Bastian Kern, Sebastian Wolff, Christiane Voigt, Patrick Jöckel, Christoph Kiemle, Anke Roiger, Alina Fiehn, Sven Krautwurst, Konstantin Gerilowski, Heinrich Bovensmann, Jakob Borchardt, Michal Galkowski, Christoph Gerbig, Julia Marshall, Andrzej Klonecki, Pascal Prunet, Robert Hanfland, Margit Pattantyús-Ábrahám, Andrzej Wyszogrodzki, and Andreas Fix
Atmos. Chem. Phys., 23, 2699–2728, https://doi.org/10.5194/acp-23-2699-2023, https://doi.org/10.5194/acp-23-2699-2023, 2023
Short summary
Short summary
We evaluated six atmospheric transport models for their capability to simulate the CO2 plumes from two of the largest power plants in Europe by comparing the models against aircraft observations collected during the CoMet (Carbon Dioxide and Methane Mission) campaign in 2018. The study analyzed how realistically such plumes can be simulated at different model resolutions and how well the planned European satellite mission CO2M will be able to quantify emissions from power plants.
Chuan-Yao Lin, Wan-Chin Chen, Yi-Yun Chien, Charles C. K. Chou, Chian-Yi Liu, Helmut Ziereis, Hans Schlager, Eric Förster, Florian Obersteiner, Ovid O. Krüger, Bruna A. Holanda, Mira L. Pöhlker, Katharina Kaiser, Johannes Schneider, Birger Bohn, Klaus Pfeilsticker, Benjamin Weyland, Maria Dolores Andrés Hernández, and John P. Burrows
Atmos. Chem. Phys., 23, 2627–2647, https://doi.org/10.5194/acp-23-2627-2023, https://doi.org/10.5194/acp-23-2627-2023, 2023
Short summary
Short summary
During the EMeRGe campaign in Asia, atmospheric pollutants were measured on board the HALO aircraft. The WRF-Chem model was employed to evaluate the biomass burning (BB) plume transported from Indochina and its impact on the downstream areas. The combination of BB aerosol enhancement with cloud water resulted in a reduction in incoming shortwave radiation at the surface in southern China and the East China Sea, which potentially has significant regional climate implications.
Luca Lelli, Marco Vountas, Narges Khosravi, and John Philipp Burrows
Atmos. Chem. Phys., 23, 2579–2611, https://doi.org/10.5194/acp-23-2579-2023, https://doi.org/10.5194/acp-23-2579-2023, 2023
Short summary
Short summary
Arctic amplification describes the recent period in which temperatures have been rising twice as fast as or more than the global average and sea ice and the Greenland ice shelf are approaching a tipping point. Hence, the Arctic ability to reflect solar energy decreases and absorption by the surface increases. Using 2 decades of complementary satellite data, we discover that clouds unexpectedly increase the pan-Arctic reflectance by increasing their liquid water content, thus cooling the Arctic.
Oliver Schneising, Michael Buchwitz, Jonas Hachmeister, Steffen Vanselow, Maximilian Reuter, Matthias Buschmann, Heinrich Bovensmann, and John P. Burrows
Atmos. Meas. Tech., 16, 669–694, https://doi.org/10.5194/amt-16-669-2023, https://doi.org/10.5194/amt-16-669-2023, 2023
Short summary
Short summary
Methane and carbon monoxide are important constituents of the atmosphere in the context of climate change and air pollution. We present the latest advances in the TROPOMI/WFMD algorithm to simultaneously retrieve atmospheric methane and carbon monoxide abundances from space. The changes in the latest product version are described in detail, and the resulting improvements are demonstrated. An overview of the products is provided including a discussion of annual increases and validation results.
Miriam Latsch, Andreas Richter, Henk Eskes, Maarten Sneep, Ping Wang, Pepijn Veefkind, Ronny Lutz, Diego Loyola, Athina Argyrouli, Pieter Valks, Thomas Wagner, Holger Sihler, Michel van Roozendael, Nicolas Theys, Huan Yu, Richard Siddans, and John P. Burrows
Atmos. Meas. Tech., 15, 6257–6283, https://doi.org/10.5194/amt-15-6257-2022, https://doi.org/10.5194/amt-15-6257-2022, 2022
Short summary
Short summary
The article investigates different S5P TROPOMI cloud retrieval algorithms for tropospheric trace gas retrievals. The cloud products show differences primarily over snow and ice and for scenes under sun glint. Some issues regarding across-track dependence are found for the cloud fractions as well as for the cloud heights.
Christian von Savigny, Anna Lange, Anne Hemkendreis, Christoph G. Hoffmann, and Alexei Rozanov
Clim. Past, 18, 2345–2356, https://doi.org/10.5194/cp-18-2345-2022, https://doi.org/10.5194/cp-18-2345-2022, 2022
Short summary
Short summary
This study investigates the possibility of inferring information on aerosol optical depth from photographs of historic paintings. The idea – which has been applied in previous studies – is very interesting because it would provide an archive of the atmospheric aerosol loading covering many centuries. We show that twilight colours depend not only on the aerosol optical thickness, but also on several other parameters, making a quantitative estimate of aerosol optical depth very difficult.
Carlo Arosio, Alexei Rozanov, Victor Gorshelev, Alexandra Laeng, and John P. Burrows
Atmos. Meas. Tech., 15, 5949–5967, https://doi.org/10.5194/amt-15-5949-2022, https://doi.org/10.5194/amt-15-5949-2022, 2022
Short summary
Short summary
This paper characterizes the uncertainties affecting the ozone profiles retrieved at the University of Bremen through OMPS limb satellite observations. An accurate knowledge of the uncertainties is relevant for the validation of the product and to correctly interpret the retrieval results. We investigate several sources of uncertainties, estimate a total random and systematic component, and verify the consistency of the combined OMPS-MLS total uncertainty.
John T. Sullivan, Arnoud Apituley, Nora Mettig, Karin Kreher, K. Emma Knowland, Marc Allaart, Ankie Piters, Michel Van Roozendael, Pepijn Veefkind, Jerry R. Ziemke, Natalya Kramarova, Mark Weber, Alexei Rozanov, Laurence Twigg, Grant Sumnicht, and Thomas J. McGee
Atmos. Chem. Phys., 22, 11137–11153, https://doi.org/10.5194/acp-22-11137-2022, https://doi.org/10.5194/acp-22-11137-2022, 2022
Short summary
Short summary
A TROPOspheric Monitoring Instrument (TROPOMI) validation campaign (TROLIX-19) was held in the Netherlands in September 2019. The research presented here focuses on using ozone lidars from NASA’s Goddard Space Flight Center to better evaluate the characterization of ozone throughout TROLIX-19 as compared to balloon-borne, space-borne and ground-based passive measurements, as well as a global coupled chemistry meteorology model.
Jonas Hachmeister, Oliver Schneising, Michael Buchwitz, Alba Lorente, Tobias Borsdorff, John P. Burrows, Justus Notholt, and Matthias Buschmann
Atmos. Meas. Tech., 15, 4063–4074, https://doi.org/10.5194/amt-15-4063-2022, https://doi.org/10.5194/amt-15-4063-2022, 2022
Short summary
Short summary
Sentinel-5P trace gas retrievals rely on elevation data in their calculations. Outdated or inaccurate data can lead to significant errors in e.g. dry-air mole fractions of methane (XCH4). We show that the use of inadequate elevation data leads to strong XCH4 anomalies in Greenland. Similar problems can be expected for other regions with inaccurate elevation data. However, we expect these to be more localized. We show that updating elevation data used in the retrieval solves this issue.
Ovid O. Krüger, Bruna A. Holanda, Sourangsu Chowdhury, Andrea Pozzer, David Walter, Christopher Pöhlker, Maria Dolores Andrés Hernández, John P. Burrows, Christiane Voigt, Jos Lelieveld, Johannes Quaas, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 22, 8683–8699, https://doi.org/10.5194/acp-22-8683-2022, https://doi.org/10.5194/acp-22-8683-2022, 2022
Short summary
Short summary
The abrupt reduction in human activities during the first COVID-19 lockdown created unprecedented atmospheric conditions. We took the opportunity to quantify changes in black carbon (BC) as a major anthropogenic air pollutant. Therefore, we measured BC on board a research aircraft over Europe during the lockdown and compared the results to measurements from 2017. With model simulations we account for different weather conditions and find a lockdown-related decrease in BC of 41 %.
Sandra Wallis, Christoph Gregor Hoffmann, and Christian von Savigny
Ann. Geophys., 40, 421–431, https://doi.org/10.5194/angeo-40-421-2022, https://doi.org/10.5194/angeo-40-421-2022, 2022
Short summary
Short summary
Although the 1991 eruption of Mt Pinatubo had a severe impact on Earth's climate, the effect of this event on the mesosphere is not well understood. We investigated satellite-borne temperature measurements from the HALOE instrument and found indications that a positive temperature anomaly is present in the tropical upper mesosphere at the beginning of the HALOE time series, which may be related to the eruption of Mt. Pinatubo.
Anna Lange, Gerd Baumgarten, Alexei Rozanov, and Christian von Savigny
Ann. Geophys., 40, 407–419, https://doi.org/10.5194/angeo-40-407-2022, https://doi.org/10.5194/angeo-40-407-2022, 2022
Short summary
Short summary
We investigate the influence of different parameters on the colour of noctilucent clouds (highest clouds in the atmosphere), using radiative transfer calculations. We determined the effect of the particle size, optical depth, single scattering/multiple scattering and ozone. For sufficiently large optical depth and for specific viewing geometries, ozone plays only a minor role in the blueish colour of noctilucent clouds (new result).
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Oliver Schneising, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Robert J. Parker, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Markus Rettinger, Coleen Roehl, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, and Thorsten Warneke
Atmos. Meas. Tech., 15, 3401–3437, https://doi.org/10.5194/amt-15-3401-2022, https://doi.org/10.5194/amt-15-3401-2022, 2022
Short summary
Short summary
We present a new version (v3) of the GOSAT and GOSAT-2 FOCAL products.
In addition to an increased number of XCO2 data, v3 also includes products for XCH4 (full-physics and proxy), XH2O and the relative ratio of HDO to H2O (δD). For GOSAT-2, we also present first XCO and XN2O results. All FOCAL data products show reasonable spatial distribution and temporal variations and agree well with TCCON. Global XN2O maps show a gradient from the tropics to higher latitudes on the order of 15 ppb.
Mark Weber, Carlo Arosio, Melanie Coldewey-Egbers, Vitali E. Fioletov, Stacey M. Frith, Jeannette D. Wild, Kleareti Tourpali, John P. Burrows, and Diego Loyola
Atmos. Chem. Phys., 22, 6843–6859, https://doi.org/10.5194/acp-22-6843-2022, https://doi.org/10.5194/acp-22-6843-2022, 2022
Short summary
Short summary
Long-term trends in column ozone have been determined from five merged total ozone datasets spanning the period 1978–2020. We show that ozone recovery due to the decline in stratospheric halogens after the 1990s (as regulated by the Montreal Protocol) is evident outside the tropical region and amounts to half a percent per decade. The ozone recovery in the Northern Hemisphere is however compensated for by the negative long-term trend contribution from atmospheric dynamics since the year 2000.
Nora Mettig, Mark Weber, Alexei Rozanov, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Ryan M. Stauffer, Thierry Leblanc, Gerard Ancellet, Michael J. Newchurch, Shi Kuang, Rigel Kivi, Matthew B. Tully, Roeland Van Malderen, Ankie Piters, Bogumil Kois, René Stübi, and Pavla Skrivankova
Atmos. Meas. Tech., 15, 2955–2978, https://doi.org/10.5194/amt-15-2955-2022, https://doi.org/10.5194/amt-15-2955-2022, 2022
Short summary
Short summary
Vertical ozone profiles from combined spectral measurements in the UV and IR spectral ranges were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP. The vertical resolution and accuracy of the ozone profiles are improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The advancement of our TOPAS algorithm for combined measurements is required because in the UV-only retrieval the vertical resolution in the troposphere is very limited.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Mireia Papke Chica, Valerian Hahn, Tiziana Braeuer, Elena de la Torre Castro, Florian Ewald, Mathias Gergely, Simon Kirschler, Luca Bugliaro Goggia, Stefanie Knobloch, Martina Kraemer, Johannes Lucke, Johanna Mayer, Raphael Maerkl, Manuel Moser, Laura Tomsche, Tina Jurkat-Witschas, Martin Zoeger, Christian von Savigny, and Christiane Voigt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-255, https://doi.org/10.5194/acp-2022-255, 2022
Preprint withdrawn
Short summary
Short summary
The mixed-phase temperature regime in convective clouds challenges our understanding of microphysical and radiative cloud properties. We provide a rare and unique dataset of aircraft in situ measurements in a strong mid-latitude convective system. We find that mechanisms initiating ice nucleation and growth strongly depend on temperature, relative humidity, and vertical velocity and variate within the measured system, resulting in altitude dependent changes of the cloud liquid and ice fraction.
Julia Koch, Adam Bourassa, Nick Lloyd, Chris Roth, and Christian von Savigny
Atmos. Chem. Phys., 22, 3191–3202, https://doi.org/10.5194/acp-22-3191-2022, https://doi.org/10.5194/acp-22-3191-2022, 2022
Short summary
Short summary
The mesopause, the region of the earth's atmosphere between 85 and 100 km, is hard to access by direct measurements. Therefore we look for parameters that can be measured using satellite or ground-based measurements. In this study we researched sodium airglow, a phenomenon that occurs when sodium atoms are excited by chemical reactions. We compared satellite measurements of the airglow and resulting sodium concentration profiles to gain a better understanding of the sodium in that region.
Kezia Lange, Andreas Richter, and John P. Burrows
Atmos. Chem. Phys., 22, 2745–2767, https://doi.org/10.5194/acp-22-2745-2022, https://doi.org/10.5194/acp-22-2745-2022, 2022
Short summary
Short summary
In this study, we investigated short time variability of NOx emissions and lifetimes on a global scale. We combined 2 years of satellite Sentinel-5P TROPOMI tropospheric NO2 column data with wind data. Fifty NOx sources distributed around the world are analyzed. The retrieved emissions show a clear seasonal dependence. NOx lifetime shows a latitudinal dependence but only a week seasonal dependence. NOx emissions show a clear weekly pattern which in contrast is not visible for NOx lifetimes.
Tobias Küchler, Stefan Noël, Heinrich Bovensmann, John Philip Burrows, Thomas Wagner, Christian Borger, Tobias Borsdorff, and Andreas Schneider
Atmos. Meas. Tech., 15, 297–320, https://doi.org/10.5194/amt-15-297-2022, https://doi.org/10.5194/amt-15-297-2022, 2022
Short summary
Short summary
We applied the air-mass-corrected differential optical absorption spectroscopy (AMC-DOAS) method to derive total column water vapour (TCWV) from Sentinel-5P measurements and compared it to independent data sets. The correlation coefficients of typically more than 0.9 and the small deviations up to 2.5 kg m−2 reveal good agreement between our data product and other TCWV data sets. In particular for the different Sentinel-5P water vapour products, the deviations are around 1 kg m−2.
Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Ryan Hossaini, Graham W. Mann, Michelle L. Santee, and Mark Weber
Atmos. Chem. Phys., 22, 903–916, https://doi.org/10.5194/acp-22-903-2022, https://doi.org/10.5194/acp-22-903-2022, 2022
Short summary
Short summary
Solar flux variations associated with 11-year sunspot cycle is believed to exert important external climate forcing. As largest variations occur at shorter wavelengths such as ultra-violet part of the solar spectrum, associated changes in stratospheric ozone are thought to provide direct evidence for solar climate interaction. Until now, most of the studies reported double-peak structured solar cycle signal (SCS), but relatively new satellite data suggest only single-peak-structured SCS.
Sandip S. Dhomse, Carlo Arosio, Wuhu Feng, Alexei Rozanov, Mark Weber, and Martyn P. Chipperfield
Earth Syst. Sci. Data, 13, 5711–5729, https://doi.org/10.5194/essd-13-5711-2021, https://doi.org/10.5194/essd-13-5711-2021, 2021
Short summary
Short summary
High-quality long-term ozone profile data sets are key to estimating short- and long-term ozone variability. Almost all the satellite (and chemical model) data sets show some kind of bias with respect to each other. This is because of differences in measurement methodologies as well as simplified processes in the models. We use satellite data sets and chemical model output to generate 42 years of ozone profile data sets using a random-forest machine-learning algorithm that is named ML-TOMCAT.
Sven Krautwurst, Konstantin Gerilowski, Jakob Borchardt, Norman Wildmann, Michał Gałkowski, Justyna Swolkień, Julia Marshall, Alina Fiehn, Anke Roiger, Thomas Ruhtz, Christoph Gerbig, Jaroslaw Necki, John P. Burrows, Andreas Fix, and Heinrich Bovensmann
Atmos. Chem. Phys., 21, 17345–17371, https://doi.org/10.5194/acp-21-17345-2021, https://doi.org/10.5194/acp-21-17345-2021, 2021
Short summary
Short summary
Quantification of anthropogenic CH4 emissions remains challenging, but it is essential for near-term climate mitigation strategies. We use airborne remote sensing observations to assess bottom-up estimates of coal mining emissions from one of Europe's largest CH4 emission hot spots located in Poland. The analysis reveals that emissions from small groups of shafts can be disentangled, but caution is advised when comparing observations to commonly reported annual emissions.
Yu-Wen Chen, Yi-Chun Chen, Charles C.-K. Chou, Hui-Ming Hung, Shih-Yu Chang, Lisa Eirenschmalz, Michael Lichtenstern, Helmut Ziereis, Hans Schlager, Greta Stratmann, Katharina Kaiser, Johannes Schneider, Stephan Borrmann, Florian Obersteiner, Eric Förster, Andreas Zahn, Wei-Nai Chen, Po-Hsiung Lin, Shuenn-Chin Chang, Maria Dolores Andrés Hernández, Pao-Kuan Wang, and John P. Burrows
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-788, https://doi.org/10.5194/acp-2021-788, 2021
Preprint withdrawn
Short summary
Short summary
By presenting an approach using EMeRGe-Asia airborne field measurements and surface observations, this study shows that the fraction of OH reactivity due to SO2-OH reaction has a significant correlation with the sulfate concentration. Approximately 30 % of sulfate is produced by SO2-OH reaction. Our results underline the importance of SO2-OH gas-phase oxidation in sulfate formation, and demonstrate that the method can be applied to other regions and under different meteorological conditions.
Elizaveta Malinina, Alexei Rozanov, Ulrike Niemeier, Sandra Wallis, Carlo Arosio, Felix Wrana, Claudia Timmreck, Christian von Savigny, and John P. Burrows
Atmos. Chem. Phys., 21, 14871–14891, https://doi.org/10.5194/acp-21-14871-2021, https://doi.org/10.5194/acp-21-14871-2021, 2021
Short summary
Short summary
In the paper, changes in the stratospheric aerosol loading after the 2018 Ambae eruption were analyzed using OMPS-LP observations. The eruption was also simulated with the MAECHAM5-HAM global climate model. Generally, the model and observations agree very well. We attribute the good consistency of the results to a precisely determined altitude and mass of the volcanic injection, as well as nudging of the meteorological data. The radiative forcing from the eruption was estimated to be −0.13 W m−2.
Nora Mettig, Mark Weber, Alexei Rozanov, Carlo Arosio, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Richard Querel, Thierry Leblanc, Sophie Godin-Beekmann, Rigel Kivi, and Matthew B. Tully
Atmos. Meas. Tech., 14, 6057–6082, https://doi.org/10.5194/amt-14-6057-2021, https://doi.org/10.5194/amt-14-6057-2021, 2021
Short summary
Short summary
TROPOMI is a nadir-viewing satellite that has observed global atmospheric trace gases at unprecedented spatial resolution since 2017. The retrieval of ozone profiles with high accuracy has been demonstrated using the TOPAS (Tikhonov regularised Ozone Profile retrievAl with SCIATRAN) algorithm and applying appropriate spectral corrections to TROPOMI UV data. Ozone profiles from TROPOMI were compared to ozonesonde and lidar profiles, showing an agreement to within 5 % in the stratosphere.
Kai Krause, Folkard Wittrock, Andreas Richter, Stefan Schmitt, Denis Pöhler, Andreas Weigelt, and John P. Burrows
Atmos. Meas. Tech., 14, 5791–5807, https://doi.org/10.5194/amt-14-5791-2021, https://doi.org/10.5194/amt-14-5791-2021, 2021
Short summary
Short summary
Ships are an important source of key pollutants. Usually, these are measured aboard the ship or on the coast using in situ instruments. This study shows how active optical remote sensing can be used to measure ship emissions and how to determine emission rates of individual ships out of those measurements. These emission rates are valuable input for the assessment of the influence of shipping emissions in regions close to the shipping lanes.
Andrea Orfanoz-Cheuquelaf, Alexei Rozanov, Mark Weber, Carlo Arosio, Annette Ladstätter-Weißenmayer, and John P. Burrows
Atmos. Meas. Tech., 14, 5771–5789, https://doi.org/10.5194/amt-14-5771-2021, https://doi.org/10.5194/amt-14-5771-2021, 2021
Short summary
Short summary
OMPS/NPP (2012–present) allows obtaining the tropospheric ozone column by combining ozone data from limb and nadir observations from the same instrument platform. In a first step, the retrieval of the total ozone column from the OMPS Nadir Mapper using the weighting function fitting approach (WFFA) is described here. The OMPS total ozone was compared with ground-based and other satellite measurements, showing agreement within 2.5 %.
Lily N. Zhang, Susan Solomon, Kane A. Stone, Jonathan D. Shanklin, Joshua D. Eveson, Steve Colwell, John P. Burrows, Mark Weber, Pieternel F. Levelt, Natalya A. Kramarova, and David P. Haffner
Atmos. Chem. Phys., 21, 9829–9838, https://doi.org/10.5194/acp-21-9829-2021, https://doi.org/10.5194/acp-21-9829-2021, 2021
Short summary
Short summary
In the 1980s, measurements at the British Antarctic Survey station in Halley, Antarctica, led to the discovery of the ozone hole. The Halley total ozone record continues to be uniquely valuable for studies of long-term changes in Antarctic ozone. Environmental conditions in 2017 forced a temporary cessation of operations, leading to a gap in the historic record. We develop and test a method for filling in the Halley record using satellite data and find evidence to further support ozone recovery.
Linlu Mei, Vladimir Rozanov, Christine Pohl, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2757–2780, https://doi.org/10.5194/tc-15-2757-2021, https://doi.org/10.5194/tc-15-2757-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 1 of two companion papers and shows the method description and sensitivity study. The paper investigates the major factors, including the assumptions of snow optical properties, snow particle distribution and atmospheric conditions (cloud and aerosol), impacting snow property retrievals from satellite observation.
Linlu Mei, Vladimir Rozanov, Evelyn Jäkel, Xiao Cheng, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021, https://doi.org/10.5194/tc-15-2781-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 2 of two companion papers and shows the results and validation. The paper performs the new retrieval algorithm on the Sea and Land
Surface Temperature Radiometer (SLSTR) instrument and compares the retrieved snow properties with ground-based measurements, aircraft measurements and other satellite products.
Daniel Zawada, Ghislain Franssens, Robert Loughman, Antti Mikkonen, Alexei Rozanov, Claudia Emde, Adam Bourassa, Seth Dueck, Hannakaisa Lindqvist, Didier Ramon, Vladimir Rozanov, Emmanuel Dekemper, Erkki Kyrölä, John P. Burrows, Didier Fussen, and Doug Degenstein
Atmos. Meas. Tech., 14, 3953–3972, https://doi.org/10.5194/amt-14-3953-2021, https://doi.org/10.5194/amt-14-3953-2021, 2021
Short summary
Short summary
Satellite measurements of atmospheric composition often rely on computer tools known as radiative transfer models to model the propagation of sunlight within the atmosphere. Here we have performed a detailed inter-comparison of seven different radiative transfer models in a variety of conditions. We have found that the models agree remarkably well, at a level better than previously reported. This result provides confidence in our understanding of atmospheric radiative transfer.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, James R. Podolske, David F. Pollard, Mahesh Kumar Sha, Kei Shiomi, Ralf Sussmann, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 3837–3869, https://doi.org/10.5194/amt-14-3837-2021, https://doi.org/10.5194/amt-14-3837-2021, 2021
Short summary
Short summary
We present the first GOSAT and GOSAT-2 XCO2 data derived with the FOCAL retrieval algorithm. Comparisons of the GOSAT-FOCAL product with other data reveal long-term agreement within about 1 ppm over 1 decade, differences in seasonal variations of about 0.5 ppm, and a mean regional bias to ground-based TCCON data of 0.56 ppm with a mean scatter of 1.89 ppm. GOSAT-2-FOCAL data are preliminary only, but first comparisons show that they compare well with the GOSAT-FOCAL results and TCCON.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Viktoria F. Sofieva, Monika Szeląg, Johanna Tamminen, Erkki Kyrölä, Doug Degenstein, Chris Roth, Daniel Zawada, Alexei Rozanov, Carlo Arosio, John P. Burrows, Mark Weber, Alexandra Laeng, Gabriele P. Stiller, Thomas von Clarmann, Lucien Froidevaux, Nathaniel Livesey, Michel van Roozendael, and Christian Retscher
Atmos. Chem. Phys., 21, 6707–6720, https://doi.org/10.5194/acp-21-6707-2021, https://doi.org/10.5194/acp-21-6707-2021, 2021
Short summary
Short summary
The MErged GRIdded Dataset of Ozone Profiles is a long-term (2001–2018) stratospheric ozone profile climate data record with resolved longitudinal structure that combines the data from six limb satellite instruments. The dataset can be used for various analyses, some of which are discussed in the paper. In particular, regionally and vertically resolved ozone trends are evaluated, including trends in the polar regions.
Nellie Wullenweber, Anna Lange, Alexei Rozanov, and Christian von Savigny
Clim. Past, 17, 969–983, https://doi.org/10.5194/cp-17-969-2021, https://doi.org/10.5194/cp-17-969-2021, 2021
Short summary
Short summary
This study investigates the physical processes leading to the rare phenomenon of the sun appearing blue or green. The phenomenon is caused by anomalous scattering by, e.g., volcanic or forest fire aerosols. Unlike most other studies, our study includes a full treatment of the effect of Rayleigh scattering on the colour of the sun. We investigate different factors and revisit a historic example, i.e. the Canadian forest fires in 1950, that led to blue sun events in different European countries.
Felix Wrana, Christian von Savigny, Jacob Zalach, and Larry W. Thomason
Atmos. Meas. Tech., 14, 2345–2357, https://doi.org/10.5194/amt-14-2345-2021, https://doi.org/10.5194/amt-14-2345-2021, 2021
Short summary
Short summary
In this paper, we describe a new method for calculating the size of naturally occurring droplets (aerosols) made mostly of sulfuric acid and water that can be found roughly at 20 km altitude in the atmosphere. We use data from the instrument SAGE III/ISS that is mounted on the International Space Station. We show that our method works well, and that the size parameters we calculate are reasonable and can be a valuable addition for a better understanding of aerosols and their effect on climate.
Michael Buchwitz, Maximilian Reuter, Stefan Noël, Klaus Bramstedt, Oliver Schneising, Michael Hilker, Blanca Fuentes Andrade, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hartmut Boesch, Lianghai Wu, Jochen Landgraf, Ilse Aben, Christian Retscher, Christopher W. O'Dell, and David Crisp
Atmos. Meas. Tech., 14, 2141–2166, https://doi.org/10.5194/amt-14-2141-2021, https://doi.org/10.5194/amt-14-2141-2021, 2021
Short summary
Short summary
The COVID-19 pandemic resulted in reduced anthropogenic carbon dioxide (CO2) emissions during 2020 in large parts of the world. We have used a small ensemble of satellite retrievals of column-averaged CO2 (XCO2) to find out if a regional-scale reduction of atmospheric CO2 can be detected from space. We focus on East China and show that it is challenging to reliably detect and to accurately quantify the emission reduction, which only results in regional XCO2 reductions of about 0.1–0.2 ppm.
Jakob Borchardt, Konstantin Gerilowski, Sven Krautwurst, Heinrich Bovensmann, Andrew K. Thorpe, David R. Thompson, Christian Frankenberg, Charles E. Miller, Riley M. Duren, and John Philip Burrows
Atmos. Meas. Tech., 14, 1267–1291, https://doi.org/10.5194/amt-14-1267-2021, https://doi.org/10.5194/amt-14-1267-2021, 2021
Short summary
Short summary
The AVIRIS-NG hyperspectral imager has been used successfully to identify and quantify anthropogenic methane sources utilizing different retrieval and inversion methods. Here, we examine the adaption and application of the WFM-DOAS algorithm to AVIRIS-NG measurements to retrieve local methane column enhancements, compare the results with other retrievals, and quantify the uncertainties resulting from the retrieval method. Additionally, we estimate emissions from five detected methane plumes.
Larry W. Thomason, Mahesh Kovilakam, Anja Schmidt, Christian von Savigny, Travis Knepp, and Landon Rieger
Atmos. Chem. Phys., 21, 1143–1158, https://doi.org/10.5194/acp-21-1143-2021, https://doi.org/10.5194/acp-21-1143-2021, 2021
Short summary
Short summary
Measurements of the impact of volcanic eruptions on stratospheric aerosol loading by space-based instruments show show a fairly well-behaved relationship between the magnitude and the apparent changes to aerosol size over several orders of magnitude. This directly measured relationship provides a unique opportunity to verify the performance of interactive aerosol models used in climate models.
Soheila Jafariserajehlou, Vladimir V. Rozanov, Marco Vountas, Charles K. Gatebe, and John P. Burrows
Atmos. Meas. Tech., 14, 369–389, https://doi.org/10.5194/amt-14-369-2021, https://doi.org/10.5194/amt-14-369-2021, 2021
Short summary
Short summary
In this work, we study retrieval of snow grain morphologies and their impact on the reflectance in a coupled snow–atmosphere system. We present a sensitivity study to highlight the importance of having adequate information about snow and atmosphere. A novel two-stage algorithm for retrieving the size and shape of snow grains is presented. The reflectance simulation results are compared to that of airborne measurements; high correlations of 0.98 at IR and 0.88–0.98 at VIS are achieved.
Maximilian Reuter, Heinrich Bovensmann, Michael Buchwitz, Jakob Borchardt, Sven Krautwurst, Konstantin Gerilowski, Matthias Lindauer, Dagmar Kubistin, and John P. Burrows
Atmos. Meas. Tech., 14, 153–172, https://doi.org/10.5194/amt-14-153-2021, https://doi.org/10.5194/amt-14-153-2021, 2021
Short summary
Short summary
CO2 measurements from a small unmanned aircraft system (sUAS) can provide a cost-effective way to complement and validate satellite-based measurements of anthropogenic CO2 emissions. We introduce an sUAS which is capable of determining atmospheric CO2 mass fluxes from its own sensor data. We show results of validation flights at the ICOS atmospheric station in Steinkimmen and from demonstration flights downwind a CO2-emitting natural gas processing facility.
Lukas O. Muser, Gholam Ali Hoshyaripour, Julia Bruckert, Ákos Horváth, Elizaveta Malinina, Sandra Wallis, Fred J. Prata, Alexei Rozanov, Christian von Savigny, Heike Vogel, and Bernhard Vogel
Atmos. Chem. Phys., 20, 15015–15036, https://doi.org/10.5194/acp-20-15015-2020, https://doi.org/10.5194/acp-20-15015-2020, 2020
Short summary
Short summary
Volcanic aerosols endanger aircraft and thus disrupt air travel globally. For aviation safety, it is vital to know the location and lifetime of such aerosols in the atmosphere. Here we show that the interaction of volcanic particles with each other eventually reduces their atmospheric lifetime. Moreover, we demonstrate that sunlight heats these particles, which lifts them several kilometers in the atmosphere. These findings support a more reliable forecast of volcanic aerosol dispersion.
Sora Seo, Andreas Richter, Anne-Marlene Blechschmidt, Ilias Bougoudis, and John Philip Burrows
Atmos. Chem. Phys., 20, 12285–12312, https://doi.org/10.5194/acp-20-12285-2020, https://doi.org/10.5194/acp-20-12285-2020, 2020
Short summary
Short summary
In this study, we present spatial distributions of occurrence frequency of enhanced total BrO column and various meteorological parameters affecting it in the Arctic and Antarctic sea ice regions by using 10 years of GOME-2 measurements and meteorological model data. Statistical analysis using the long-term dataset shows clear differences in the meteorological conditions between the mean field and the situation of enhanced total BrO columns in both polar sea ice regions.
Ilias Bougoudis, Anne-Marlene Blechschmidt, Andreas Richter, Sora Seo, John Philip Burrows, Nicolas Theys, and Annette Rinke
Atmos. Chem. Phys., 20, 11869–11892, https://doi.org/10.5194/acp-20-11869-2020, https://doi.org/10.5194/acp-20-11869-2020, 2020
Short summary
Short summary
A 22-year (1996 to 2017) consistent Arctic tropospheric BrO dataset derived from four satellite remote sensing instruments is presented. An increase in tropospheric BrO VCDs over this period, and especially during polar springs, can be seen. Comparisons of tropospheric BrO VCDs with first-year sea ice reveal a moderate spatial and temporal correlation between the two, suggesting that the increase in first-year sea ice in the Arctic has an impact on tropospheric BrO abundancies.
Stefan Noël, Klaus Bramstedt, Alexei Rozanov, Elizaveta Malinina, Heinrich Bovensmann, and John P. Burrows
Atmos. Meas. Tech., 13, 5643–5666, https://doi.org/10.5194/amt-13-5643-2020, https://doi.org/10.5194/amt-13-5643-2020, 2020
Short summary
Short summary
A new approach to derive stratospheric aerosol extinction profiles from SCIAMACHY solar occultation measurements based on an onion-peeling method is presented. The resulting extinctions at 452, 525 and 750 nm compare well with other limb and occultation data from, e.g. SAGE and SCIAMACHY, but show small oscillating features which vanish in monthly anomalies. Major volcanic eruptions, polar stratospheric clouds and influences of the quasi-biennial oscillation can be identified in the time series.
Hirofumi Ohyama, Isamu Morino, Voltaire A. Velazco, Theresa Klausner, Gerry Bagtasa, Matthäus Kiel, Matthias Frey, Akihiro Hori, Osamu Uchino, Tsuneo Matsunaga, Nicholas M. Deutscher, Joshua P. DiGangi, Yonghoon Choi, Glenn S. Diskin, Sally E. Pusede, Alina Fiehn, Anke Roiger, Michael Lichtenstern, Hans Schlager, Pao K. Wang, Charles C.-K. Chou, Maria Dolores Andrés-Hernández, and John P. Burrows
Atmos. Meas. Tech., 13, 5149–5163, https://doi.org/10.5194/amt-13-5149-2020, https://doi.org/10.5194/amt-13-5149-2020, 2020
Short summary
Short summary
Column-averaged dry-air mole fractions of CO2 and CH4 measured by a solar viewing portable Fourier transform spectrometer (EM27/SUN) were validated with in situ profile data obtained during the transfer flights of two aircraft campaigns. Atmospheric dynamical properties based on ERA5 and WRF-Chem were used as criteria for selecting the best aircraft profiles for the validation. The resulting air-mass-independent correction factors for the EM27/SUN data were 0.9878 for CO2 and 0.9829 for CH4.
Thomas von Clarmann, Douglas A. Degenstein, Nathaniel J. Livesey, Stefan Bender, Amy Braverman, André Butz, Steven Compernolle, Robert Damadeo, Seth Dueck, Patrick Eriksson, Bernd Funke, Margaret C. Johnson, Yasuko Kasai, Arno Keppens, Anne Kleinert, Natalya A. Kramarova, Alexandra Laeng, Bavo Langerock, Vivienne H. Payne, Alexei Rozanov, Tomohiro O. Sato, Matthias Schneider, Patrick Sheese, Viktoria Sofieva, Gabriele P. Stiller, Christian von Savigny, and Daniel Zawada
Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020, https://doi.org/10.5194/amt-13-4393-2020, 2020
Short summary
Short summary
Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. This paper summarizes related techniques and provides recommendations for unified error reporting.
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Steffen Vanselow, Heinrich Bovensmann, and John P. Burrows
Atmos. Chem. Phys., 20, 9169–9182, https://doi.org/10.5194/acp-20-9169-2020, https://doi.org/10.5194/acp-20-9169-2020, 2020
Short summary
Short summary
The switch from the use of coal to natural gas or oil for energy generation potentially reduces the impact on global warming due to lower CO2 emissions with the same energy content. However, this climate benefit is offset by fugitive methane emissions during the production and distribution process. We quantify emission and leakage rates relative to production for several large production regions based on satellite observations to evaluate the climate footprint of the gas and oil industry.
Tina Hilbig, Klaus Bramstedt, Mark Weber, John P. Burrows, and Matthijs Krijger
Atmos. Meas. Tech., 13, 3893–3907, https://doi.org/10.5194/amt-13-3893-2020, https://doi.org/10.5194/amt-13-3893-2020, 2020
Short summary
Short summary
One of the main limitations for long-term space-based measurements is
instrument degradation. We present an optimisation of the
degradation correction approach (Krijger et al. 2014) for SCIAMACHY
on-board Envisat, focusing on the improvement of the solar spectral
irradiance data. The main achievement of this study is the
successful integration of SCIAMACHY’s internal white light source
(WLS) into the existing degradation model and the
characterisation of WLS ageing in space.
Steven Compernolle, Tijl Verhoelst, Gaia Pinardi, José Granville, Daan Hubert, Arno Keppens, Sander Niemeijer, Bruno Rino, Alkis Bais, Steffen Beirle, Folkert Boersma, John P. Burrows, Isabelle De Smedt, Henk Eskes, Florence Goutail, François Hendrick, Alba Lorente, Andrea Pazmino, Ankie Piters, Enno Peters, Jean-Pierre Pommereau, Julia Remmers, Andreas Richter, Jos van Geffen, Michel Van Roozendael, Thomas Wagner, and Jean-Christopher Lambert
Atmos. Chem. Phys., 20, 8017–8045, https://doi.org/10.5194/acp-20-8017-2020, https://doi.org/10.5194/acp-20-8017-2020, 2020
Short summary
Short summary
Tropospheric and stratospheric NO2 columns from the OMI QA4ECV NO2 satellite product are validated by comparison with ground-based measurements at 11 sites. The OMI stratospheric column has a small negative bias, and the OMI tropospheric column has a stronger negative bias relative to the ground-based data. Discrepancies are attributed to comparison errors (e.g. difference in horizontal smoothing) and measurement errors (e.g. clouds, aerosols, vertical smoothing and a priori profile assumptions).
Midhun George, Maria Dolores Andrés Hernández, Vladyslav Nenakhov, Yangzhuoran Liu, and John Philip Burrows
Atmos. Meas. Tech., 13, 2577–2600, https://doi.org/10.5194/amt-13-2577-2020, https://doi.org/10.5194/amt-13-2577-2020, 2020
Short summary
Short summary
The accurate measurement of peroxy radicals is essential for understanding the chemistry of air masses probed in the free troposphere. The PeRCEAS instrument has been designed, developed and thoroughly characterised for the measurement of the total sum of peroxy radicals (RO2*) aboard airborne platforms. Parameters expected to affect the precision and accuracy of the measurement have been investigated in detail.
Christian von Savigny and Christoph G. Hoffmann
Atmos. Meas. Tech., 13, 1909–1920, https://doi.org/10.5194/amt-13-1909-2020, https://doi.org/10.5194/amt-13-1909-2020, 2020
Short summary
Short summary
Stratospheric sulfate aerosols increase the Earth's planetary albedo and can lead to significant surface cooling, for example in the aftermath of volcanic eruptions. Their particle size distribution, important for physical and chemical effects of these aerosols, is still not fully understood. The present paper proposes an explanation for systematic differences in aerosol particle size retrieved from measurements made in different measurement geometries and reported in earlier studies.
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, and John P. Burrows
Atmos. Chem. Phys., 20, 3317–3332, https://doi.org/10.5194/acp-20-3317-2020, https://doi.org/10.5194/acp-20-3317-2020, 2020
Short summary
Short summary
As a consequence of climate change, droughts in California are occurring more often, providing ample fuel for destructive wildfires. The associated smoke is reducing air quality as it contains pollutants considered harmful to public health and the environment such as carbon monoxide (CO). We analyse the statewide distribution of CO during the first days of two specific wildfires using satellite measurements and assess the corresponding air quality burden in major Californian cities.
Anne-Marlene Blechschmidt, Joaquim Arteta, Adriana Coman, Lyana Curier, Henk Eskes, Gilles Foret, Clio Gielen, Francois Hendrick, Virginie Marécal, Frédérik Meleux, Jonathan Parmentier, Enno Peters, Gaia Pinardi, Ankie J. M. Piters, Matthieu Plu, Andreas Richter, Arjo Segers, Mikhail Sofiev, Álvaro M. Valdebenito, Michel Van Roozendael, Julius Vira, Tim Vlemmix, and John P. Burrows
Atmos. Chem. Phys., 20, 2795–2823, https://doi.org/10.5194/acp-20-2795-2020, https://doi.org/10.5194/acp-20-2795-2020, 2020
Short summary
Short summary
MAX-DOAS tropospheric NO2 vertical column retrievals from a set of European measurement stations are compared to regional air quality models which contribute to the operational Copernicus Atmosphere Monitoring Service (CAMS). Correlations are on the order of 35 %–75 %; large differences occur for individual pollution plumes. The results demonstrate that future model development needs to concentrate on improving representation of diurnal cycles and associated temporal scalings.
Olexandr Lednyts'kyy and Christian von Savigny
Atmos. Chem. Phys., 20, 2221–2261, https://doi.org/10.5194/acp-20-2221-2020, https://doi.org/10.5194/acp-20-2221-2020, 2020
Short summary
Short summary
Atomic oxygen is a chemically active trace gas and a critical component of the energy balance of the mesosphere and lower thermosphere (MLT). By sequentially applying continuity equations of low degree, a new model representing the airglow and photochemistry of oxygen in the MLT is implemented, enabling comparisons with airglow observations at each step. The most effective data sets required to derive the abundance of atomic oxygen are the O2 atmospheric band emission, temperature, N2 and O2.
Leonardo M. A. Alvarado, Andreas Richter, Mihalis Vrekoussis, Andreas Hilboll, Anna B. Kalisz Hedegaard, Oliver Schneising, and John P. Burrows
Atmos. Chem. Phys., 20, 2057–2072, https://doi.org/10.5194/acp-20-2057-2020, https://doi.org/10.5194/acp-20-2057-2020, 2020
Short summary
Short summary
We present CHOCHO and HCHO columns retrieved from measurements by TROPOMI. Elevated amounts of CHOCHO and HCHO are observed during the fire season in BC, Canada, where a large number of fires occurred in 2018. CHOCHO and HCHO plumes from individual fires are observed in air masses travelling over distances of up to 1500 km. Comparison with FLEXPART simulations with different lifetimes shows that effective lifetimes of 20 h and more are needed to explain the observations.
Maximilian Reuter, Michael Buchwitz, Oliver Schneising, Stefan Noël, Heinrich Bovensmann, John P. Burrows, Hartmut Boesch, Antonio Di Noia, Jasdeep Anand, Robert J. Parker, Peter Somkuti, Lianghai Wu, Otto P. Hasekamp, Ilse Aben, Akihiko Kuze, Hiroshi Suto, Kei Shiomi, Yukio Yoshida, Isamu Morino, David Crisp, Christopher W. O'Dell, Justus Notholt, Christof Petri, Thorsten Warneke, Voltaire A. Velazco, Nicholas M. Deutscher, David W. T. Griffith, Rigel Kivi, David F. Pollard, Frank Hase, Ralf Sussmann, Yao V. Té, Kimberly Strong, Sébastien Roche, Mahesh K. Sha, Martine De Mazière, Dietrich G. Feist, Laura T. Iraci, Coleen M. Roehl, Christian Retscher, and Dinand Schepers
Atmos. Meas. Tech., 13, 789–819, https://doi.org/10.5194/amt-13-789-2020, https://doi.org/10.5194/amt-13-789-2020, 2020
Short summary
Short summary
We present new satellite-derived data sets of atmospheric carbon dioxide (CO2) and methane (CH4). The data products are column-averaged dry-air mole fractions of CO2 and CH4, denoted XCO2 and XCH4. The products cover the years 2003–2018 and are merged Level 2 (satellite footprints) and merged Level 3 (gridded at monthly time and 5° x 5° spatial resolution) products obtained from combining several individual sensor products. We present the merging algorithms and product validation results.
Piao Rong, Christian von Savigny, Chunmin Zhang, Christoph G. Hoffmann, and Michael J. Schwartz
Atmos. Chem. Phys., 20, 1737–1755, https://doi.org/10.5194/acp-20-1737-2020, https://doi.org/10.5194/acp-20-1737-2020, 2020
Short summary
Short summary
We study the presence and characteristics of 27 d solar signatures in middle atmospheric temperature observed by the microwave limb sounder on NASA's Aura spacecraft. This is a highly interesting and significant subject because the physical and chemical mechanisms leading to these 27 d solar-driven signatures are, in many cases, not well understood. The analysis shows that highly significant 27 d solar signatures in middle atmospheric temperature are present at many altitudes and latitudes.
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, John P. Burrows, Tobias Borsdorff, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Christian Hermans, Laura T. Iraci, Rigel Kivi, Jochen Landgraf, Isamu Morino, Justus Notholt, Christof Petri, David F. Pollard, Sébastien Roche, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Voltaire A. Velazco, Thorsten Warneke, and Debra Wunch
Atmos. Meas. Tech., 12, 6771–6802, https://doi.org/10.5194/amt-12-6771-2019, https://doi.org/10.5194/amt-12-6771-2019, 2019
Short summary
Short summary
We introduce an algorithm that is used to simultaneously derive the abundances of the important atmospheric constituents carbon monoxide and methane from the TROPOMI instrument onboard the Sentinel-5 Precursor satellite, which enables the determination of both gases with an unprecedented level of detail on a global scale. The quality of the resulting data sets is assessed and the first results are presented.
André Seyler, Andreas C. Meier, Folkard Wittrock, Lisa Kattner, Barbara Mathieu-Üffing, Enno Peters, Andreas Richter, Thomas Ruhtz, Anja Schönhardt, Stefan Schmolke, and John P. Burrows
Atmos. Meas. Tech., 12, 5959–5977, https://doi.org/10.5194/amt-12-5959-2019, https://doi.org/10.5194/amt-12-5959-2019, 2019
Short summary
Short summary
This study describes a novel application of an
onion-peelingapproach to MAX-DOAS measurements of shipping emissions to study the inhomogeneous NO2 field above a shipping lane. It is shown how the method can be used to derive the approximate plume positions in the observed area, and, by using a simple Gaussian plume model, to calculate in-plume NO2 volume mixing ratios. For validation, a comparison to airborne imaging DOAS measurements during the NOSE campaign in July 2013 is included.
Lisa K. Behrens, Andreas Hilboll, Andreas Richter, Enno Peters, Leonardo M. A. Alvarado, Anna B. Kalisz Hedegaard, Folkard Wittrock, John P. Burrows, and Mihalis Vrekoussis
Atmos. Chem. Phys., 19, 10257–10278, https://doi.org/10.5194/acp-19-10257-2019, https://doi.org/10.5194/acp-19-10257-2019, 2019
Short summary
Short summary
MAX-DOAS measurements were conducted on the research vessel Maria S. Merian during a cruise from the Azores to South Africa in October 2016. The measurements indicate enhanced levels of HCHO and CHOCHO over the remote Atlantic Ocean, which is unexpected due to their short lifetime. Precursors of these gases or gas–aerosol combinations might be transported. Model simulations indicate potential source regions over the African continent, probably related to biomass burning or biogenic emissions.
Enno Peters, Mareike Ostendorf, Tim Bösch, André Seyler, Anja Schönhardt, Stefan F. Schreier, Jeroen Sebastiaan Henzing, Folkard Wittrock, Andreas Richter, Mihalis Vrekoussis, and John P. Burrows
Atmos. Meas. Tech., 12, 4171–4190, https://doi.org/10.5194/amt-12-4171-2019, https://doi.org/10.5194/amt-12-4171-2019, 2019
Short summary
Short summary
A novel imaging-DOAS instrument (IMPACT) is presented for measurements of nitrogen dioxide (NO2) in the atmosphere. The instrument combines full-azimuthal pointing (360°) with a large vertical coverage (40°). Complete panoramic scans and vertical NO2 profiles around the measurement site are acquired at a temporal resolution of 15 min. In addition, information about the aerosol phase function is retrieved from O4 slant columns along multiple almucantar scans measured simultaneously by IMPACT.
Jacob Zalach, Christian von Savigny, Arvid Langenbach, Gerd Baumgarten, Franz-Josef Lübken, and Adam Bourassa
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-267, https://doi.org/10.5194/amt-2019-267, 2019
Revised manuscript not accepted
Arvid Langenbach, Gerd Baumgarten, Jens Fiedler, Franz-Josef Lübken, Christian von Savigny, and Jacob Zalach
Atmos. Meas. Tech., 12, 4065–4076, https://doi.org/10.5194/amt-12-4065-2019, https://doi.org/10.5194/amt-12-4065-2019, 2019
Short summary
Short summary
Stratospheric aerosol backscatter ratios in the Arctic using Rayleigh, Mie and Raman backscattered signals were calculated. A backscatter ratio calculation during daytime was performed for the first time. Sharp aerosol layers thinner than 1 km over several days were observed. The seasonal cycle of stratospheric background aerosol in high latitudes including the summer months was calculated for the first time. Top altitude of the aerosol layer was found to reach up to 34 km, especially in summer.
Dan Weaver, Kimberly Strong, Kaley A. Walker, Chris Sioris, Matthias Schneider, C. Thomas McElroy, Holger Vömel, Michael Sommer, Katja Weigel, Alexei Rozanov, John P. Burrows, William G. Read, Evan Fishbein, and Gabriele Stiller
Atmos. Meas. Tech., 12, 4039–4063, https://doi.org/10.5194/amt-12-4039-2019, https://doi.org/10.5194/amt-12-4039-2019, 2019
Short summary
Short summary
This work assesses water vapour profiles acquired by Atmospheric Chemistry Experiment (ACE) satellite instruments in the upper troposphere and lower stratosphere (UTLS) using comparisons to radiosondes and ground-based Fourier transform infrared spectrometer measurements acquired at a Canadian high Arctic measurement site in Eureka, Nunavut. Additional comparisons are made between these Eureka measurements and other water vapour satellite datasets for context, including AIRS, MLS, and others.
Maximilian Reuter, Michael Buchwitz, Oliver Schneising, Sven Krautwurst, Christopher W. O'Dell, Andreas Richter, Heinrich Bovensmann, and John P. Burrows
Atmos. Chem. Phys., 19, 9371–9383, https://doi.org/10.5194/acp-19-9371-2019, https://doi.org/10.5194/acp-19-9371-2019, 2019
Short summary
Short summary
The quantification of anthropogenic emissions with current CO2 satellite sensors is difficult, but NO2 is co-emitted, making it a suitable tracer of recently emitted CO2. We analyze enhancements of CO2 and NO2 observed by OCO-2 and S5P and estimate the CO2 plume cross-sectional fluxes that we compare with emission databases. Our results demonstrate the usefulness of simultaneous satellite observations of CO2 and NO2 as envisaged for the European Copernicus anthropogenic CO2 monitoring mission
Hyeong-Ahn Kwon, Rokjin J. Park, Gonzalo González Abad, Kelly Chance, Thomas P. Kurosu, Jhoon Kim, Isabelle De Smedt, Michel Van Roozendael, Enno Peters, and John Burrows
Atmos. Meas. Tech., 12, 3551–3571, https://doi.org/10.5194/amt-12-3551-2019, https://doi.org/10.5194/amt-12-3551-2019, 2019
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) will be launched by South Korea in 2019, and it will measure radiances ranging from 300 to 500 nm every hour with a fine spatial resolution of 7 km x 8 km over Seoul in South Korea to monitor column concentrations of air pollutants including O3, NO2, SO2, and HCHO, as well as aerosol optical properties. This paper describes a GEMS formaldehyde retrieval algorithm including a number of sensitivity tests for algorithm evaluation.
Elizaveta Malinina, Alexei Rozanov, Landon Rieger, Adam Bourassa, Heinrich Bovensmann, John P. Burrows, and Doug Degenstein
Atmos. Meas. Tech., 12, 3485–3502, https://doi.org/10.5194/amt-12-3485-2019, https://doi.org/10.5194/amt-12-3485-2019, 2019
Short summary
Short summary
This paper covers the problems related to the derivation of aerosol extinction coefficients and Ångström exponents from space-borne instruments working in limb and occultation viewing geometries. Aerosol extinction coefficients and Ångström exponents were calculated from the SCIAMACHY aerosol particle size data set. The results were compared with the data from SAGE II and OSIRIS. The Ångström exponent in the tropical regions and its dependency on particle size parameters are discussed.
Sora Seo, Andreas Richter, Anne-Marlene Blechschmidt, Ilias Bougoudis, and John Philip Burrows
Atmos. Meas. Tech., 12, 2913–2932, https://doi.org/10.5194/amt-12-2913-2019, https://doi.org/10.5194/amt-12-2913-2019, 2019
Short summary
Short summary
TROPOMI on board the Copernicus Sentinel-5 Precursor platform can measure various atmospheric compositions at high spatial resolution and improved spectral resolution compared to its predecessors. Bromine monoxide (BrO) is one of the gases that can be derived from the measured radiances of TROPOMI using the differential optical absorption spectroscopy method. In this paper, we present the first retrieval results of BrO column amounts from TROPOMI observations on global and regional scales.
Stefan Lossow, Farahnaz Khosrawi, Michael Kiefer, Kaley A. Walker, Jean-Loup Bertaux, Laurent Blanot, James M. Russell, Ellis E. Remsberg, John C. Gille, Takafumi Sugita, Christopher E. Sioris, Bianca M. Dinelli, Enzo Papandrea, Piera Raspollini, Maya García-Comas, Gabriele P. Stiller, Thomas von Clarmann, Anu Dudhia, William G. Read, Gerald E. Nedoluha, Robert P. Damadeo, Joseph M. Zawodny, Katja Weigel, Alexei Rozanov, Faiza Azam, Klaus Bramstedt, Stefan Noël, John P. Burrows, Hideo Sagawa, Yasuko Kasai, Joachim Urban, Patrick Eriksson, Donal P. Murtagh, Mark E. Hervig, Charlotta Högberg, Dale F. Hurst, and Karen H. Rosenlof
Atmos. Meas. Tech., 12, 2693–2732, https://doi.org/10.5194/amt-12-2693-2019, https://doi.org/10.5194/amt-12-2693-2019, 2019
Stefan F. Schreier, Andreas Richter, and John P. Burrows
Atmos. Chem. Phys., 19, 5853–5879, https://doi.org/10.5194/acp-19-5853-2019, https://doi.org/10.5194/acp-19-5853-2019, 2019
Short summary
Short summary
In this case stuy, we have coupled ground-based remote-sensing measurements with surface in situ measurements to investigate NO2 distributions in the planetary boundary layer in the Viennese metropolitan area. We find that the application of a novel linear regression analysis for the conversion of tropospheric NO2 vertical columns into near-surface NO2 mixing ratios is promising and thus the method needs to be further explored and tested on satellite observations in future studies.
Carlo Arosio, Alexei Rozanov, Elizaveta Malinina, Mark Weber, and John P. Burrows
Atmos. Meas. Tech., 12, 2423–2444, https://doi.org/10.5194/amt-12-2423-2019, https://doi.org/10.5194/amt-12-2423-2019, 2019
Short summary
Short summary
The aim of this study is the merging of stratospheric ozone profiles from three satellite data sets. The merged time series is used to compute long-term changes as a function of altitude, latitude and longitude to study the evolution of the ozone layer over 1985–2018. During the last 16 years we found positive trends in the upper stratosphere at mid latitudes, a large variability of the ozone changes as a function of longitude and a fluctuation in the tropical middle stratospheric trend.
Christoph G. Hoffmann and Christian von Savigny
Atmos. Chem. Phys., 19, 4235–4256, https://doi.org/10.5194/acp-19-4235-2019, https://doi.org/10.5194/acp-19-4235-2019, 2019
Short summary
Short summary
We examine a possible statistical linkage between atmospheric variability in the tropical troposphere on the intraseasonal timescale, which is known as Madden–Julian oscillation, and known variability of the solar radiation with a period of 27 days. This helps to understand tropospheric variability in more detail, which is generally of interest, e.g., for weather forecasting. We find indications for such a linkage; however, more research has to be conducted for an unambiguous attribution.
Soheila Jafariserajehlou, Linlu Mei, Marco Vountas, Vladimir Rozanov, John P. Burrows, and Rainer Hollmann
Atmos. Meas. Tech., 12, 1059–1076, https://doi.org/10.5194/amt-12-1059-2019, https://doi.org/10.5194/amt-12-1059-2019, 2019
Short summary
Short summary
We developed a new algorithm for cloud identification over the Arctic. This algorithm called ASCIA, utilizes time-series measurements of Advanced Along-Track Scanning Radiometer (AATSR) on Envisat and Sea and Land Surface Temperature Radiometer (SLSTR) on Sentinel-3A and -3B.
The data product of ASCIA is compared with three satellite products: ASCIA shows an improved performance compared to them. We validated ASCIA by ground-based measurements and a promising agreement is achieved.
Stefan Bender, Miriam Sinnhuber, Patrick J. Espy, and John P. Burrows
Atmos. Chem. Phys., 19, 2135–2147, https://doi.org/10.5194/acp-19-2135-2019, https://doi.org/10.5194/acp-19-2135-2019, 2019
Short summary
Short summary
We present an empirical model for nitric oxide (NO) in the mesosphere (60–90 km) derived from SCIAMACHY limb scan data. Our model relates the daily (longitudinally) averaged NO number densities from SCIAMACHY as a function of geomagnetic latitude to the solar Lyman-alpha and the geomagnetic AE indices. We use a non-linear regression model, incorporating a finite and seasonally varying lifetime for the geomagnetically induced NO.
Christian von Savigny, Dieter H. W. Peters, and Günter Entzian
Atmos. Chem. Phys., 19, 2079–2093, https://doi.org/10.5194/acp-19-2079-2019, https://doi.org/10.5194/acp-19-2079-2019, 2019
Short summary
Short summary
This study investigates solar effects in radio reflection height observations in the ionospheric D region at an altitude of about 80 km at northern midlatitudes. The analyzed time series covers almost six solar cycles. Statistically significant solar 27-day and 11-year signatures are identified. However, the driving mechanisms are not fully understood. We also provide evidence for dynamical effects on the radio reflection heights with periods close to the solar rotational cycle.
Tilo Fytterer, Christian von Savigny, Martin Mlynczak, and Miriam Sinnhuber
Atmos. Chem. Phys., 19, 1835–1851, https://doi.org/10.5194/acp-19-1835-2019, https://doi.org/10.5194/acp-19-1835-2019, 2019
Short summary
Short summary
A model was developed to derive night-time atomic oxygen (O(3P)) and atomic hydrogen (H) from satellite observations in the altitude region between 75 km and 100 km. Comparisons between the
best-fit modeland the measurements suggest that chemical reactions involving O2 and O(3P) might occur differently than is usually assumed in literature. This considerably affects the derived abundances of O(3P) and H, which in turn might influence air temperature and winds of the whole atmosphere.
Evgenia Galytska, Alexey Rozanov, Martyn P. Chipperfield, Sandip. S. Dhomse, Mark Weber, Carlo Arosio, Wuhu Feng, and John P. Burrows
Atmos. Chem. Phys., 19, 767–783, https://doi.org/10.5194/acp-19-767-2019, https://doi.org/10.5194/acp-19-767-2019, 2019
Short summary
Short summary
In this study we analysed ozone changes in the tropical mid-stratosphere as observed by the SCIAMACHY instrument during 2004–2012. We used simulations from TOMCAT model with different chemical and dynamical forcings to reveal primary causes of ozone changes. We also considered measured NO2 and modelled NOx, NOx, and N2O data. With modelled AoA data we identified seasonal changes in the upwelling speed and explained how those changes affect N2O chemistry which leads to observed ozone changes.
Tim Bösch, Vladimir Rozanov, Andreas Richter, Enno Peters, Alexei Rozanov, Folkard Wittrock, Alexis Merlaud, Johannes Lampel, Stefan Schmitt, Marijn de Haij, Stijn Berkhout, Bas Henzing, Arnoud Apituley, Mirjam den Hoed, Jan Vonk, Martin Tiefengraber, Moritz Müller, and John Philip Burrows
Atmos. Meas. Tech., 11, 6833–6859, https://doi.org/10.5194/amt-11-6833-2018, https://doi.org/10.5194/amt-11-6833-2018, 2018
Short summary
Short summary
A new MAX-DOAS profiling algorithm for aerosols and trace
gases was developed.
The performance of this novel algorithm was tested with the help of
synthetic data and measurements from the CINDI-2 campaign in Cabauw, the
Netherlands, in 2016.
Michael Buchwitz, Maximilian Reuter, Oliver Schneising, Stefan Noël, Bettina Gier, Heinrich Bovensmann, John P. Burrows, Hartmut Boesch, Jasdeep Anand, Robert J. Parker, Peter Somkuti, Rob G. Detmers, Otto P. Hasekamp, Ilse Aben, André Butz, Akihiko Kuze, Hiroshi Suto, Yukio Yoshida, David Crisp, and Christopher O'Dell
Atmos. Chem. Phys., 18, 17355–17370, https://doi.org/10.5194/acp-18-17355-2018, https://doi.org/10.5194/acp-18-17355-2018, 2018
Short summary
Short summary
We present a new satellite data set of column-averaged mixing ratios of carbon dioxide (CO2), which covers the time period 2003 to 2016. We used this data set to compute annual mean atmospheric CO2 growth rates. We show that the growth rate is highest during 2015 and 2016 despite nearly constant CO2 emissions from fossil fuel burning in recent years. The high growth rates are attributed to year 2015-2016 El Nino episodes. We present correlations with fossil fuel emissions and ENSO indices.
Farahnaz Khosrawi, Stefan Lossow, Gabriele P. Stiller, Karen H. Rosenlof, Joachim Urban, John P. Burrows, Robert P. Damadeo, Patrick Eriksson, Maya García-Comas, John C. Gille, Yasuko Kasai, Michael Kiefer, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Alexei Rozanov, Christopher E. Sioris, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 11, 4435–4463, https://doi.org/10.5194/amt-11-4435-2018, https://doi.org/10.5194/amt-11-4435-2018, 2018
Short summary
Short summary
Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 satellite instruments were compared in the framework of the second SPARC water vapour assessment. We find that most data sets can be considered in observational and modelling studies addressing, e.g. stratospheric and lower mesospheric water vapour variability and trends if data-set-specific characteristics (e.g. a drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.
Landon A. Rieger, Elizaveta P. Malinina, Alexei V. Rozanov, John P. Burrows, Adam E. Bourassa, and Doug A. Degenstein
Atmos. Meas. Tech., 11, 3433–3445, https://doi.org/10.5194/amt-11-3433-2018, https://doi.org/10.5194/amt-11-3433-2018, 2018
Short summary
Short summary
This paper compares aerosol extinction records from two limb scattering instruments, OSIRIS and SCIAMACHY, to that from the occultation instrument SAGE II. Differences are investigated through modelling and retrieval studies and important sources of systematic errors are quantified. It is found that the largest biases come from uncertainties in the aerosol size distribution and the aerosol particle concentration at altitudes above 30 km.
Lisa K. Behrens, Andreas Hilboll, Andreas Richter, Enno Peters, Henk Eskes, and John P. Burrows
Atmos. Meas. Tech., 11, 2769–2795, https://doi.org/10.5194/amt-11-2769-2018, https://doi.org/10.5194/amt-11-2769-2018, 2018
Short summary
Short summary
We developed a novel NO2 DOAS retrieval for the GOME-2A instrument in the UV spectral range, which is compared with a NO2 retrieval in the visible and model values. Regions representative for both anthropogenic and biomass burning NO2 pollution are investigated. Anthropogenic air pollution is mostly located in the boundary layer close to the surface. In contrast, biomass burning NO2 is often uplifted into elevated layers.
Carlo Arosio, Alexei Rozanov, Elizaveta Malinina, Kai-Uwe Eichmann, Thomas von Clarmann, and John P. Burrows
Atmos. Meas. Tech., 11, 2135–2149, https://doi.org/10.5194/amt-11-2135-2018, https://doi.org/10.5194/amt-11-2135-2018, 2018
Short summary
Short summary
This paper describes the development of a retrieval algorithm at the University of Bremen which derives stratospheric ozone profiles from limb observations performed by the OMPS satellite instrument. Here we present the implementation of the algorithm and the validation of our results (1 year of data against independent satellite and ground-based measurements). Good agreement is generally found between 20 and 55 km, mostly within 10 % at all latitudes.
Evgenia Galytska, Vassyl Danylevsky, René Hommel, and John P. Burrows
Atmos. Meas. Tech., 11, 2101–2118, https://doi.org/10.5194/amt-11-2101-2018, https://doi.org/10.5194/amt-11-2101-2018, 2018
Short summary
Short summary
This research assesses the influence of biomass burning during forest fires throughout summer 2010 on aerosol load over Ukraine, the European territory of Russia (ETR) and Eastern Europe. We apply and compare ground-based and satellite measurements to determine aerosol content, dynamics, and properties. With the application of modeling techniques (HYSPLIT), we show that the maximum AOD in August 2010 over Ukraine was caused by particle transport from the forest fires in the ETR.
Elizaveta Malinina, Alexei Rozanov, Vladimir Rozanov, Patricia Liebing, Heinrich Bovensmann, and John P. Burrows
Atmos. Meas. Tech., 11, 2085–2100, https://doi.org/10.5194/amt-11-2085-2018, https://doi.org/10.5194/amt-11-2085-2018, 2018
Short summary
Short summary
Stratospheric aerosols play an important role in climate change. This paper presents the retrieval algorithm of two aerosol particle size distribution parameters in the stratosphere from remote sensing instruments. A unique data set was created by implementing this algorithm on SCIAMACHY limb measurements. The general behaviour of the aerosol particle size parameters was revealed. Comparison of the retrieved parameters with another instrument showed good agreement.
Stefan Noël, Katja Weigel, Klaus Bramstedt, Alexei Rozanov, Mark Weber, Heinrich Bovensmann, and John P. Burrows
Atmos. Chem. Phys., 18, 4463–4476, https://doi.org/10.5194/acp-18-4463-2018, https://doi.org/10.5194/acp-18-4463-2018, 2018
Short summary
Short summary
The combined analysis of stratospheric methane and water vapour data derived from SCIAMACHY solar occultation measurements shows the expected anti-correlation and a clear temporal variation related to waves in equatorial zonal winds. Above about 20 km most of the additional water vapour is attributed to the oxidation of methane. The SCIAMACHY data confirm that at lower altitudes water vapour and methane are transported from the tropics to higher latitudes.
Linlu Mei, Vladimir Rozanov, Marco Vountas, John P. Burrows, and Andreas Richter
Atmos. Chem. Phys., 18, 2511–2523, https://doi.org/10.5194/acp-18-2511-2018, https://doi.org/10.5194/acp-18-2511-2018, 2018
Mark Weber, Melanie Coldewey-Egbers, Vitali E. Fioletov, Stacey M. Frith, Jeannette D. Wild, John P. Burrows, Craig S. Long, and Diego Loyola
Atmos. Chem. Phys., 18, 2097–2117, https://doi.org/10.5194/acp-18-2097-2018, https://doi.org/10.5194/acp-18-2097-2018, 2018
Short summary
Short summary
This paper commemorates the 30-year anniversary of the initial signing of the Montreal Protocol (MP) on substances that deplete the ozone layer. The MP is so far successful in reducing ozone-depleting substances, and total ozone decline was successfully stopped by the late 1990s. Total ozone levels have been mostly stable since then. In some regions, barely significant upward trends are observed that suggest an emergence into the expected ozone recovery phase.
Thomas Krings, Bruno Neininger, Konstantin Gerilowski, Sven Krautwurst, Michael Buchwitz, John P. Burrows, Carsten Lindemann, Thomas Ruhtz, Dirk Schüttemeyer, and Heinrich Bovensmann
Atmos. Meas. Tech., 11, 721–739, https://doi.org/10.5194/amt-11-721-2018, https://doi.org/10.5194/amt-11-721-2018, 2018
Amirmahdi Zarboo, Stefan Bender, John P. Burrows, Johannes Orphal, and Miriam Sinnhuber
Atmos. Meas. Tech., 11, 473–487, https://doi.org/10.5194/amt-11-473-2018, https://doi.org/10.5194/amt-11-473-2018, 2018
Short summary
Short summary
We present the retrieved volume emission rates (VERs) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere and lower thermosphere (MLT). We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. These observations provide information about the chemistry and dynamics and can be used to infer ozone, solar heating rates, and temperature in the MLT.
Patricia Liebing, Matthijs Krijger, Ralph Snel, Klaus Bramstedt, Stefan Noël, Heinrich Bovensmann, and John P. Burrows
Atmos. Meas. Tech., 11, 265–289, https://doi.org/10.5194/amt-11-265-2018, https://doi.org/10.5194/amt-11-265-2018, 2018
Short summary
Short summary
This article describes a method to determine the polarization sensitivity of SCIAMACHY, a spectrometer on Envisat, from in-orbit data. Polarization is a preference of a direction in which light oscillates, and many optical instruments suffer from a dependence of their measured signals on this. To measure and correct for this effect, a statistical analysis of in-flight data combined with a model of the atmosphere and the instrument was performed, showing that the instrument changed after launch.
Elizabeth C. Weatherhead, Jerald Harder, Eduardo A. Araujo-Pradere, Greg Bodeker, Jason M. English, Lawrence E. Flynn, Stacey M. Frith, Jeffrey K. Lazo, Peter Pilewskie, Mark Weber, and Thomas N. Woods
Atmos. Chem. Phys., 17, 15069–15093, https://doi.org/10.5194/acp-17-15069-2017, https://doi.org/10.5194/acp-17-15069-2017, 2017
Short summary
Short summary
Satellite overlap is often carried out as a check on the stability of the data collected. We looked at how length of overlap influences how much information can be derived from the overlap period. Several results surprised us: the confidence we could have in the matchup of two records was independent of the offset, and understanding of the relative drift between the two satellite data sets improved significantly with 2–3 years of overlap. Sudden jumps could easily be confused with drift.
Viktoria F. Sofieva, Erkki Kyrölä, Marko Laine, Johanna Tamminen, Doug Degenstein, Adam Bourassa, Chris Roth, Daniel Zawada, Mark Weber, Alexei Rozanov, Nabiz Rahpoe, Gabriele Stiller, Alexandra Laeng, Thomas von Clarmann, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Claus Zehner, Robert Damadeo, Joseph Zawodny, Natalya Kramarova, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 12533–12552, https://doi.org/10.5194/acp-17-12533-2017, https://doi.org/10.5194/acp-17-12533-2017, 2017
Short summary
Short summary
We present a merged dataset of ozone profiles from several satellite instruments: SAGE II, GOMOS, SCIAMACHY, MIPAS, OSIRIS, ACE-FTS and OMPS. For merging, we used the latest versions of the original ozone datasets.
The merged SAGE–CCI–OMPS dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997.
Sven Krautwurst, Konstantin Gerilowski, Haflidi H. Jonsson, David R. Thompson, Richard W. Kolyer, Laura T. Iraci, Andrew K. Thorpe, Markus Horstjann, Michael Eastwood, Ira Leifer, Samuel A. Vigil, Thomas Krings, Jakob Borchardt, Michael Buchwitz, Matthew M. Fladeland, John P. Burrows, and Heinrich Bovensmann
Atmos. Meas. Tech., 10, 3429–3452, https://doi.org/10.5194/amt-10-3429-2017, https://doi.org/10.5194/amt-10-3429-2017, 2017
Short summary
Short summary
This study investigates a subset of data collected during the CO2 and Methane EXperiment (COMEX) in 2014. It focuses on airborne measurements to quantify the emissions from landfills in the Los Angeles Basin. Airborne remote sensing data have been used to estimate the emission rate of one particular landfill on four different days. The results have been compared to airborne in situ measurements. Airborne imaging spectroscopy has been used to identify emission hotspots across the landfill.
André Seyler, Folkard Wittrock, Lisa Kattner, Barbara Mathieu-Üffing, Enno Peters, Andreas Richter, Stefan Schmolke, and John P. Burrows
Atmos. Chem. Phys., 17, 10997–11023, https://doi.org/10.5194/acp-17-10997-2017, https://doi.org/10.5194/acp-17-10997-2017, 2017
Short summary
Short summary
Shipping accounts for a significant part of the emissions from the transportation sector. We have analyzed 3 years of MAX-DOAS measurements of NO2 and SO2 from a small island in the German Bight, showing that despite the vicinity to the shipping lane, the contribution of shipping sources to air pollution is only about 40 %. The implementation of stricter fuel sulfur limits led to a significant reduction in SO2-to-NO2 ratios in shipping emissions and ambient SO2 levels at the German coast.
Wolfgang Steinbrecht, Lucien Froidevaux, Ryan Fuller, Ray Wang, John Anderson, Chris Roth, Adam Bourassa, Doug Degenstein, Robert Damadeo, Joe Zawodny, Stacey Frith, Richard McPeters, Pawan Bhartia, Jeannette Wild, Craig Long, Sean Davis, Karen Rosenlof, Viktoria Sofieva, Kaley Walker, Nabiz Rahpoe, Alexei Rozanov, Mark Weber, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Natalya Kramarova, Sophie Godin-Beekmann, Thierry Leblanc, Richard Querel, Daan Swart, Ian Boyd, Klemens Hocke, Niklaus Kämpfer, Eliane Maillard Barras, Lorena Moreira, Gerald Nedoluha, Corinne Vigouroux, Thomas Blumenstock, Matthias Schneider, Omaira García, Nicholas Jones, Emmanuel Mahieu, Dan Smale, Michael Kotkamp, John Robinson, Irina Petropavlovskikh, Neil Harris, Birgit Hassler, Daan Hubert, and Fiona Tummon
Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, https://doi.org/10.5194/acp-17-10675-2017, 2017
Short summary
Short summary
Thanks to the 1987 Montreal Protocol and its amendments, ozone-depleting chlorine (and bromine) in the stratosphere has declined slowly since the late 1990s. Improved and extended long-term ozone profile observations from satellites and ground-based stations confirm that ozone is responding as expected and has increased by about 2 % per decade since 2000 in the upper stratosphere, around 40 km altitude. At lower altitudes, however, ozone has not changed significantly since 2000.
Martin P. Langowski, Christian von Savigny, John P. Burrows, Didier Fussen, Erin C. M. Dawkins, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Meas. Tech., 10, 2989–3006, https://doi.org/10.5194/amt-10-2989-2017, https://doi.org/10.5194/amt-10-2989-2017, 2017
Short summary
Short summary
Meteoric metals form metal layers in the upper atmosphere anandplay a role in the formation of middle-atmospheric clouds and aerosols. However, the total metal influx rate is not well known. Global Na datasets from measurements and a model are available, which had not been compared yet on a global scale until this paper. Overall the agreement is good, and many differences between measurements are also found in the model simulations. However, the modeled layer altitude is too low.
Klaus Bramstedt, Thomas C. Stone, Manfred Gottwald, Stefan Noël, Heinrich Bovensmann, and John P. Burrows
Atmos. Meas. Tech., 10, 2413–2423, https://doi.org/10.5194/amt-10-2413-2017, https://doi.org/10.5194/amt-10-2413-2017, 2017
Short summary
Short summary
The satellite instrument SCIAMACHY on board the ESA's platform Envisat
(2002–2012) performed observations of the Earth's atmosphere. Using sun and moon observations of the instrument itself, we derived a set of correction
parameters for the determination of the viewing directions of the
instrument. From this work, all vertical profiles of atmospheric parameters
from SCIAMACHY's limb and occultation measurements will be improved by a more
accurate altitude information.
Andreas Carlos Meier, Anja Schönhardt, Tim Bösch, Andreas Richter, André Seyler, Thomas Ruhtz, Daniel-Eduard Constantin, Reza Shaiganfar, Thomas Wagner, Alexis Merlaud, Michel Van Roozendael, Livio Belegante, Doina Nicolae, Lucian Georgescu, and John Philip Burrows
Atmos. Meas. Tech., 10, 1831–1857, https://doi.org/10.5194/amt-10-1831-2017, https://doi.org/10.5194/amt-10-1831-2017, 2017
Short summary
Short summary
We present airborne remote sensing measurements of NO2 in the urban area of Bucharest. NO2 is a harmful pollutant, which is emitted in combustion processes. The measurements presented here enable the creation of maps, showing the horizontal NO2 distribution across the whole city within a relatively short time window of 1.5 h. These data provide new insight into urban pollution levels and their spatial distribution.
Michael Buchwitz, Oliver Schneising, Maximilian Reuter, Jens Heymann, Sven Krautwurst, Heinrich Bovensmann, John P. Burrows, Hartmut Boesch, Robert J. Parker, Peter Somkuti, Rob G. Detmers, Otto P. Hasekamp, Ilse Aben, André Butz, Christian Frankenberg, and Alexander J. Turner
Atmos. Chem. Phys., 17, 5751–5774, https://doi.org/10.5194/acp-17-5751-2017, https://doi.org/10.5194/acp-17-5751-2017, 2017
Short summary
Short summary
Methane is an important greenhouse gas and increasing atmospheric concentrations result in global warming. We present a simple method to derive annual methane emission estimates of methane hotspot areas from satellite data. We present results for four source areas. We found that our estimates are in good agreement with other studies/data sets for the Four Corners region in the USA and for Azerbaijan but we also found higher emissions for parts of California and Turkmenistan.
Jia Jia, Annette Ladstätter-Weißenmayer, Xuewei Hou, Alexei Rozanov, and John P. Burrows
Atmos. Chem. Phys., 17, 4915–4930, https://doi.org/10.5194/acp-17-4915-2017, https://doi.org/10.5194/acp-17-4915-2017, 2017
Anja Schönhardt, Andreas Richter, Nicolas Theys, and John P. Burrows
Atmos. Chem. Phys., 17, 4857–4870, https://doi.org/10.5194/acp-17-4857-2017, https://doi.org/10.5194/acp-17-4857-2017, 2017
Short summary
Short summary
Iodine monoxide, IO, is observed in satellite measurements following the eruption of the Kasatochi volcano, Alaska, in August 2008. Large IO columns are detected by SCIAMACHY on ENVISAT and by GOME-2 on MetOp-A for several days. IO amounts are approximately 1 order of magnitude smaller than those of BrO. Details in the spatial distributions differ between IO, BrO and sulfur dioxide, SO2. The total mass of IO in the volcanic plume is determined to be on the order of 10 Mg.
Stefan Lossow, Farahnaz Khosrawi, Gerald E. Nedoluha, Faiza Azam, Klaus Bramstedt, John. P. Burrows, Bianca M. Dinelli, Patrick Eriksson, Patrick J. Espy, Maya García-Comas, John C. Gille, Michael Kiefer, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Gabriele P. Stiller, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 10, 1111–1137, https://doi.org/10.5194/amt-10-1111-2017, https://doi.org/10.5194/amt-10-1111-2017, 2017
Enno Peters, Gaia Pinardi, André Seyler, Andreas Richter, Folkard Wittrock, Tim Bösch, Michel Van Roozendael, François Hendrick, Theano Drosoglou, Alkiviadis F. Bais, Yugo Kanaya, Xiaoyi Zhao, Kimberly Strong, Johannes Lampel, Rainer Volkamer, Theodore Koenig, Ivan Ortega, Olga Puentedura, Mónica Navarro-Comas, Laura Gómez, Margarita Yela González, Ankie Piters, Julia Remmers, Yang Wang, Thomas Wagner, Shanshan Wang, Alfonso Saiz-Lopez, David García-Nieto, Carlos A. Cuevas, Nuria Benavent, Richard Querel, Paul Johnston, Oleg Postylyakov, Alexander Borovski, Alexander Elokhov, Ilya Bruchkouski, Haoran Liu, Cheng Liu, Qianqian Hong, Claudia Rivera, Michel Grutter, Wolfgang Stremme, M. Fahim Khokhar, Junaid Khayyam, and John P. Burrows
Atmos. Meas. Tech., 10, 955–978, https://doi.org/10.5194/amt-10-955-2017, https://doi.org/10.5194/amt-10-955-2017, 2017
Short summary
Short summary
This work is about harmonization of differential optical absorption spectroscopy retrieval codes, which is a remote sensing technique widely used to derive atmospheric trace gas amounts. The study is based on ground-based measurements performed during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany, in summer 2013. In total, 17 international groups working in the field of the DOAS technique participated in this study.
Andreas Hilboll, Andreas Richter, and John P. Burrows
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-101, https://doi.org/10.5194/acp-2017-101, 2017
Revised manuscript has not been submitted
Short summary
Short summary
We investigate the temporal evolution of the important tropospheric air pollutant nitrogen dioxide (NO2) since the early 2000s, and correlate NO2 abundances with indicators of economic development. Until 2012, NO2 pollution and economic growth are strongly correlated, with annual increases of up to 4.4 %. Since then, tropospheric NO2 pollution has stabilized or is even declining, probably as a result of a slow-down in Indian economic growth combined with the implementation of cleaner technology.
Ruixiong Zhang, Yuhang Wang, Qiusheng He, Laiguo Chen, Yuzhong Zhang, Hang Qu, Charles Smeltzer, Jianfeng Li, Leonardo M. A. Alvarado, Mihalis Vrekoussis, Andreas Richter, Folkard Wittrock, and John P. Burrows
Atmos. Chem. Phys., 17, 3083–3095, https://doi.org/10.5194/acp-17-3083-2017, https://doi.org/10.5194/acp-17-3083-2017, 2017
Short summary
Short summary
We use short-lived reactive aromatics as proxies to diagnose transport of pollutants to Tibet. In situ observations of short-lived reactive aromatics across the Tibetan Plateau are analyzed using a regional chemistry and transport model. Our results suggest that the cut-off low system is a major pathway for long-range transport of pollutants such as black carbon. The modeling analysis reveals that even the state-of-the-science reanalysis cannot simulate this cut-off system accurately.
Stefan Bender, Miriam Sinnhuber, Martin Langowski, and John P. Burrows
Atmos. Meas. Tech., 10, 209–220, https://doi.org/10.5194/amt-10-209-2017, https://doi.org/10.5194/amt-10-209-2017, 2017
Short summary
Short summary
We present the retrieval of NO number densities from 60 km to 85 km from measurements of SCIAMACHY/Envisat in its nominal limb mode (0–91 km). We derive the densities from the NO gamma bands (230–300 nm). Using prior input reduces the incorrect attribution of NO from the lower thermosphere. The SCIAMACHY nominal limb scans provide almost 10 years of daily NO data in this altitude range, a unique data record to constrain NO in the mesosphere for testing and validating chemistry climate models.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Chris A. McLinden, Peter F. Bernath, Adam E. Bourassa, John P. Burrows, Doug A. Degenstein, Bernd Funke, Didier Fussen, Gloria L. Manney, C. Thomas McElroy, Donal Murtagh, Cora E. Randall, Piera Raspollini, Alexei Rozanov, James M. Russell III, Makoto Suzuki, Masato Shiotani, Joachim Urban, Thomas von Clarmann, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 5781–5810, https://doi.org/10.5194/amt-9-5781-2016, https://doi.org/10.5194/amt-9-5781-2016, 2016
Short summary
Short summary
This study validates version 3.5 of the ACE-FTS NOy species data sets by comparing diurnally scaled ACE-FTS data to correlative data from 11 other satellite limb sounders. For all five species examined (NO, NO2, HNO3, N2O5, and ClONO2), there is good agreement between ACE-FTS and the other data sets in various regions of the atmosphere. In these validated regions, these NOy data products can be used for further investigation into the composition, dynamics, and climate of the stratosphere.
Mark Weber, Victor Gorshelev, and Anna Serdyuchenko
Atmos. Meas. Tech., 9, 4459–4470, https://doi.org/10.5194/amt-9-4459-2016, https://doi.org/10.5194/amt-9-4459-2016, 2016
Short summary
Short summary
Ozone absorption cross sections measured in the laboratory using spectroscopic means can be a major source of uncertainty in atmospheric ozone retrievals. In this paper we assess the overall uncertainty in three published UV ozone cross-section datasets that are most popular in the remote sensing community. The overall uncertainties were estimated using Monte Carlo simulations. They are important for traceability of atmospheric ozone measuring instruments to common metrological standards.
Dhanyalekshmi Pillai, Michael Buchwitz, Christoph Gerbig, Thomas Koch, Maximilian Reuter, Heinrich Bovensmann, Julia Marshall, and John P. Burrows
Atmos. Chem. Phys., 16, 9591–9610, https://doi.org/10.5194/acp-16-9591-2016, https://doi.org/10.5194/acp-16-9591-2016, 2016
Short summary
Short summary
Approximately 70 % of total CO2 emissions arise from cities; however, there exist large uncertainties in quantifying urban emissions. The present study investigates the potential of a satellite mission like CarbonSat to retrieve the city emissions via inverse modelling techniques. The study makes a valid conclusion that an instrument like CarbonSat has high potential to provide important information on city emissions when exploiting the observations using a high-resolution modelling system.
Elpida Leventidou, Kai-Uwe Eichmann, Mark Weber, and John P. Burrows
Atmos. Meas. Tech., 9, 3407–3427, https://doi.org/10.5194/amt-9-3407-2016, https://doi.org/10.5194/amt-9-3407-2016, 2016
Short summary
Short summary
Here, we present a 17 years tropical tropospheric ozone columns dataset (1996–2012) using GOME, SCIAMACHY, and GOME-2 data, developed as part of the verification algorithm for TROPOMI on S5p mission.The uncertainty is less than 2 DU. Validation with SHADOZ ozonesonde data showed biases within 5 DU and RMS errors less than 10 DU. Comparisons with tropospheric ozone columns derived from limb–nadir matching showed that the bias and RMS are within the range of the CCD_IUP comparison with the sondes.
Stefan Noël, Klaus Bramstedt, Michael Hilker, Patricia Liebing, Johannes Plieninger, Max Reuter, Alexei Rozanov, Christopher E. Sioris, Heinrich Bovensmann, and John P. Burrows
Atmos. Meas. Tech., 9, 1485–1503, https://doi.org/10.5194/amt-9-1485-2016, https://doi.org/10.5194/amt-9-1485-2016, 2016
Short summary
Short summary
Stratospheric methane (CH4) and carbon dioxide (CO2) profiles have been derived from solar occultation measurements of the SCIAMACHY satellite instrument. The accuracy of these profiles is estimated to be about 5–10 % for CH4 and 2–3 % for CO2, mainly limited by unexpected vertical oscillations. Results are available for August 2002 to April 2012 and latitudes between about 50 and 70° N. From these, time series trends have been estimated, which are in reasonable agreement with total column trends.
Stefan F. Schreier, Andreas Richter, Folkard Wittrock, and John P. Burrows
Atmos. Chem. Phys., 16, 2803–2817, https://doi.org/10.5194/acp-16-2803-2016, https://doi.org/10.5194/acp-16-2803-2016, 2016
Short summary
Short summary
Mixing ratios of NO2 and HCHO in the free troposphere are obtained from MAX-DOAS measurements at two mountain stations at midlatitudes and in the tropics using a modified geometrical approach. The method is applied in the UV wavelength range and, thus, allows the detection of HCHO mixing ratios, in addition to NO2. We find that mixing ratios of both species are increased in the tropical free troposphere due to biomass burning.
Kai-Uwe Eichmann, Luca Lelli, Christian von Savigny, Harjinder Sembhi, and John P. Burrows
Atmos. Meas. Tech., 9, 793–815, https://doi.org/10.5194/amt-9-793-2016, https://doi.org/10.5194/amt-9-793-2016, 2016
Short summary
Short summary
Height-resolved limb radiance spectra of the satellite instrument SCIAMACHY are used to retrieve cloud top heights with a colour index method. Clouds are detectable from the lower to the uppermost troposphere. These cloud heights help to improve the trace gas retrieval for the upper troposphere and lower stratosphere. Comparisons with other data sets have shown good agreement. As clouds and aerosols are not distinguishable, lower stratospheric volcanic aerosol clouds are detected in some years.
A.-M. Blechschmidt, A. Richter, J. P. Burrows, L. Kaleschke, K. Strong, N. Theys, M. Weber, X. Zhao, and A. Zien
Atmos. Chem. Phys., 16, 1773–1788, https://doi.org/10.5194/acp-16-1773-2016, https://doi.org/10.5194/acp-16-1773-2016, 2016
Short summary
Short summary
A comprehensive case study of a comma-shaped bromine monoxide plume in the Arctic, which was transported by a polar cyclone and was observed by the GOME-2 satellite sensor over several days, is presented. By making combined use of different kinds of satellite data and numerical models, we demonstrate the important role of the frontal weather system in favouring the bromine activation cycle and blowing snow production, which may have acted as a bromine source during the bromine explosion event.
Sébastien Massart, Anna Agustí-Panareda, Jens Heymann, Michael Buchwitz, Frédéric Chevallier, Maximilian Reuter, Michael Hilker, John P. Burrows, Nicholas M. Deutscher, Dietrich G. Feist, Frank Hase, Ralf Sussmann, Filip Desmet, Manvendra K. Dubey, David W. T. Griffith, Rigel Kivi, Christof Petri, Matthias Schneider, and Voltaire A. Velazco
Atmos. Chem. Phys., 16, 1653–1671, https://doi.org/10.5194/acp-16-1653-2016, https://doi.org/10.5194/acp-16-1653-2016, 2016
Short summary
Short summary
This study presents the European Centre for Medium-Range Weather Forecasts (ECMWF) monitoring of atmospheric CO2 using measurements from the Greenhouse gases Observing Satellite (GOSAT). We show that the modelled CO2 has a better precision than standard CO2 satellite products compared to ground-based measurements. We also present the CO2 forecast based on our best knowledge of the atmospheric CO2 distribution. We show that it has skill to forecast the largest scale CO2 patterns up to day 5.
M. P. Langowski, C. von Savigny, J. P. Burrows, V. V. Rozanov, T. Dunker, U.-P. Hoppe, M. Sinnhuber, and A. C. Aikin
Atmos. Meas. Tech., 9, 295–311, https://doi.org/10.5194/amt-9-295-2016, https://doi.org/10.5194/amt-9-295-2016, 2016
Short summary
Short summary
An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY limb measurements of the Na resonance fluorescence (multiannual means 2008–2012). The Na layer peaks at 90 to 93 km altitude and has a FWHM of 5 to 15 km. A summer minimum in peak density and width is observed at high latitudes. At low latitudes, a semiannual oscillation is found. The results are compared with other measurements and models and agree well with these.
K. Weigel, A. Rozanov, F. Azam, K. Bramstedt, R. Damadeo, K.-U. Eichmann, C. Gebhardt, D. Hurst, M. Kraemer, S. Lossow, W. Read, N. Spelten, G. P. Stiller, K. A. Walker, M. Weber, H. Bovensmann, and J. P. Burrows
Atmos. Meas. Tech., 9, 133–158, https://doi.org/10.5194/amt-9-133-2016, https://doi.org/10.5194/amt-9-133-2016, 2016
Short summary
Short summary
The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements between 2002 and 2012 with different viewing geometries. The limb viewing geometry allows the retrieval of water vapour profiles in the UTLS (upper troposphere and lower stratosphere) from the near-infrared spectral range (1353–1410 nm). Here, we present data version 3.01 and compare it to other water vapour data.
F. Khosrawi, J. Urban, S. Lossow, G. Stiller, K. Weigel, P. Braesicke, M. C. Pitts, A. Rozanov, J. P. Burrows, and D. Murtagh
Atmos. Chem. Phys., 16, 101–121, https://doi.org/10.5194/acp-16-101-2016, https://doi.org/10.5194/acp-16-101-2016, 2016
Short summary
Short summary
Our sensitivity studies based on air parcel trajectories confirm that Polar stratospheric cloud (PSC) formation is quite sensitive to water vapour and temperature changes. Considering water vapour time series from satellite measurements we do not find a consistent, significant trend in water vapour in the lower stratosphere during the past 15 years (2000–2014). Thus, the severe dentrification observed in 2010/2011 cannot be directly related to increases in stratospheric water vapour.
C. von Savigny, F. Ernst, A. Rozanov, R. Hommel, K.-U. Eichmann, V. Rozanov, J. P. Burrows, and L. W. Thomason
Atmos. Meas. Tech., 8, 5223–5235, https://doi.org/10.5194/amt-8-5223-2015, https://doi.org/10.5194/amt-8-5223-2015, 2015
Short summary
Short summary
This article presents validation results for stratospheric aerosol extinction profiles retrieved from limb-scatter measurements with the SCIAMACHY instrument on the Envisat satellite. The SCIAMACHY retrievals are compared to co-located measurements with the SAGE II instrument. Very good agreement to within about 15% is found in a global average sense at altitudes above 15 km. The article also presents sample results on the global morphology of the stratospheric aerosol layer from 2003 to 2011.
A. Schönhardt, P. Altube, K. Gerilowski, S. Krautwurst, J. Hartmann, A. C. Meier, A. Richter, and J. P. Burrows
Atmos. Meas. Tech., 8, 5113–5131, https://doi.org/10.5194/amt-8-5113-2015, https://doi.org/10.5194/amt-8-5113-2015, 2015
Short summary
Short summary
The study reports on the application of an aircraft-based instrument (AirMAP) measuring atmospheric nitrogen dioxide. Two-dimensional maps are produced at a spatial resolution of 28m x 30m and with wide spatial coverage. The instrument characteristics are explained and the detailed mapping of a power plant emission plume is demonstrated. Small-scale enhanced amounts of nitrogen dioxide from traffic are observed above a motorway.
A. Butz, J. Orphal, R. Checa-Garcia, F. Friedl-Vallon, T. von Clarmann, H. Bovensmann, O. Hasekamp, J. Landgraf, T. Knigge, D. Weise, O. Sqalli-Houssini, and D. Kemper
Atmos. Meas. Tech., 8, 4719–4734, https://doi.org/10.5194/amt-8-4719-2015, https://doi.org/10.5194/amt-8-4719-2015, 2015
Short summary
Short summary
The Geostationary Emission Explorer for Europe (G3E) is a mission concept for a greenhouse gas sounder in geostationary orbit. It is designed to provide column-average concentrations of carbon dioxide, methane, and carbon monoxide with high spatial and 2-hour temporal resolution throughout the central European continent. The prospective data density, precision and accuracy suggest G3E as a key component of a future carbon emission monitoring system.
D. R. Thompson, I. Leifer, H. Bovensmann, M. Eastwood, M. Fladeland, C. Frankenberg, K. Gerilowski, R. O. Green, S. Kratwurst, T. Krings, B. Luna, and A. K. Thorpe
Atmos. Meas. Tech., 8, 4383–4397, https://doi.org/10.5194/amt-8-4383-2015, https://doi.org/10.5194/amt-8-4383-2015, 2015
Short summary
Short summary
We discuss principles for real-time infrared spectral signature detection and measurement, and report performance onboard the NASA Airborne Visible Infrared Spectrometer - Next Generation (AVIRIS-NG). We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX), a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. AVIRIS-NG successfully detected CH4 plumes in concert with other in situ and remote instruments.
N. Rahpoe, M. Weber, A. V. Rozanov, K. Weigel, H. Bovensmann, J. P. Burrows, A. Laeng, G. Stiller, T. von Clarmann, E. Kyrölä, V. F. Sofieva, J. Tamminen, K. Walker, D. Degenstein, A. E. Bourassa, R. Hargreaves, P. Bernath, J. Urban, and D. P. Murtagh
Atmos. Meas. Tech., 8, 4369–4381, https://doi.org/10.5194/amt-8-4369-2015, https://doi.org/10.5194/amt-8-4369-2015, 2015
Short summary
Short summary
The analyses among six satellite instruments measuring ozone reveals that the relative drift between the sensors is not significant in the stratosphere and we conclude that merging of data from these instruments is possible. The merged ozone profiles can then be ingested in global climate models for long-term forecasts of ozone and climate change in the atmosphere. The added drift uncertainty is estimated at about 3% per decade (1 sigma) and should be applied in the calculation of ozone trends.
T. Wagner, S. Beirle, S. Dörner, M. Penning de Vries, J. Remmers, A. Rozanov, and R. Shaiganfar
Atmos. Meas. Tech., 8, 4265–4280, https://doi.org/10.5194/amt-8-4265-2015, https://doi.org/10.5194/amt-8-4265-2015, 2015
Short summary
Short summary
We present a new method for the absolute calibration of atmospheric radiance measurements. Existing methods are based on laboratory measurements, but our method uses the atmospheric radiance measurements themselves. For selected sky conditions these measurements are compared to radiative transfer simulations. The method is very accurate (better than 7%) and might be used for a variety of scientific applications, as well as for the determination of the energy yield of photovoltaic cells.
S. Bender, M. Sinnhuber, T. von Clarmann, G. Stiller, B. Funke, M. López-Puertas, J. Urban, K. Pérot, K. A. Walker, and J. P. Burrows
Atmos. Meas. Tech., 8, 4171–4195, https://doi.org/10.5194/amt-8-4171-2015, https://doi.org/10.5194/amt-8-4171-2015, 2015
Short summary
Short summary
We compare the nitric oxide (NO) daily zonal mean number density data sets in the mesosphere and lower thermosphere (MLT, 60km to 150km) from four instruments: ACE-FTS (2004--2010), MIPAS (2005--2012), SCIAMACHY (2008--2012), and SMR (2003--2012). We find that these data sets from different instruments consistently constrain NO in the MLT. Thus, they offer reliable forcing inputs for climate and chemistry climate models as an initial step to include solar and geomagnetic activity.
L. Kattner, B. Mathieu-Üffing, J. P. Burrows, A. Richter, S. Schmolke, A. Seyler, and F. Wittrock
Atmos. Chem. Phys., 15, 10087–10092, https://doi.org/10.5194/acp-15-10087-2015, https://doi.org/10.5194/acp-15-10087-2015, 2015
Short summary
Short summary
On 1 January 2015, the International Maritime Organisation tightened the regulations for sulfur content of shipping fuels in Sulfur Emission Control Areas. Here we present data from a station near Hamburg harbour in the North Sea SECA, which uses in situ measurements of atmospheric trace gases to deduce the sulphur fuel content of passing ships. We compare data from 2014 before the regulation change and from January 2015 and show how this method can be used for compliance monitoring.
J. Jia, A. Rozanov, A. Ladstätter-Weißenmayer, and J. P. Burrows
Atmos. Meas. Tech., 8, 3369–3383, https://doi.org/10.5194/amt-8-3369-2015, https://doi.org/10.5194/amt-8-3369-2015, 2015
J. Heymann, M. Reuter, M. Hilker, M. Buchwitz, O. Schneising, H. Bovensmann, J. P. Burrows, A. Kuze, H. Suto, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, S. Kawakami, R. Kivi, I. Morino, C. Petri, C. Roehl, M. Schneider, V. Sherlock, R. Sussmann, V. A. Velazco, T. Warneke, and D. Wunch
Atmos. Meas. Tech., 8, 2961–2980, https://doi.org/10.5194/amt-8-2961-2015, https://doi.org/10.5194/amt-8-2961-2015, 2015
Short summary
Short summary
Long-term data sets of global atmospheric carbon dioxide concentrations based on observations from different satellite instruments may suffer from inconsistencies originating from the use of different retrieval algorithms. This issue has been addressed by applying the Bremen Optimal Estimation DOAS retrieval algorithm to SCIAMACHY and TANSO-FTS observations. Detailed comparisons with TCCON and CarbonTracker show good consistency between the SCIAMACHY and TANSO-FTS data sets.
T. Dinter, V. V. Rozanov, J. P. Burrows, and A. Bracher
Ocean Sci., 11, 373–389, https://doi.org/10.5194/os-11-373-2015, https://doi.org/10.5194/os-11-373-2015, 2015
O. Lednyts'kyy, C. von Savigny, K.-U. Eichmann, and M. G. Mlynczak
Atmos. Meas. Tech., 8, 1021–1041, https://doi.org/10.5194/amt-8-1021-2015, https://doi.org/10.5194/amt-8-1021-2015, 2015
Short summary
Short summary
This paper deals with the retrieval of atomic oxygen concentration profiles in the Earth's upper mesosphere/lower thermosphere region from SCIAMACHY observations of oxygen green line airglow emissions. Atomic oxygen is one of the most important chemical constituents of this atmospheric region, and long-term satellite data sets are rare. The paper includes a detailed description of the retrieval algorithm, an error budget, validation results and some first scientific analyses.
M. P. Langowski, C. von Savigny, J. P. Burrows, W. Feng, J. M. C. Plane, D. R. Marsh, D. Janches, M. Sinnhuber, A. C. Aikin, and P. Liebing
Atmos. Chem. Phys., 15, 273–295, https://doi.org/10.5194/acp-15-273-2015, https://doi.org/10.5194/acp-15-273-2015, 2015
Short summary
Short summary
Global concentration fields of Mg and Mg+ in the Earth's upper mesosphere and lower thermosphere (70-150km) are presented. These are retrieved from SCIAMACHY/Envisat satellite grating spectrometer measurements in limb viewing geometry between 2008 and 2012.
These were compared with WACCM-Mg model results and a large fraction of the available measurement results for these species, and an interpretation of the results is done. The variation of these species during NLC presence is discussed.
M. Reuter, M. Buchwitz, M. Hilker, J. Heymann, O. Schneising, D. Pillai, H. Bovensmann, J. P. Burrows, H. Bösch, R. Parker, A. Butz, O. Hasekamp, C. W. O'Dell, Y. Yoshida, C. Gerbig, T. Nehrkorn, N. M. Deutscher, T. Warneke, J. Notholt, F. Hase, R. Kivi, R. Sussmann, T. Machida, H. Matsueda, and Y. Sawa
Atmos. Chem. Phys., 14, 13739–13753, https://doi.org/10.5194/acp-14-13739-2014, https://doi.org/10.5194/acp-14-13739-2014, 2014
Short summary
Short summary
Current knowledge about the European terrestrial biospheric carbon sink relies upon bottom-up and global surface flux inverse model estimates using in situ measurements. Our analysis of five satellite data sets comprises a regional inversion designed to be insensitive to potential retrieval biases and transport errors. We show that the satellite-derived sink is larger (1.0±0.3GtC/a) than previous estimates (0.4±0.4GtC/a).
G. D. Hayman, F. M. O'Connor, M. Dalvi, D. B. Clark, N. Gedney, C. Huntingford, C. Prigent, M. Buchwitz, O. Schneising, J. P. Burrows, C. Wilson, N. Richards, and M. Chipperfield
Atmos. Chem. Phys., 14, 13257–13280, https://doi.org/10.5194/acp-14-13257-2014, https://doi.org/10.5194/acp-14-13257-2014, 2014
Short summary
Short summary
Globally, wetlands are a major source of methane, which is the second most important greenhouse gas. We find the JULES wetland methane scheme to perform well in general, although there is a tendency for it to overpredict emissions in the tropics and underpredict them in northern latitudes. Our study highlights novel uses of satellite data as a major tool to constrain land-atmosphere methane flux models in a warming world.
J. Aschmann, J. P. Burrows, C. Gebhardt, A. Rozanov, R. Hommel, M. Weber, and A. M. Thompson
Atmos. Chem. Phys., 14, 12803–12814, https://doi.org/10.5194/acp-14-12803-2014, https://doi.org/10.5194/acp-14-12803-2014, 2014
Short summary
Short summary
This study compares observations and simulation results of ozone in the lower tropical stratosphere. It shows that ozone in this region decreased from 1985 up to about 2002, which is consistent with an increase in tropical upwelling predicted by climate models. However, the decrease effectively stops after 2002, indicating that significant changes in tropical upwelling have occurred. The most important factor appears to be that the vertical ascent in the tropics is no longer accelerating.
E. Peters, F. Wittrock, A. Richter, L. M. A. Alvarado, V. V. Rozanov, and J. P. Burrows
Atmos. Meas. Tech., 7, 4203–4221, https://doi.org/10.5194/amt-7-4203-2014, https://doi.org/10.5194/amt-7-4203-2014, 2014
Short summary
Short summary
In this study, a correction spectrum accounting for insufficiencies in commonly used liquid water absorption spectra in DOAS applications is retrieved from ship-borne field measurements. The correction spectrum compensates at the same time for broadband parts of vibrational Raman scattering. With this, an entire compensation of liquid water spectral effects in DOAS applications was achieved.
L. M. A. Alvarado, A. Richter, M. Vrekoussis, F. Wittrock, A. Hilboll, S. F. Schreier, and J. P. Burrows
Atmos. Meas. Tech., 7, 4133–4150, https://doi.org/10.5194/amt-7-4133-2014, https://doi.org/10.5194/amt-7-4133-2014, 2014
Short summary
Short summary
An improved glyoxal retrieval for OMI measurements using the DOAS method has been developed. The retrieval is based on sensitivity tests for the selection of most appropriate retrieval parameters. Also, corrections for reduction of interferences with other species have been applied. In addition, the link between pyrogenic emissions and glyoxal over regions with large wildfires have been investigated, and showed that fires are an important source of glyoxal.
A. Laeng, U. Grabowski, T. von Clarmann, G. Stiller, N. Glatthor, M. Höpfner, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, V. Sofieva, I. Petropavlovskikh, D. Hubert, T. Bathgate, P. Bernath, C. D. Boone, C. Clerbaux, P. Coheur, R. Damadeo, D. Degenstein, S. Frith, L. Froidevaux, J. Gille, K. Hoppel, M. McHugh, Y. Kasai, J. Lumpe, N. Rahpoe, G. Toon, T. Sano, M. Suzuki, J. Tamminen, J. Urban, K. Walker, M. Weber, and J. Zawodny
Atmos. Meas. Tech., 7, 3971–3987, https://doi.org/10.5194/amt-7-3971-2014, https://doi.org/10.5194/amt-7-3971-2014, 2014
J. Strandgren, L. Mei, M. Vountas, J. P. Burrows, A. Lyapustin, and Y. Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-25869-2014, https://doi.org/10.5194/acpd-14-25869-2014, 2014
Revised manuscript not accepted
K. Noguchi, A. Richter, V. Rozanov, A. Rozanov, J. P. Burrows, H. Irie, and K. Kita
Atmos. Meas. Tech., 7, 3497–3508, https://doi.org/10.5194/amt-7-3497-2014, https://doi.org/10.5194/amt-7-3497-2014, 2014
S. Kowalewski, C. von Savigny, M. Palm, I. C. McDade, and J. Notholt
Atmos. Chem. Phys., 14, 10193–10210, https://doi.org/10.5194/acp-14-10193-2014, https://doi.org/10.5194/acp-14-10193-2014, 2014
A. Spolaor, P. Vallelonga, J. Gabrieli, T. Martma, M. P. Björkman, E. Isaksson, G. Cozzi, C. Turetta, H. A. Kjær, M. A. J. Curran, A. D. Moy, A. Schönhardt, A.-M. Blechschmidt, J. P. Burrows, J. M. C. Plane, and C. Barbante
Atmos. Chem. Phys., 14, 9613–9622, https://doi.org/10.5194/acp-14-9613-2014, https://doi.org/10.5194/acp-14-9613-2014, 2014
L. L. Mei, Y. Xue, A. A. Kokhanovsky, W. von Hoyningen-Huene, G. de Leeuw, and J. P. Burrows
Atmos. Meas. Tech., 7, 2411–2420, https://doi.org/10.5194/amt-7-2411-2014, https://doi.org/10.5194/amt-7-2411-2014, 2014
A. W. Zien, A. Richter, A. Hilboll, A.-M. Blechschmidt, and J. P. Burrows
Atmos. Chem. Phys., 14, 7367–7396, https://doi.org/10.5194/acp-14-7367-2014, https://doi.org/10.5194/acp-14-7367-2014, 2014
W. Chehade, M. Weber, and J. P. Burrows
Atmos. Chem. Phys., 14, 7059–7074, https://doi.org/10.5194/acp-14-7059-2014, https://doi.org/10.5194/acp-14-7059-2014, 2014
F. Ebojie, C. von Savigny, A. Ladstätter-Weißenmayer, A. Rozanov, M. Weber, K.-U. Eichmann, S. Bötel, N. Rahpoe, H. Bovensmann, and J. P. Burrows
Atmos. Meas. Tech., 7, 2073–2096, https://doi.org/10.5194/amt-7-2073-2014, https://doi.org/10.5194/amt-7-2073-2014, 2014
J. Yoon, J. P. Burrows, M. Vountas, W. von Hoyningen-Huene, D. Y. Chang, A. Richter, and A. Hilboll
Atmos. Chem. Phys., 14, 6881–6902, https://doi.org/10.5194/acp-14-6881-2014, https://doi.org/10.5194/acp-14-6881-2014, 2014
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
B. Dils, M. Buchwitz, M. Reuter, O. Schneising, H. Boesch, R. Parker, S. Guerlet, I. Aben, T. Blumenstock, J. P. Burrows, A. Butz, N. M. Deutscher, C. Frankenberg, F. Hase, O. P. Hasekamp, J. Heymann, M. De Mazière, J. Notholt, R. Sussmann, T. Warneke, D. Griffith, V. Sherlock, and D. Wunch
Atmos. Meas. Tech., 7, 1723–1744, https://doi.org/10.5194/amt-7-1723-2014, https://doi.org/10.5194/amt-7-1723-2014, 2014
L. Lelli, A. A. Kokhanovsky, V. V. Rozanov, M. Vountas, and J. P. Burrows
Atmos. Chem. Phys., 14, 5679–5692, https://doi.org/10.5194/acp-14-5679-2014, https://doi.org/10.5194/acp-14-5679-2014, 2014
B. Hassler, I. Petropavlovskikh, J. Staehelin, T. August, P. K. Bhartia, C. Clerbaux, D. Degenstein, M. De Mazière, B. M. Dinelli, A. Dudhia, G. Dufour, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, J. Granville, N. R. P. Harris, K. Hoppel, D. Hubert, Y. Kasai, M. J. Kurylo, E. Kyrölä, J.-C. Lambert, P. F. Levelt, C. T. McElroy, R. D. McPeters, R. Munro, H. Nakajima, A. Parrish, P. Raspollini, E. E. Remsberg, K. H. Rosenlof, A. Rozanov, T. Sano, Y. Sasano, M. Shiotani, H. G. J. Smit, G. Stiller, J. Tamminen, D. W. Tarasick, J. Urban, R. J. van der A, J. P. Veefkind, C. Vigouroux, T. von Clarmann, C. von Savigny, K. A. Walker, M. Weber, J. Wild, and J. M. Zawodny
Atmos. Meas. Tech., 7, 1395–1427, https://doi.org/10.5194/amt-7-1395-2014, https://doi.org/10.5194/amt-7-1395-2014, 2014
M. Horstjann, M. D. Andrés Hernández, V. Nenakhov, A. Chrobry, and J. P. Burrows
Atmos. Meas. Tech., 7, 1245–1257, https://doi.org/10.5194/amt-7-1245-2014, https://doi.org/10.5194/amt-7-1245-2014, 2014
R. Hommel, K.-U. Eichmann, J. Aschmann, K. Bramstedt, M. Weber, C. von Savigny, A. Richter, A. Rozanov, F. Wittrock, F. Khosrawi, R. Bauer, and J. P. Burrows
Atmos. Chem. Phys., 14, 3247–3276, https://doi.org/10.5194/acp-14-3247-2014, https://doi.org/10.5194/acp-14-3247-2014, 2014
S. F. Schreier, A. Richter, J. W. Kaiser, and J. P. Burrows
Atmos. Chem. Phys., 14, 2447–2466, https://doi.org/10.5194/acp-14-2447-2014, https://doi.org/10.5194/acp-14-2447-2014, 2014
V. Gorshelev, A. Serdyuchenko, M. Weber, W. Chehade, and J. P. Burrows
Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014, https://doi.org/10.5194/amt-7-609-2014, 2014
A. Serdyuchenko, V. Gorshelev, M. Weber, W. Chehade, and J. P. Burrows
Atmos. Meas. Tech., 7, 625–636, https://doi.org/10.5194/amt-7-625-2014, https://doi.org/10.5194/amt-7-625-2014, 2014
A. Redondas, R. Evans, R. Stuebi, U. Köhler, and M. Weber
Atmos. Chem. Phys., 14, 1635–1648, https://doi.org/10.5194/acp-14-1635-2014, https://doi.org/10.5194/acp-14-1635-2014, 2014
C. Gebhardt, A. Rozanov, R. Hommel, M. Weber, H. Bovensmann, J. P. Burrows, D. Degenstein, L. Froidevaux, and A. M. Thompson
Atmos. Chem. Phys., 14, 831–846, https://doi.org/10.5194/acp-14-831-2014, https://doi.org/10.5194/acp-14-831-2014, 2014
M. Langowski, M. Sinnhuber, A. C. Aikin, C. von Savigny, and J. P. Burrows
Atmos. Meas. Tech., 7, 29–48, https://doi.org/10.5194/amt-7-29-2014, https://doi.org/10.5194/amt-7-29-2014, 2014
O. Schneising, M. Reuter, M. Buchwitz, J. Heymann, H. Bovensmann, and J. P. Burrows
Atmos. Chem. Phys., 14, 133–141, https://doi.org/10.5194/acp-14-133-2014, https://doi.org/10.5194/acp-14-133-2014, 2014
M. Buchwitz, M. Reuter, H. Bovensmann, D. Pillai, J. Heymann, O. Schneising, V. Rozanov, T. Krings, J. P. Burrows, H. Boesch, C. Gerbig, Y. Meijer, and A. Löscher
Atmos. Meas. Tech., 6, 3477–3500, https://doi.org/10.5194/amt-6-3477-2013, https://doi.org/10.5194/amt-6-3477-2013, 2013
V. F. Sofieva, N. Rahpoe, J. Tamminen, E. Kyrölä, N. Kalakoski, M. Weber, A. Rozanov, C. von Savigny, A. Laeng, T. von Clarmann, G. Stiller, S. Lossow, D. Degenstein, A. Bourassa, C. Adams, C. Roth, N. Lloyd, P. Bernath, R. J. Hargreaves, J. Urban, D. Murtagh, A. Hauchecorne, F. Dalaudier, M. van Roozendael, N. Kalb, and C. Zehner
Earth Syst. Sci. Data, 5, 349–363, https://doi.org/10.5194/essd-5-349-2013, https://doi.org/10.5194/essd-5-349-2013, 2013
W. Chehade, V. Gorshelev, A. Serdyuchenko, J. P. Burrows, and M. Weber
Atmos. Meas. Tech., 6, 3055–3065, https://doi.org/10.5194/amt-6-3055-2013, https://doi.org/10.5194/amt-6-3055-2013, 2013
N. Rahpoe, C. von Savigny, M. Weber, A.V. Rozanov, H. Bovensmann, and J. P. Burrows
Atmos. Meas. Tech., 6, 2825–2837, https://doi.org/10.5194/amt-6-2825-2013, https://doi.org/10.5194/amt-6-2825-2013, 2013
S. Bender, M. Sinnhuber, J. P. Burrows, M. Langowski, B. Funke, and M. López-Puertas
Atmos. Meas. Tech., 6, 2521–2531, https://doi.org/10.5194/amt-6-2521-2013, https://doi.org/10.5194/amt-6-2521-2013, 2013
W. Chehade, B. Gür, P. Spietz, V. Gorshelev, A. Serdyuchenko, J. P. Burrows, and M. Weber
Atmos. Meas. Tech., 6, 1623–1632, https://doi.org/10.5194/amt-6-1623-2013, https://doi.org/10.5194/amt-6-1623-2013, 2013
M. D. Andrés-Hernández, D. Kartal, J. N. Crowley, V. Sinha, E. Regelin, M. Martínez-Harder, V. Nenakhov, J. Williams, H. Harder, H. Bozem, W. Song, J. Thieser, M. J. Tang, Z. Hosaynali Beigi, and J. P. Burrows
Atmos. Chem. Phys., 13, 5731–5749, https://doi.org/10.5194/acp-13-5731-2013, https://doi.org/10.5194/acp-13-5731-2013, 2013
G. Wetzel, H. Oelhaf, G. Berthet, A. Bracher, C. Cornacchia, D. G. Feist, H. Fischer, A. Fix, M. Iarlori, A. Kleinert, A. Lengel, M. Milz, L. Mona, S. C. Müller, J. Ovarlez, G. Pappalardo, C. Piccolo, P. Raspollini, J.-B. Renard, V. Rizi, S. Rohs, C. Schiller, G. Stiller, M. Weber, and G. Zhang
Atmos. Chem. Phys., 13, 5791–5811, https://doi.org/10.5194/acp-13-5791-2013, https://doi.org/10.5194/acp-13-5791-2013, 2013
A. Hilboll, A. Richter, and J. P. Burrows
Atmos. Chem. Phys., 13, 4145–4169, https://doi.org/10.5194/acp-13-4145-2013, https://doi.org/10.5194/acp-13-4145-2013, 2013
I. Ermolli, K. Matthes, T. Dudok de Wit, N. A. Krivova, K. Tourpali, M. Weber, Y. C. Unruh, L. Gray, U. Langematz, P. Pilewskie, E. Rozanov, W. Schmutz, A. Shapiro, S. K. Solanki, and T. N. Woods
Atmos. Chem. Phys., 13, 3945–3977, https://doi.org/10.5194/acp-13-3945-2013, https://doi.org/10.5194/acp-13-3945-2013, 2013
O. Schneising, J. Heymann, M. Buchwitz, M. Reuter, H. Bovensmann, and J. P. Burrows
Atmos. Chem. Phys., 13, 2445–2454, https://doi.org/10.5194/acp-13-2445-2013, https://doi.org/10.5194/acp-13-2445-2013, 2013
A. Hilboll, A. Richter, A. Rozanov, Ø. Hodnebrog, A. Heckel, S. Solberg, F. Stordal, and J. P. Burrows
Atmos. Meas. Tech., 6, 565–584, https://doi.org/10.5194/amt-6-565-2013, https://doi.org/10.5194/amt-6-565-2013, 2013
M. Reuter, H. Bösch, H. Bovensmann, A. Bril, M. Buchwitz, A. Butz, J. P. Burrows, C. W. O'Dell, S. Guerlet, O. Hasekamp, J. Heymann, N. Kikuchi, S. Oshchepkov, R. Parker, S. Pfeifer, O. Schneising, T. Yokota, and Y. Yoshida
Atmos. Chem. Phys., 13, 1771–1780, https://doi.org/10.5194/acp-13-1771-2013, https://doi.org/10.5194/acp-13-1771-2013, 2013
T. Krings, K. Gerilowski, M. Buchwitz, J. Hartmann, T. Sachs, J. Erzinger, J. P. Burrows, and H. Bovensmann
Atmos. Meas. Tech., 6, 151–166, https://doi.org/10.5194/amt-6-151-2013, https://doi.org/10.5194/amt-6-151-2013, 2013
Related subject area
Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Opposing trends in the peak and low ozone concentrations in eastern China: anthropogenic and meteorological influences
Vertical profiles of global tropospheric nitrogen dioxide (NO2) obtained by cloud slicing the TROPOspheric Monitoring Instrument (TROPOMI)
Opinion: Beyond global means – novel space-based approaches to indirectly constrain the concentrations of and trends and variations in the tropospheric hydroxyl radical (OH)
Satellite-observed relationships between land cover, burned area, and atmospheric composition over the southern Amazon
Ammonia emission estimates using CrIS satellite observations over Europe
Insights into the long-term (2005–2021) spatiotemporal evolution of summer ozone production sensitivity in the Northern Hemisphere derived with the Ozone Monitoring Instrument (OMI)
Tropical tropospheric ozone distribution and trends from in situ and satellite data
Estimation of ground-level NO2 and its spatiotemporal variations in China using GEMS measurements and a nested machine learning model
Unleashing the Potential of Geostationary Satellite Observations in Air Quality Forecasting Through Artificial Intelligence Techniques
Investigation of the impact of satellite vertical sensitivity on long-term retrieved lower-tropospheric ozone trends
Quantifying the diurnal variation in atmospheric NO2 from Geostationary Environment Monitoring Spectrometer (GEMS) observations
Global seasonal urban, industrial, and background NO2 estimated from TROPOMI satellite observations
What can we learn about tropospheric OH from satellite observations of methane?
Feasibility of robust estimates of ozone production rates using satellite observations
Identifying Missing Sources and Reducing NOx Emissions Uncertainty over China using Daily Satellite Data and a Mass-Conserving Method
Ammonia in the upper troposphere–lower stratosphere (UTLS): GLORIA airborne measurements for CAMS model evaluation in the Asian monsoon and in biomass burning plumes above the South Atlantic
A lightweight NO2-to-NOx conversion model for quantifying NOx emissions of point sources from NO2 satellite observations
Towards a sector-specific CO∕CO2 emission ratio: satellite-based observations of CO release from steel production in Germany
Monitoring European anthropogenic NOx emissions from space
Upper tropospheric pollutants observed by MIPAS: geographic and seasonal variations
Comparing space-based to reported carbon monoxide emission estimates for Europe’s iron & steel plants
Pyrogenic HONO seen from space: insights from global IASI observations
First evaluation of the GEMS formaldehyde product against TROPOMI and ground-based column measurements during the in-orbit test period
High-resolution mapping of nitrogen oxide emissions in large US cities from TROPOMI retrievals of tropospheric nitrogen dioxide columns
Quantifying the tropospheric ozone radiative effect and its temporal evolution in the satellite era
Tropical upper tropospheric trends in ozone and carbon monoxide (2005–2020): observational and model results
A satellite chronology of plumes from the April 2021 eruption of La Soufrière, St Vincent
Investigation of spatial and temporal variability in lower tropospheric ozone from RAL Space UV–Vis satellite products
Two years of satellite-based carbon dioxide emission quantification at the world's largest coal-fired power plants
Tropical tropospheric ozone and carbon monoxide distributions: characteristics, origins, and control factors, as seen by IAGOS and IASI
Investigation of the summer 2018 European ozone air pollution episodes using novel satellite data and modelling
Bridging the spatial gaps of the Ammonia Monitoring Network using satellite ammonia measurements
A roadmap to estimating agricultural ammonia volatilization over Europe using satellite observations and simulation data
Investigation of meteorological conditions and BrO during ozone depletion events in Ny-Ålesund between 2010 and 2021
Quantification of carbon monoxide emissions from African cities using TROPOMI
Nitrogen oxides emissions from selected cities in North America, Europe, and East Asia observed by the TROPOspheric Monitoring Instrument (TROPOMI) before and after the COVID-19 pandemic
Remotely sensed and surface measurement- derived mass-conserving inversion of daily NOx emissions and inferred combustion technologies in energy-rich northern China
Examining TROPOMI formaldehyde to nitrogen dioxide ratios in the Lake Michigan region: implications for ozone exceedances
Impact of different sources of precursors on an ozone pollution outbreak over Europe analysed with IASI+GOME2 multispectral satellite observations and model simulations
Monitoring and quantifying CO2 emissions of isolated power plants from space
Technical note: Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers – first steps toward assessing the feasibility of a global observation strategy
Significant contribution of inland ships to the total NOx emissions along the Yangtze River
Characteristics of interannual variability in space-based XCO2 global observations
Toward a versatile spaceborne architecture for immediate monitoring of the global methane pledge
Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021
Ground solar absorption observations of total column CO, CO2, CH4, and aerosol optical depth from California's Sequoia Lightning Complex Fire: emission factors and modified combustion efficiency at regional scales
Potential of TROPOMI for understanding spatio-temporal variations in surface NO2 and their dependencies upon land use over the Iberian Peninsula
Mobile MAX-DOAS observations of tropospheric NO2 and HCHO during summer over the Three Rivers' Source region in China
Estimating enhancement ratios of nitrogen dioxide, carbon monoxide and carbon dioxide using satellite observations
Source mechanisms and transport patterns of tropospheric bromine monoxide: findings from long-term multi-axis differential optical absorption spectroscopy measurements at two Antarctic stations
Zhuang Wang, Chune Shi, Hao Zhang, Xianguang Ji, Yizhi Zhu, Congzi Xia, Xiaoyun Sun, Xinfeng Lin, Shaowei Yan, Suyao Wang, Yuan Zhou, Chengzhi Xing, Yujia Chen, and Cheng Liu
Atmos. Chem. Phys., 25, 347–366, https://doi.org/10.5194/acp-25-347-2025, https://doi.org/10.5194/acp-25-347-2025, 2025
Short summary
Short summary
This study attempts to explain the surface ozone background and typical and peak trends in eastern China by combining a large number of ground-based and satellite observations. We found diametrically opposed trends in peak (decreasing) and low (increasing) ozone concentrations. Anthropogenic emissions primarily drive trends in low and peak ozone concentrations in eastern China, though meteorological effects also play a role.
Rebekah P. Horner, Eloise A. Marais, Nana Wei, Robert G. Ryan, and Viral Shah
Atmos. Chem. Phys., 24, 13047–13064, https://doi.org/10.5194/acp-24-13047-2024, https://doi.org/10.5194/acp-24-13047-2024, 2024
Short summary
Short summary
Nitrogen oxides (NOx ≡ NO + NO2) affect tropospheric ozone and the hydroxyl radical, influencing climate and atmospheric oxidation. To address the lack of routine observations of NOx, we cloud slice satellite observations of NO2 to derive a new dataset of global vertical profiles of NO2. We evaluate our data against in situ aircraft observations and use these data to critique the contemporary understanding of tropospheric NOx, as simulated by the GEOS-Chem model.
Bryan N. Duncan, Daniel C. Anderson, Arlene M. Fiore, Joanna Joiner, Nickolay A. Krotkov, Can Li, Dylan B. Millet, Julie M. Nicely, Luke D. Oman, Jason M. St. Clair, Joshua D. Shutter, Amir H. Souri, Sarah A. Strode, Brad Weir, Glenn M. Wolfe, Helen M. Worden, and Qindan Zhu
Atmos. Chem. Phys., 24, 13001–13023, https://doi.org/10.5194/acp-24-13001-2024, https://doi.org/10.5194/acp-24-13001-2024, 2024
Short summary
Short summary
Trace gases emitted to or formed within the atmosphere may be chemically or physically removed from the atmosphere. One trace gas, the hydroxyl radical (OH), is responsible for initiating the chemical removal of many trace gases, including some greenhouse gases. Despite its importance, scientists have not been able to adequately measure OH. In this opinion piece, we discuss promising new methods to indirectly constrain OH using satellite data of trace gases that control the abundance of OH.
Emma Sands, Richard J. Pope, Ruth M. Doherty, Fiona M. O'Connor, Chris Wilson, and Hugh Pumphrey
Atmos. Chem. Phys., 24, 11081–11102, https://doi.org/10.5194/acp-24-11081-2024, https://doi.org/10.5194/acp-24-11081-2024, 2024
Short summary
Short summary
Changes in vegetation alongside biomass burning impact regional atmospheric composition and air quality. Using satellite remote sensing, we find a clear linear relationship between forest cover and isoprene and a pronounced non-linear relationship between burned area and nitrogen dioxide in the southern Amazon, a region of substantial deforestation. These quantified relationships can be used for model evaluation and further exploration of biosphere-atmosphere interactions in Earth System Models.
Jieying Ding, Ronald van der A, Henk Eskes, Enrico Dammers, Mark Shephard, Roy Wichink Kruit, Marc Guevara, and Leonor Tarrason
Atmos. Chem. Phys., 24, 10583–10599, https://doi.org/10.5194/acp-24-10583-2024, https://doi.org/10.5194/acp-24-10583-2024, 2024
Short summary
Short summary
Here we applied the existing Daily Emissions Constrained by Satellite Observations (DECSO) inversion algorithm to NH3 observations from the CrIS satellite instrument to estimate NH3 emissions. As NH3 in the atmosphere is influenced by NOx, we implemented DECSO to estimate NOx and NH3 emissions simultaneously. The emissions are derived over Europe for 2020 at a spatial resolution of 0.2° using daily observations from CrIS and TROPOMI. Results are compared to bottom-up emission inventories.
Matthew S. Johnson, Sajeev Philip, Scott Meech, Rajesh Kumar, Meytar Sorek-Hamer, Yoichi P. Shiga, and Jia Jung
Atmos. Chem. Phys., 24, 10363–10384, https://doi.org/10.5194/acp-24-10363-2024, https://doi.org/10.5194/acp-24-10363-2024, 2024
Short summary
Short summary
Satellites, like the Ozone Monitoring Instrument (OMI), retrieve proxy species of ozone (O3) formation (formaldehyde and nitrogen dioxide) and the ratios (FNRs) which can define O3 production sensitivity regimes. Here we investigate trends of OMI FNRs from 2005 to 2021, and they have increased in major cities, suggesting a transition from radical- to NOx-limited regimes. OMI also observed the impact of reduced emissions during the 2020 COVID-19 lockdown that resulted in increased FNRs.
Audrey Gaudel, Ilann Bourgeois, Meng Li, Kai-Lan Chang, Jerald Ziemke, Bastien Sauvage, Ryan M. Stauffer, Anne M. Thompson, Debra E. Kollonige, Nadia Smith, Daan Hubert, Arno Keppens, Juan Cuesta, Klaus-Peter Heue, Pepijn Veefkind, Kenneth Aikin, Jeff Peischl, Chelsea R. Thompson, Thomas B. Ryerson, Gregory J. Frost, Brian C. McDonald, and Owen R. Cooper
Atmos. Chem. Phys., 24, 9975–10000, https://doi.org/10.5194/acp-24-9975-2024, https://doi.org/10.5194/acp-24-9975-2024, 2024
Short summary
Short summary
The study examines tropical tropospheric ozone changes. In situ data from 1994–2019 display increased ozone, notably over India, Southeast Asia, and Malaysia and Indonesia. Sparse in situ data limit trend detection for the 15-year period. In situ and satellite data, with limited sampling, struggle to consistently detect trends. Continuous observations are vital over the tropical Pacific Ocean, Indian Ocean, western Africa, and South Asia for accurate ozone trend estimation in these regions.
Naveed Ahmad, Changqing Lin, Alexis K. H. Lau, Jhoon Kim, Tianshu Zhang, Fangqun Yu, Chengcai Li, Ying Li, Jimmy C. H. Fung, and Xiang Qian Lao
Atmos. Chem. Phys., 24, 9645–9665, https://doi.org/10.5194/acp-24-9645-2024, https://doi.org/10.5194/acp-24-9645-2024, 2024
Short summary
Short summary
This study developed a nested machine learning model to convert the GEMS NO2 column measurements into ground-level concentrations across China. The model directly incorporates the NO2 mixing height (NMH) into the methodological framework. The study underscores the importance of considering NMH when estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of new-generation geostationary satellites in air quality monitoring.
Chengxin Zhang, Xinhan Niu, Hongyu Wu, Zhipeng Ding, Ka Lok Chan, Jhoon Kim, Thomas Wagner, and Cheng Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2620, https://doi.org/10.5194/egusphere-2024-2620, 2024
Short summary
Short summary
This research utilizes hourly air pollution observations from the world’s first geostationary satellite to develop a spatiotemporal neural network model for full-coverage surface NO2 pollution prediction over the next 24 hours, achieving outstanding forecasting performance and efficacy. These results highlight the profound impact of geostationary satellite observations in advancing air quality forecasting models, thereby contributing to future models for health exposure to air pollution.
Richard J. Pope, Fiona M. O'Connor, Mohit Dalvi, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Brice Barret, Eric Le Flochmoen, Anne Boynard, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, Catherine Wespes, and Richard Rigby
Atmos. Chem. Phys., 24, 9177–9195, https://doi.org/10.5194/acp-24-9177-2024, https://doi.org/10.5194/acp-24-9177-2024, 2024
Short summary
Short summary
Ozone is a potent air pollutant in the lower troposphere, with adverse impacts on human health. Satellite records of tropospheric ozone currently show large-scale inconsistencies in long-term trends. Our detailed study of the potential factors (e.g. satellite errors, where the satellite can observe ozone) potentially driving these inconsistencies found that, in North America, Europe, and East Asia, the underlying trends are typically small with large uncertainties.
David P. Edwards, Sara Martínez-Alonso, Duseong S. Jo, Ivan Ortega, Louisa K. Emmons, John J. Orlando, Helen M. Worden, Jhoon Kim, Hanlim Lee, Junsung Park, and Hyunkee Hong
Atmos. Chem. Phys., 24, 8943–8961, https://doi.org/10.5194/acp-24-8943-2024, https://doi.org/10.5194/acp-24-8943-2024, 2024
Short summary
Short summary
Until recently, satellite observations of atmospheric pollutants at any location could only be obtained once a day. New geostationary satellites stare at a region of the Earth to make hourly measurements, and the Geostationary Environment Monitoring Spectrometer is the first looking at Asia. These data and model simulations show how the change seen for one important pollutant that determines air quality depends on a combination of pollution emissions, atmospheric chemistry, and meteorology.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Xiaoyi Zhao, and Henk Eskes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1991, https://doi.org/10.5194/egusphere-2024-1991, 2024
Short summary
Short summary
Satellite data were used to estimate urban per capita emissions for 261 major cities worldwide. Three components in tropospheric NO2 data: background NO2, NO2 from urban sources, and from industrial point sources were isolated and then each of these components was analyzed separately. The largest per capita emissions were found at the Middle East and the smallest were in India and South Africa. Urban weekend emissions are 20 %–50 % less than workday emissions for all regions except China.
Elise Penn, Daniel J. Jacob, Zichong Chen, James D. East, Melissa P. Sulprizio, Lori Bruhwiler, Joannes D. Maasakkers, Hannah Nesser, Zhen Qu, Yuzhong Zhang, and John Worden
EGUsphere, https://doi.org/10.5194/egusphere-2024-2260, https://doi.org/10.5194/egusphere-2024-2260, 2024
Short summary
Short summary
The hydroxyl radical (OH), destroys many air pollutants, including methane. Global mean OH cannot be directly measured, so it is inferred with the methyl chloroform (MCF) proxy. MCF is decreasing, and a replacement is needed. We use satellite observations of methane in two spectral ranges as a proxy for OH instead. We find shortwave infrared observations can characterize yearly OH and its seasonality, but not the latitudinal distribution. Thermal infrared observations add little information.
Amir H. Souri, Gonzalo González Abad, Glenn M. Wolfe, Tijl Verhoelst, Corinne Vigouroux, Gaia Pinardi, Steven Compernolle, Bavo Langerock, Bryan N. Duncan, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1947, https://doi.org/10.5194/egusphere-2024-1947, 2024
Short summary
Short summary
We establish a simple yet robust relationship between ozone production rates and several geophysical parameters obtained from several intensive atmospheric composition campaigns. We have shown that satellite remote sensing data can effectively constrain these parameters, enabling us to produce the first global maps of ozone production rates with unprecedented resolution.
Lingxiao Lu, Jason Blake Cohen, Kai Qin, Xiaolu Li, and Qin He
EGUsphere, https://doi.org/10.5194/egusphere-2024-1903, https://doi.org/10.5194/egusphere-2024-1903, 2024
Short summary
Short summary
This study assimilates NO2 observations from TROPOMI in a mass-conserving manner and inverts daily NOx emissions. The results are presented over rapidly changing regions in China. Attribution is quantified using local observations and inverted proxy of combustion temperature. There are significant sources identified in some areas which are not in existing databases, especially small and medium industries along the Yangtze River. We also demonstrate which emissions are robust and which are not.
Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Norbert Glatthor, Thomas Gulde, Vincent Huijnen, Anne Kleinert, Erik Kretschmer, Guido Maucher, Tom Neubert, Hans Nordmeyer, Christof Piesch, Peter Preusse, Martin Riese, Björn-Martin Sinnhuber, Jörn Ungermann, Gerald Wetzel, and Wolfgang Woiwode
Atmos. Chem. Phys., 24, 8125–8138, https://doi.org/10.5194/acp-24-8125-2024, https://doi.org/10.5194/acp-24-8125-2024, 2024
Short summary
Short summary
We present airborne infrared limb sounding GLORIA measurements of ammonia (NH3) in the upper troposphere of air masses within the Asian monsoon and of those connected with biomass burning. Comparing CAMS (Copernicus Atmosphere Monitoring Service) model data, we find that the model reproduces the measured enhanced NH3 within the Asian monsoon well but not that within biomass burning plumes, where no enhanced NH3 is measured in the upper troposphere but considerable amounts are simulated by CAMS.
Sandro Meier, Erik F. M. Koene, Maarten Krol, Dominik Brunner, Alexander Damm, and Gerrit Kuhlmann
Atmos. Chem. Phys., 24, 7667–7686, https://doi.org/10.5194/acp-24-7667-2024, https://doi.org/10.5194/acp-24-7667-2024, 2024
Short summary
Short summary
Nitrogen oxides (NOx = NO + NO2) are important air pollutants. This study addresses the challenge of accurately estimating NOx emissions from NO2 satellite observations. We develop a realistic model to convert NO2 to NOx by using simulated plumes from various power plants. We apply the model to satellite NO2 observations, significantly reducing biases in estimated NOx emissions. The study highlights the potential for a consistent, high-resolution estimation of NOx emissions using satellite data.
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Michael Weimer, Heinrich Bovensmann, John P. Burrows, and Hartmut Bösch
Atmos. Chem. Phys., 24, 7609–7621, https://doi.org/10.5194/acp-24-7609-2024, https://doi.org/10.5194/acp-24-7609-2024, 2024
Short summary
Short summary
Large quantities of CO and CO2 are emitted during conventional steel production. As satellite-based estimates of CO2 emissions at the facility level are challenging, co-emitted CO can indicate the carbon footprint of steel plants. We estimate CO emissions for German steelworks and use CO2 emissions from emissions trading data to derive a sector-specific CO/CO2 emission ratio for the steel industry; it is a prerequisite to use CO as a proxy for CO2 emissions from similar steel production sites.
Ronald J. van der A, Jieying Ding, and Henk Eskes
Atmos. Chem. Phys., 24, 7523–7534, https://doi.org/10.5194/acp-24-7523-2024, https://doi.org/10.5194/acp-24-7523-2024, 2024
Short summary
Short summary
Using observations of the Sentinel-5P satellite and the latest version of the inversion algorithm DECSO, anthropogenic NOx emissions are derived for Europe for the years 2019–2022 with a spatial resolution of 0.2°. The results are compared with European emissions of the Copernicus Atmosphere Monitoring Service.
Norbert Glatthor, Gabriele P. Stiller, Thomas von Clarmann, Bernd Funke, Sylvia Kellmann, and Andrea Linden
EGUsphere, https://doi.org/10.5194/egusphere-2024-1793, https://doi.org/10.5194/egusphere-2024-1793, 2024
Short summary
Short summary
We present global upper tropospheric distributions of the pollutants HCN, CO, C2H2, C2H6, PAN and HCOOH, observed by MIPAS/Envisat between 2002 and 2012. This common view allows conclusions on the sources of the different pollutants, like, e.g., biomass burning, anthropogenic sources or biogenic release. For this purpose we compare their VMR distributions and additionally perform global correlation and regression analyses.
Gijs Leguijt, Joannes D. Maasakkers, Hugo A. C. Denier van der Gon, Arjo J. Segers, Tobias Borsdorff, Ivar R. van der Velde, and Ilse Aben
EGUsphere, https://doi.org/10.5194/egusphere-2024-1561, https://doi.org/10.5194/egusphere-2024-1561, 2024
Short summary
Short summary
The production of steel coincides with large emissions of greenhouse gases and air pollutants including carbon monoxide. European facilities are required to report their emissions, which are estimated using a variety of methods. We evaluate these estimates using carbon monoxide concentrations measured using a satellite. We find generally good agreement between our values and those reported but also identify some uncertainties, showing that satellites can provide insights on these emissions.
Bruno Franco, Lieven Clarisse, Nicolas Theys, Juliette Hadji-Lazaro, Cathy Clerbaux, and Pierre Coheur
Atmos. Chem. Phys., 24, 4973–5007, https://doi.org/10.5194/acp-24-4973-2024, https://doi.org/10.5194/acp-24-4973-2024, 2024
Short summary
Short summary
Using IASI global infrared measurements, we retrieve nitrous acid (HONO) in fire plumes from space. We detect large enhancements of pyrogenic HONO worldwide, especially from intense wildfires at Northern Hemisphere mid- and high latitudes. Predominance of IASI nighttime over daytime measurements sheds light on HONO's extended lifetime and secondary formation during long-range transport in smoke plumes. Our findings deepen the understanding of atmospheric HONO, crucial for air quality assessment.
Gitaek T. Lee, Rokjin J. Park, Hyeong-Ahn Kwon, Eunjo S. Ha, Sieun D. Lee, Seunga Shin, Myoung-Hwan Ahn, Mina Kang, Yong-Sang Choi, Gyuyeon Kim, Dong-Won Lee, Deok-Rae Kim, Hyunkee Hong, Bavo Langerock, Corinne Vigouroux, Christophe Lerot, Francois Hendrick, Gaia Pinardi, Isabelle De Smedt, Michel Van Roozendael, Pucai Wang, Heesung Chong, Yeseul Cho, and Jhoon Kim
Atmos. Chem. Phys., 24, 4733–4749, https://doi.org/10.5194/acp-24-4733-2024, https://doi.org/10.5194/acp-24-4733-2024, 2024
Short summary
Short summary
This study evaluates the Geostationary Environment Monitoring Spectrometer (GEMS) HCHO product by comparing its vertical column densities (VCDs) with those of TROPOMI and ground-based observations. Based on some sensitivity tests, obtaining radiance references under clear-sky conditions significantly improves HCHO retrieval quality. GEMS HCHO VCDs captured seasonal and diurnal variations well during the first year of observation, showing consistency with TROPOMI and ground-based observations.
Fei Liu, Steffen Beirle, Joanna Joiner, Sungyeon Choi, Zhining Tao, K. Emma Knowland, Steven J. Smith, Daniel Q. Tong, Siqi Ma, Zachary T. Fasnacht, and Thomas Wagner
Atmos. Chem. Phys., 24, 3717–3728, https://doi.org/10.5194/acp-24-3717-2024, https://doi.org/10.5194/acp-24-3717-2024, 2024
Short summary
Short summary
Using satellite data, we developed a coupled method independent of the chemical transport model to map NOx emissions across US cities. After validating our technique with synthetic data, we charted NOx emissions from 2018–2021 in 39 cities. Our results closely matched EPA estimates but also highlighted some inconsistencies in both magnitude and spatial distribution. This research can help refine strategies for monitoring and managing air quality.
Richard J. Pope, Alexandru Rap, Matilda A. Pimlott, Brice Barret, Eric Le Flochmoen, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Anne Boynard, Christian Retscher, Wuhu Feng, Richard Rigby, Sandip S. Dhomse, Catherine Wespes, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 3613–3626, https://doi.org/10.5194/acp-24-3613-2024, https://doi.org/10.5194/acp-24-3613-2024, 2024
Short summary
Short summary
Tropospheric ozone is an important short-lived climate forcer which influences the incoming solar short-wave radiation and the outgoing long-wave radiation in the atmosphere (8–15 km) where the balance between the two yields a net positive (i.e. warming) effect at the surface. Overall, we find that the tropospheric ozone radiative effect ranges between 1.21 and 1.26 W m−2 with a negligible trend (2008–2017), suggesting that tropospheric ozone influences on climate have remained stable with time.
Lucien Froidevaux, Douglas E. Kinnison, Benjamin Gaubert, Michael J. Schwartz, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, Jerry R. Ziemke, and Ryan A. Fuller
EGUsphere, https://doi.org/10.5194/egusphere-2024-525, https://doi.org/10.5194/egusphere-2024-525, 2024
Short summary
Short summary
We compare observed changes in ozone (O3) and carbon monoxide (CO) in the tropical upper troposphere (10–15 km altitude) for 2005–2020 to predictions from model simulations that track the evolution of natural and industrial emissions transported to this region. An increasing trend in measured upper tropospheric O3 is generally well matched by the model trends. We also find that changes in modeled industrial CO surface emissions lead to better model agreement with observed decreasing CO trends.
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Richard J. Pope, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, and Richard Rigby
Atmos. Chem. Phys., 23, 14933–14947, https://doi.org/10.5194/acp-23-14933-2023, https://doi.org/10.5194/acp-23-14933-2023, 2023
Short summary
Short summary
Ozone is a potent air pollutant, and we present the first study to investigate long-term changes in lower tropospheric column ozone (LTCO3) from space. We have constructed a merged LTCO3 dataset from GOME-1, SCIAMACHY and OMI between 1996 and 2017. Comparing LTCO3 between the 1996–2000 and 2013–2017 5-year averages, we find significant positive increases in the tropics/sub-tropics, while in the northern mid-latitudes, we find small-scale differences.
Daniel H. Cusworth, Andrew K. Thorpe, Charles E. Miller, Alana K. Ayasse, Ralph Jiorle, Riley M. Duren, Ray Nassar, Jon-Paul Mastrogiacomo, and Robert R. Nelson
Atmos. Chem. Phys., 23, 14577–14591, https://doi.org/10.5194/acp-23-14577-2023, https://doi.org/10.5194/acp-23-14577-2023, 2023
Short summary
Short summary
Carbon dioxide (CO2) emissions from combustion sources are uncertain in many places across the globe. Satellites have the ability to detect and quantify emissions from large CO2 point sources, including coal-fired power plants. In this study, we tasked two satellites to routinely observe CO2 emissions at 30 coal-fired power plants between 2021 and 2022. These results present the largest dataset of space-based CO2 emission estimates to date.
Maria Tsivlidou, Bastien Sauvage, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Eric Le Flochmoën, Philippe Nédélec, Valérie Thouret, Pawel Wolff, and Brice Barret
Atmos. Chem. Phys., 23, 14039–14063, https://doi.org/10.5194/acp-23-14039-2023, https://doi.org/10.5194/acp-23-14039-2023, 2023
Short summary
Short summary
The tropics are a region where the ozone increase has been most apparent since 1980 and where observations are sparse. Using aircraft, satellite, and model data, we document the characteristics of tropospheric ozone and CO over the whole tropics for the last 2 decades. We explore the origin of the observed CO anomalies and investigate transport processes driving the tropical CO and O3 distribution. Our study highlights the importance of anthropogenic emissions, mostly over the northern tropics.
Richard J. Pope, Brian J. Kerridge, Martyn P. Chipperfield, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Matilda A. Pimlott, Wuhu Feng, Edward Comyn-Platt, Garry D. Hayman, Stephen R. Arnold, and Ailish M. Graham
Atmos. Chem. Phys., 23, 13235–13253, https://doi.org/10.5194/acp-23-13235-2023, https://doi.org/10.5194/acp-23-13235-2023, 2023
Short summary
Short summary
In the summer of 2018, Europe experienced several persistent large-scale ozone (O3) pollution episodes. Satellite tropospheric O3 and surface O3 data recorded substantial enhancements in 2018 relative to other years. Targeted model simulations showed that meteorological processes and emissions controlled the elevated surface O3, while mid-tropospheric O3 enhancements were dominated by stratospheric O3 intrusion and advection of North Atlantic O3-rich air masses into Europe.
Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo
Atmos. Chem. Phys., 23, 13217–13234, https://doi.org/10.5194/acp-23-13217-2023, https://doi.org/10.5194/acp-23-13217-2023, 2023
Short summary
Short summary
Ammonia (NH3) is a key precursor for fine particulate matter (PM2.5) and a primary form of reactive nitrogen, yet it has sparse ground measurements. We perform the first comprehensive comparison between ground observations and satellite retrievals in the US, demonstrating that satellite NH3 data can help fill spatial gaps in the current ground monitoring networks. Trend analyses using both datasets highlight increasing NH3 trends across the US, including the NH3 hotspots and urban areas.
Rimal Abeed, Camille Viatte, William C. Porter, Nikolaos Evangeliou, Cathy Clerbaux, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, and Sarah Safieddine
Atmos. Chem. Phys., 23, 12505–12523, https://doi.org/10.5194/acp-23-12505-2023, https://doi.org/10.5194/acp-23-12505-2023, 2023
Short summary
Short summary
Ammonia emissions from agricultural activities will inevitably increase with the rise in population. We use a variety of datasets (satellite, reanalysis, and model simulation) to calculate the first regional map of ammonia emission potential during the start of the growing season in Europe. We then apply our developed method using a climate model to show the effect of the temperature increase on future ammonia columns under two possible climate scenarios.
Bianca Zilker, Andreas Richter, Anne-Marlene Blechschmidt, Peter von der Gathen, Ilias Bougoudis, Sora Seo, Tim Bösch, and John Philip Burrows
Atmos. Chem. Phys., 23, 9787–9814, https://doi.org/10.5194/acp-23-9787-2023, https://doi.org/10.5194/acp-23-9787-2023, 2023
Short summary
Short summary
During Arctic spring, near-surface ozone is depleted by bromine released from salty sea ice and/or snow-covered areas under certain meteorological conditions. To study this ozone depletion and the prevailing meteorological conditions, two ozone data sets from Ny-Ålesund, Svalbard, have been evaluated. We found that during ozone depletion events lower pressure over the Barents Sea and higher pressure in the Icelandic Low area led to a transport of cold polar air from the north to Ny-Ålesund.
Gijs Leguijt, Joannes D. Maasakkers, Hugo A. C. Denier van der Gon, Arjo J. Segers, Tobias Borsdorff, and Ilse Aben
Atmos. Chem. Phys., 23, 8899–8919, https://doi.org/10.5194/acp-23-8899-2023, https://doi.org/10.5194/acp-23-8899-2023, 2023
Short summary
Short summary
We present a fast method to evaluate carbon monoxide emissions from cities in Africa. Carbon monoxide is important for climate change in an indirect way, as it is linked to ozone, methane, and carbon dioxide. Our measurements are made with a satellite that sees the entire globe every single day. This means that we can check from space whether the current knowledge of emission rates is up to date. We make the comparison and show that the emission rates in northern Africa are underestimated.
Chantelle R. Lonsdale and Kang Sun
Atmos. Chem. Phys., 23, 8727–8748, https://doi.org/10.5194/acp-23-8727-2023, https://doi.org/10.5194/acp-23-8727-2023, 2023
Short summary
Short summary
The COVID-19 pandemic, which was caused by the SARS-CoV-2 virus, emerged in 2019, and its still evolving variants have resulted in unprecedented shifts in human activities and anthropogenic emissions into the Earth's atmosphere. We present monthly nitrogen oxide emissions over three major continents from May 2018 to January 2023 to capture variations before and after the COVID-19 pandemic. We focus on a diverse collection of 54 cities to quantify the post-COVID-19 perturbations.
Xiaolu Li, Jason Blake Cohen, Kai Qin, Hong Geng, Xiaohui Wu, Liling Wu, Chengli Yang, Rui Zhang, and Liqin Zhang
Atmos. Chem. Phys., 23, 8001–8019, https://doi.org/10.5194/acp-23-8001-2023, https://doi.org/10.5194/acp-23-8001-2023, 2023
Short summary
Short summary
Remotely sensed NO2 and surface NOx are combined with a mathematical method to estimate daily NOx emissions. The results identify new sources and improve existing estimates. The estimation is driven by three flexible factors: thermodynamics of combustion, chemical loss, and atmospheric transport. The thermodynamic term separates power, iron, and cement from coking, boilers, and aluminum. This work finds three causes for the extremes: emissions, UV radiation, and transport.
Juanito Jerrold Mariano Acdan, Robert Bradley Pierce, Angela F. Dickens, Zachariah Adelman, and Tsengel Nergui
Atmos. Chem. Phys., 23, 7867–7885, https://doi.org/10.5194/acp-23-7867-2023, https://doi.org/10.5194/acp-23-7867-2023, 2023
Short summary
Short summary
Ozone is an air pollutant that is harmful to human health. Near the surface of Earth, ozone is created when other pollutants react in the presence of sunlight. This study uses satellite data to investigate how ozone levels can be decreased in the Lake Michigan region of the United States. Our results indicate that ozone levels can be decreased by decreasing volatile organic compound emissions in urban areas and decreasing nitrogen oxide emissions in the region as a whole.
Sachiko Okamoto, Juan Cuesta, Matthias Beekmann, Gaëlle Dufour, Maxim Eremenko, Kazuyuki Miyazaki, Cathy Boonne, Hiroshi Tanimoto, and Hajime Akimoto
Atmos. Chem. Phys., 23, 7399–7423, https://doi.org/10.5194/acp-23-7399-2023, https://doi.org/10.5194/acp-23-7399-2023, 2023
Short summary
Short summary
We present a detailed analysis of the daily evolution of the lowermost tropospheric ozone documented by IASI+GOME2 multispectral satellite observations and that of its precursors from TCR-2 tropospheric chemistry reanalysis. It reveals that the ozone outbreak across Europe in July 2017 was produced during favorable condition for photochemical production of ozone and was associated with multiple sources of ozone precursors: biogenic, anthropogenic, and biomass burning emissions.
Xiaojuan Lin, Ronald van der A, Jos de Laat, Henk Eskes, Frédéric Chevallier, Philippe Ciais, Zhu Deng, Yuanhao Geng, Xuanren Song, Xiliang Ni, Da Huo, Xinyu Dou, and Zhu Liu
Atmos. Chem. Phys., 23, 6599–6611, https://doi.org/10.5194/acp-23-6599-2023, https://doi.org/10.5194/acp-23-6599-2023, 2023
Short summary
Short summary
Satellite observations provide evidence for CO2 emission signals from isolated power plants. We use these satellite observations to quantify emissions. We found that for power plants with multiple observations, the correlation of estimated and reported emissions is significantly improved compared to a single observation case. This demonstrates that accurate estimation of power plant emissions can be achieved by monitoring from future satellite missions with more frequent observations.
Daniel C. Anderson, Bryan N. Duncan, Julie M. Nicely, Junhua Liu, Sarah A. Strode, and Melanie B. Follette-Cook
Atmos. Chem. Phys., 23, 6319–6338, https://doi.org/10.5194/acp-23-6319-2023, https://doi.org/10.5194/acp-23-6319-2023, 2023
Short summary
Short summary
We describe a methodology that combines machine learning, satellite observations, and 3D chemical model output to infer the abundance of the hydroxyl radical (OH), a chemical that removes many trace gases from the atmosphere. The methodology successfully captures the variability of observed OH, although further observations are needed to evaluate absolute accuracy. Current satellite observations are of sufficient quality to infer OH, but retrieval validation in the remote tropics is needed.
Xiumei Zhang, Ronald van der A, Jieying Ding, Xin Zhang, and Yan Yin
Atmos. Chem. Phys., 23, 5587–5604, https://doi.org/10.5194/acp-23-5587-2023, https://doi.org/10.5194/acp-23-5587-2023, 2023
Short summary
Short summary
We compiled a ship emission inventory based on automatic identification system (AIS) signals in the Jiangsu section of the Yangtze River. This ship emission inventory was compared with Chinese bottom-up inventories and the satellite-derived emissions from TROPOMI. The result shows a consistent spatial distribution, with riverine cities having high NOx emissions. Inland ship emissions of NOx are shown to contribute at least 40 % to air pollution along the river.
Yifan Guan, Gretchen Keppel-Aleks, Scott C. Doney, Christof Petri, Dave Pollard, Debra Wunch, Frank Hase, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Kim Strong, Rigel Kivi, Matthias Buschmann, Nicholas Deutscher, Paul Wennberg, Ralf Sussmann, Voltaire A. Velazco, and Yao Té
Atmos. Chem. Phys., 23, 5355–5372, https://doi.org/10.5194/acp-23-5355-2023, https://doi.org/10.5194/acp-23-5355-2023, 2023
Short summary
Short summary
We characterize spatial–temporal patterns of interannual variability (IAV) in atmospheric CO2 based on NASA’s Orbiting Carbon Observatory-2 (OCO-2). CO2 variation is strongly impacted by climate events, with higher anomalies during El Nino years. We show high correlation in IAV between space-based and ground-based CO2 from long-term sites. Because OCO-2 has near-global coverage, our paper provides a roadmap to study IAV where in situ observation is sparse, such as open oceans and remote lands.
Yuchen Wang, Xvli Guo, Yajie Huo, Mengying Li, Yuqing Pan, Shaocai Yu, Alexander Baklanov, Daniel Rosenfeld, John H. Seinfeld, and Pengfei Li
Atmos. Chem. Phys., 23, 5233–5249, https://doi.org/10.5194/acp-23-5233-2023, https://doi.org/10.5194/acp-23-5233-2023, 2023
Short summary
Short summary
Substantial advances have been made in recent years toward detecting and quantifying methane super-emitters from space. However, such advances have rarely been expanded to measure the global methane pledge because large-scale swaths and high-resolution sampling have not been coordinated. Here we present a versatile spaceborne architecture that can juggle planet-scale and plant-level methane retrievals, challenge official emission reports, and remain relevant for stereoscopic measurements.
Liang Feng, Paul I. Palmer, Robert J. Parker, Mark F. Lunt, and Hartmut Bösch
Atmos. Chem. Phys., 23, 4863–4880, https://doi.org/10.5194/acp-23-4863-2023, https://doi.org/10.5194/acp-23-4863-2023, 2023
Short summary
Short summary
Our understanding of recent changes in atmospheric methane has defied explanation. Since 2007, the atmospheric growth of methane has accelerated to record-breaking values in 2020 and 2021. We use satellite observations of methane to show that (1) increasing emissions over the tropics are mostly responsible for these recent atmospheric changes, and (2) changes in the OH sink during the 2020 Covid-19 lockdown can explain up to 34% of changes in atmospheric methane for that year.
Isis Frausto-Vicencio, Sajjan Heerah, Aaron G. Meyer, Harrison A. Parker, Manvendra Dubey, and Francesca M. Hopkins
Atmos. Chem. Phys., 23, 4521–4543, https://doi.org/10.5194/acp-23-4521-2023, https://doi.org/10.5194/acp-23-4521-2023, 2023
Short summary
Short summary
Wildfires are increasing in the western USA, making it critical to understand the impacts of greenhouse gases and air pollutants on the atmosphere. We used a ground-based remote sensing technique to measure the greenhouse gases and aerosol in the atmosphere. We isolate a large smoke plume from a nearby wildfire and calculate variables to understand the fuel properties and combustion phases. We find that a significant amount of methane is emitted from the 2020 California wildfire season.
Hervé Petetin, Marc Guevara, Steven Compernolle, Dene Bowdalo, Pierre-Antoine Bretonnière, Santiago Enciso, Oriol Jorba, Franco Lopez, Albert Soret, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 3905–3935, https://doi.org/10.5194/acp-23-3905-2023, https://doi.org/10.5194/acp-23-3905-2023, 2023
Short summary
Short summary
This study analyses the potential of the TROPOMI space sensor for monitoring the variability of NO2 pollution over the Iberian Peninsula. A reduction of NO2 levels is observed during the weekend and in summer, especially over most urbanized areas, in agreement with surface observations. An enhancement of NO2 is found during summer with TROPOMI over croplands, potentially related to natural soil NO emissions, which illustrates the outstanding value of TROPOMI for complementing surface networks.
Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Xiangde Xu, Wenqian Zhang, Jinguang Lv, Gang Bai, Bing Chen, Siying Ma, Steffen Ziegler, Sebastian Donner, and Thomas Wagner
Atmos. Chem. Phys., 23, 3655–3677, https://doi.org/10.5194/acp-23-3655-2023, https://doi.org/10.5194/acp-23-3655-2023, 2023
Short summary
Short summary
We made mobile MAX-DOAS measurements in the background atmosphere over the Tibetan Plateau in summer 2021. We retrieved the tropospheric NO2 and HCHO vertical column densities (VCDs) along extended driving routes and found a decreasing trend of the VCDs with altitude. Elevated NO2 VCDs along the driving routes could be attributed to enhanced traffic emissions from the towns crossed. The spatio-temporal distribution of the HCHO VCDs correlated strongly with the surface temperature.
Cameron G. MacDonald, Jon-Paul Mastrogiacomo, Joshua L. Laughner, Jacob K. Hedelius, Ray Nassar, and Debra Wunch
Atmos. Chem. Phys., 23, 3493–3516, https://doi.org/10.5194/acp-23-3493-2023, https://doi.org/10.5194/acp-23-3493-2023, 2023
Short summary
Short summary
We use three satellites measuring carbon dioxide (CO2), carbon monoxide (CO) and nitrogen dioxide (NO2) to calculate atmospheric enhancements of these gases from 27 urban areas. We calculate enhancement ratios between the species and compare those to ratios derived from four globally gridded anthropogenic emission inventories. We find that the global inventories generally underestimate CO emissions in many North American and European cities relative to our observed enhancement ratios.
Udo Frieß, Karin Kreher, Richard Querel, Holger Schmithüsen, Dan Smale, Rolf Weller, and Ulrich Platt
Atmos. Chem. Phys., 23, 3207–3232, https://doi.org/10.5194/acp-23-3207-2023, https://doi.org/10.5194/acp-23-3207-2023, 2023
Short summary
Short summary
Reactive bromine compounds, emitted by the sea ice during polar spring, play an important role in the atmospheric chemistry of the coastal regions of Antarctica. We investigate the sources and impacts of reactive bromine in detail using many years of measurements at two Antarctic sites located at opposite sides of the Antarctic continent. Using a multitude of meteorological observations, we were able to identify the main triggers and source regions for reactive bromine in Antarctica.
Cited articles
Appenzeller, C., Holton, J. R., and Rosenlof, K. H.: Seasonal
variation of mass transport across the tropopause, J. Geophys. Res., 101,
15071–15078,
https://doi.org/10.1029/96JD00821, 1996.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K.,
Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J.,
Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S.,
Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial
oscillation, Rev. Geophys., 39, 179–230,
https://doi.org/10.1029/1999RG000073,
2001.
Beig, G. and Singh, V.: Trends in tropical tropospheric column ozone from
satellite data and MOZART model, Geophys. Res. Lett., 34, L17801,
https://doi.org/10.1029/2007GL030460, 2007.
Bell, C. J., Gray, L. J., Charlton-Perez, A. J., Joshi, M. M. and
Scaife, A. A.: Stratospheric communication of El Niño teleconnections
to European winter, J. Climate, 22, 4083–4096,
https://doi.org/10.1175/2009JCLI2717.1,
2009.
Bjerknes, J.: A possible response of the atmospheric hadley circulation to equatorial anomalies of ocean temperature, Tellus, 18, 820–829, 1966.
Bramstedt, K., Noël, S., Bovensmann, H., Burrows, J. P., Lerot, C., Tilstra, L. G., Lichtenberg,
G., Dehn, A., and Fehr, T.: SCIAMACHY Monitoring Factors: Observation and End-to-End Correction of Instrument Performance
Degradation, in: Atmospheric Science Conference, SP-676, 7–11, Barcelona, Spain, September 2009.
Brasseur, G. P., Orlando, J. J., and Tyndall, G. S.: Atmospheric Chemistry and Global Change, Oxford Univ. Press, New York, 1999.
Brönnimann, S., Luterbacher, J., Staehelin, J., Svendby, T. M.,
Hansen, G. and Svenœ, T.: Extreme climate of the global troposphere
and stratosphere in 1940–1942 related to El Niño, Nature, 431,
971–974,
https://doi.org/10.1038/nature02982, 2004.
Bulic, I. and Kucharski, F.: Delayed ENSO impact on spring precipitation
over the North/Atlantic European region, Clim. Dynam., 38, 2593–2612, 2012.
Butchart, N., Scaife, A. A., Austin, J., Hare, S. H. E., and Knight, J. R.: Quasi-biennial oscillation
in ozone in a coupled chemistry-climate model, J. Geophys. Res., 108, 2156–2202, https://doi.org/10.1029/2002JD003004, 2003.
Butler, A. H., Polvani, M., and Deser, C.: Separating the
stratospheric and tropospheric pathways of El Niño–Southern Oscillation
teleconnections, Environ. Res. Lett., 9, 2, 024014, https://doi.org/10.1088/1748-9326/9/2/024014, 2014.
Cagnazzo, C. and Manzini, E.: Impact of the stratosphere on the winter
tropospheric teleconnections between ENSO and the North Atlantic and European
region, J. Climate, 22, 1223–1238,
10.1175/2008JCLI2549.1,
2009.
Chandra, S., Ziemke, J. R., Min, W., and Read, W. G.: Effects of
1997–1998 El Niño on tropospheric ozone and water vapor, Geophys. Res.
Lett., 25, 3867–3870, 1998.
Chandra, S., Ziemke, J. R., Bhartia, P. K., and Martin, R. V.: Tropical tropospheric ozone: implications for dynamics and biomass burning, J. Geophys. Res., 107, 4188,
https://doi.org/10.1029/2001JD000447, 2002.
Chandra, S., Ziemke, J. R., and Martin, R. V.: Tropospheric ozone at tropical and middle latitudes derived from TOMS/MLS residual: comparison with a global model, J. Geophys. Res., 108, 4291,
https://doi.org/10.1029/2002JD002912, 2003.
Chandra, S., Ziemke, J. R., Tie, X., and Brasseur, G.: Elevated
ozone in the troposphere over the Atlantic and Pacific oceans in the Northern
Hemisphere, Geophys. Res. Lett., 31, L23102,
https://doi.org/10.1029/2004GL020821,
2004.
Chang, P., Ji, L., and Li, H.: A decadal climate variation in the
tropical Atlantic Ocean from thermodynamic air-sea interactions, Nature,
385, 516–518, 1997.
Chen, W., Yang, S., and Huang, R. H.: Relationship between stationary
planetary wave activity and the East Asian winter monsoon, J. Geophys. Res.,
110, D14110,
https://doi.org/10.1029/2004JD005669,
2005.
Chipperfield, M. P.: A three-dimensional model study of long-term mid-high
latitude lower stratosphere ozone changes, Atmos. Chem. Phys., 3, 1253–1265,
https://doi.org/10.5194/acp-3-1253-2003, 2003.
Coldewey-Egbers, M., Loyola R. D. G., Braesicke, P., Dameris, M.,
van Roozendael, M., Lerot, C., and Zimmer, W.: A new health check of
the ozone layer at global and regional scales, Geophys. Res. Lett., 41,
1–10,
https://doi.org/10.1002/2014GL060212,
2014.
Collimore, C. C., Martin, D. W., Hitchman, M. H., Huesmann, A., and Waliser, D. E.: On the relationship between the QBO and tropical deep convection, J. Climate, 16, 2552–2568, 2003.
Compo, G. P. and Sardeshmukh, P. D.: Removing ENSO-related variations
from the climate record, J. Climate, 23, 1957–1978, 2010.
Cooper, O. R. and Parrish, D. D.: Air pollution export from and import to North America, in:
Inter-Continental Transport of Air Pollution, edited by: Stohl, A., Springer, New York, 41–67, 4G, https://doi.org/10.1007/b94523, 2004.
Cooper, O. R., Gao, R. S., Tarasick, D., Leblanc, T., and Sweeney, J.: Long-term ozone trends at rural ozone monitoring sites across the United States, 1990–2010, J. Geophys. Res., 117, D22307,
https://doi.org/10.1029/2012JD018261, 2012.
Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V.,
Cupeiro, M., Galbally, I. E., Gilge, S., Horowitz, L.,
Jensen, N. R., Lamarque, J.-F., Naik, V., Oltmans, S. J.,
Schwab, J., Shindell, D. T., Thompson, A. M., Thouret, V.,
Wang, Y., and Zbinden, R. M.: Global distribution and trends of
tropospheric ozone: an observation-based review, Elementa: Science of the
Anthropocene, 2, 000029,
https://doi.org/10.12952/journal.elementa.000029,
2014.
Crutzen, P. J.: The role of NO and NO2 in the chemistry of the troposphere and stratosphere, Annu. Rev. Earth Pl. Sc., 7, 443–472, 1979.
Danielsen, E. F.: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity, J. Atmos. Sci., 25, 502–518, 1968.
de Laat, A. T. J., Aben, I., and Roelofs, G. J.: A model perspective
on total tropospheric O3 column variability and implications for
satellite observations, J. Geophys. Res., 110, D13303,
https://doi.org/10.1029/2004JD005264,
2005.
Dentener, F., Stevenson, D., Cofala, J., Mechler, R., Amann, M., Bergamaschi,
P., Raes, F., and Derwent, R.: The impact of air pollutant and methane
emission controls on tropospheric ozone and radiative forcing: CTM
calculations for the period 1990-2030, Atmos. Chem. Phys., 5, 1731–1755,
https://doi.org/10.5194/acp-5-1731-2005, 2005.
Derwent, R., Simmonds, P., Seuring, S., and Dimmer, C.: Observation
and interpretation of the seasonal cycles in the surface concentrations of
ozone and carbon monoxide at Mace Head, Ireland from 1990 to 1994, Atmos.
Environ., 32, 145–157, 1998.
Derwent, R. G., Jenkin, M. E., Saunders, S. M., Pilling, M. J.,
Simmonds, P. G., Passant, N. R., Dollard, G. J., Dumitrean, P., and
Kent, A.: A photochemical ozone formation in north west Europe and its
control, Atmos. Environ., 37, 1983–1991, 2003.
Dickerson, R. R., Doddridge, B. G., Kelley, P. K., and Rhoads, K. P.:
Large-scale pollution of the atmosphere over the North Atlantic Ocean:
evidence from Bermuda, J. Geophys. Res., 100, 8945–8952, 1995.
Dickerson, R. R., Rhoads, K. P., Carsey, T. P., Oltmans, S. J.,
Burrows, J. P., and Crutzen, P. J.: Ozone in the remote marine boundary
layer: a possible role for halogens, J. Geophys. Res., 104, 21385–21395,
1999.
Doughty, D. C., Thompson, A. M., Schoeberl, M. R., Stajner, I.,
Wargan, K., and Hui, W. C. J.: An intercomparison of tropospheric ozone
retrievals derived from two Aura instruments and measurements in western
North America in 2006, J. Geophys. Res., 116,
D06303,https://doi.org/10.1029/2010JD014703,
2011.
Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V., Lamsal,
L., Hu, Y., Pickering, K. E., Retscher, C., Allen, D. J., and Crawford, J.
H.: Application of OMI observations to a space-based indicator of NOx
and VOC controls on surface ozone formation, Atmos. Environ., 44, 2213–2223,
2010.
Ebojie, F.: Tropospheric ozone columns retrieval from SCIAMACHY
limb-nadir-matching observations (PhD dissertation), Universität Bremen:
Physik/Elektrotechnik, available at:
elib.suub.uni-bremen.de/edocs/00104050-1.pdf (last access: 15 December 2015), 2014.
Ebojie, F., von Savigny, C., Ladstätter-Weißenmayer, A., Rozanov, A.,
Weber, M., Eichmann, K.-U., Bötel, S., Rahpoe, N., Bovensmann, H., and
Burrows, J. P.: Tropospheric column amount of ozone retrieved from SCIAMACHY
limb–nadir-matching observations, Atmos. Meas. Tech., 7, 2073–2096,
https://doi.org/10.5194/amt-7-2073-2014, 2014.
Eckert, E., von Clarmann, T., Kiefer, M., Stiller, G. P., Lossow, S.,
Glatthor, N., Degenstein, D. A., Froidevaux, L., Godin-Beekmann, S., Leblanc,
T., McDermid, S., Pastel, M., Steinbrecht, W., Swart, D. P. J., Walker, K.
A., and Bernath, P. F.: Drift-corrected trends and periodic variations in
MIPAS IMK/IAA ozone measurements, Atmos. Chem. Phys., 14, 2571–2589,
https://doi.org/10.5194/acp-14-2571-2014, 2014.
Edwards, D. P., Emmons, L. K., Gille, J. C., Chu, A., Attie, J.-L., Giglio, L., Wood, S. W., Haywood, J., Deeter, M.
N., Massie, S. T., Ziskin, D. C., and Drummond, J. R.: Satellite observed
pollution from Southern Hemisphere biomass burning, J. Geophys. Res., 111,
D14312, https://doi.org/10.1029/2005JD006655, 2006.
Finlayson-Pitts, B. J., Livingston, F. E., and Pitts Jr., J. N.: Ozone destruction and bromine photochemistry at ground level in the Arctic spring, Nature, 343, 622–625,
https://doi.org/10.1038/343622a0, 1990.
Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess,
P., Textor, C., Schulz, M., Doherty, R. M., Horowitz, L. W., MacKenzie, I.
A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., Van
Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G.,
Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong,
S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson,
J. E., Kaminski, J. W., Keating, T. J., Lupu, A., Marmer, E., Montanaro, V.,
Park, R. J., Pitari, G., Pringle, K. J., Pyle, J. A., Schroeder, S., Vivanco,
M. G., Wind, P., Wojcik, G., Wu, S., and Zuber, A.: Multimodel estimates of
intercontinental source–receptor relationships for ozone pollution, J.
Geophys. Res., 114, D04301, https://doi.org/10.1029/2008JD010816, 2009.
Fishman, J., Watson, C., Larsen, J., and Logan, J.: Distribution of
tropospheric ozone determined from satellite data, J. Geophys. Res., 95,
3599–3617, 1990.
Fishman, J., Fakhruzzaman, K., Cros, B., and Nganda, D.:
Identification of widespread pollution in the Southern Hemisphere deduced
from satellite analyses, Science, 252, 5013, 1693–1696,
https://doi.org/10.1126/science.252.5013.1693,
1991.
Fujiwara, M., Kita, K., Kawakami, S., Ogawa, T., Komala, N.,
Saraspriya, S., and Suripto, A.: Tropospheric ozone enhancements during
the Indonesian forest fire events in 1994 and in 1997 as revealed by
ground-based observations, Geophys. Res. Lett., 26, 2417–2420, 1999.
Fusco, A. C. and Logan, J. A.: Analysis of 1970–1995 trends in
tropospheric ozone at Northern Hemisphere midlatitudes with the GEOS-CHEM
model, J. Geophys. Res., 108, 4449,
https://doi.org/10.1029/2002JD002742,
2003.
Garfinkel, C. I. and Hartmann, D. L.: The influence of the
quasi-biennial oscillation on the troposphere in winter in a hierarchy of
models, Part I: simplified dry GCMS, J. Atmos. Sci., 68, 1273–1289,
https://doi.org/10.1175/2011JAS3665.1,
2011.
Gebhardt, C., Rozanov, A., Hommel, R., Weber, M., Bovensmann, H., Burrows, J.
P., Degenstein, D., Froidevaux, L., and Thompson, A. M.: Stratospheric ozone
trends and variability as seen by SCIAMACHY from 2002 to 2012, Atmos. Chem.
Phys., 14, 831–846, https://doi.org/10.5194/acp-14-831-2014, 2014.
Gentner, D. R., Ormeño, E., Fares, S., Ford, T. B., Weber, R., Park, J.-H.,
Brioude, J., Angevine, W. M., Karlik, J. F., and Goldstein, A. H.: Emissions
of terpenoids, benzenoids, and other biogenic gas-phase organic compounds
from agricultural crops and their potential implications for air quality,
Atmos. Chem. Phys., 14, 5393–5413, https://doi.org/10.5194/acp-14-5393-2014, 2014.
Graf, H. F. and Zanchettin, D.: Central Pacific El Niño, the
subtropical bridge, and Eurasian clim., J. Geophys. Res., 117, D01102,
https://doi.org/10.1029/2011JD016493,
2012.
Guenther, A., Geron, C., Pierce, T., Lamb, B., Harley, P., and
Fall, R.: Natural emissions of non-methane volatile organic compounds;
carbon monoxide, and oxides of nitrogen from North America, Atmos. Environ.,
34, 2205–2230, 2000.
Haigh, J. D., Blackburn, M., and Day, R.: The response of tropospheric
circulation to perturbations in lower-stratospheric temperature, J. Climate,
18, 3672–3685,
https://doi.org/10.1175/JCLI3472.1, 2005.
Handorf, K. and Dethloff, K.: Atmospheric teleconnections and flow
regimes under future climate projections, Eur. Phys. J. Special Topics, 174, 237–255,
https://doi.org/10.1140/epjst/e2009-01104-9,
2009.
Hao, J. and Wang, L.: Chemistry and physiology of Los Angeles smog, Ind. Eng. Chem., 44, 1342–1346, 1952.
Hastenrath, S.: On the upper-air circulation over the equatorial
Americas, Arch. Meteor. Geophys. Bioklimatol., Ser. A, 25, 309–321,
1977.
Horel, J. D. and Wallace, J. M.: Planetary-scale atmospheric phenomena
associated with the Southern Oscillation, Mon. Weather Rev. 109, 813–829,
https://doi.org/10.1175/1520-0493, 1981.
Hoerling, M. P., Kumar, A., and Zhong, M.: El Niño, La Niña,
and the nonlinearity of their teleconnections, J. Climate, 10, 1769–1786,
https://doi.org/10.1175/1520-0442, 1997.
Holton, J. R. and Tan, H. C.: The influence of the equatorial QBO in the global circulation at 50 mb, J. Atmos. Sci., 37, 2200–2208, 1980.
Hudson, R. D.: Measurements of the movement of the jet streams at
mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010, Atmos.
Chem. Phys., 12, 7797–7808, https://doi.org/10.5194/acp-12-7797-2012, 2012.
Ineson, S., and Scaife, A. A.: The role of the stratosphere in the
European climate response to El Niño, Nat. Geosci., 2, 32–36,
https://doi.org/10.1038/ngeo381, 2009.
Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality, Atmos. Environ., 43, 51–63,
https://doi.org/10.1016/j.atmosenv.2008.09.051, 2009.
Jacob, D. J., Logan, J. A., and Murti, P. P.: Effect of rising Asian emissions on surface ozone in the United States, Geophys. Res. Lett., 26, 2175–2178, 1999.
Jacobson, M. Z.: Air Pollution and Global Warming: History, Science, and
Solutions, 2nd Edn., Cambridge Univ. Press, Cambridge, 2012.
Jaffe, D. A., Anderson, T., Covert, D., Kotchenruther, R.,
Trost, B., Danielson, J., Simpson, W., Bertsen, T.,
Karlsdottir, S., Blake, D., Harris, J., Carmichael, G., and
Uno, I.: Transport of Asian air pollution to North America, Geophys. Res.
Lett., 26, 711–714, 1999.
Kim, J. H. and Newchurch, M. J.: Climatology and trends of tropospheric
ozone over the eastern Pacific Ocean: The influences of biomass burning and
tropospheric dynamics, Geophys. Res. Lett., 23, 3723–3726,
https://doi.org/10.1029/96GL03615, 1996.
Kley, D., Smit, H. G. J., Vómel, H., Grassl, H.,
Ramanathan, V., Crutzen, P. J., Williams, S. J. M., and Oltmans, S.:
Tropospheric water vapour and ozone cross-sections in a zonal plane over the
central equatorial Pacific, Q. J. Roy. Meteor. Soc., 123, 2009–2040, 1997.
Kuroda, Y. and Kodera, K.: Role of planetary waves in the
stratosphere-troposphere coupled variability in the Northern Hemisphere
winter, Geophys. Res. Lett., 26, 2375–2378, 1999.
Ladstädter-Weissenmayer, A., Burrows, J. P., Crutzen, P. J., and Richter,
A.: GOME: Biomass burning and its influence on the troposphere, in: European
Symposium on Atmospheric Measurements from Space, ESA WPP-161, ESA/ESTEC,
Noordwijk, The Netherlands, 369–374, 1999.
Lamarque, J. F. and Hess, P. G.: Cross-tropopause mass exchange and
potential vorticity budget in a simulated tropopause folding., J. Atmos.
Sci., 51, 2246–2269, 1994.
Lee, S., Shelow, D. M., Thompson, A. M., and Miller, S. K.: QBO and
ENSO variability in temperature and ozone from SHADOZ, 1998–2005, J.
Geophys. Res., 115, D18105,
https://doi.org/10.1029/2009JD013320,
2010.
Lelieveld, J. and Dentener, F. J.: What controls tropospheric
ozone?, J. Geophys. Res., 105, 3531–3551,
https://doi.org/10.1029/1999JD901011,
2000.
Lelieveld, J., van Aardenne, J., Fischer, H., de Reus, M.,
Williams, J., and Winkler, P.: Increasing ozone over the Atlantic
Ocean, Science, 304, 1483–1487, 2004.
Levy, H. I.: Normal atmosphere: large radical and formaldehyde concentrations predicted, Science, 173, 141–143, 1971.
Lin, M., Horowitz, L. W., Oltmans, S. J. Fiore, A. M., and Fan, S.:
Tropospheric ozone trends at Manna Loa Observatory tied to decadal climate
variability, Nat. Geosci., 7, 136–143, 2014.
Lippmann, M.: Health-effects of tropospheric ozone, Environ. Sci. Technol., 25, 1954–1962, 1991.
Liu, H., Jacob, D. J., Chan, L. Y., Oltmans, S. J., Bey, I.,
Yantosca, R. M., Harris, J. M., Duncan, B. N., and Martin, R. V.:
Sources of tropospheric ozone along the Asian Pacific Rim: an analysis of
ozonesonde observations, J. Geophys. Res., 107, 4573,
https://doi.org/10.1029/2001JD002005,
2002.
Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B.:
Tropospheric chemistry: a global perspective, J. Geophys. Res., 86,
7210–7255, 1981.
Logan, J. A., Staehelin, J., Megretskaia, I. A., Cammas, J.-P., Thouret, V.,
Claude, H., De Backer, H., Steinbacher, M., Scheel, H.-E., Stübi, R.,
Fröhlich, M., and Derwent, R.: Changes in ozone over Europe: analysis of
ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface
sites, J. Geophys. Res., 117, D09301, https://doi.org/10.1029/2011JD016952, 2012.
Marenco, A., Gouget, H., Nédélec, P., Pagés, J. P., and
Karcher, F.: Evidence of a long-term increase in tropospheric ozone from
Pic du Midi data series: consequences: positive radiative forcing, J.
Geophys. Res., 99, 16617–16632, 1994.
Milford, J. B., Russell, A. G., and McRae, G. J.: A new approach to
photochemical pollution control: implications of spatial patterns in
pollutant responses to reductions in nitrogen oxides and reactive organic gas
emissions, Environ. Sci. Technol., 23, 1290–1301, 1989.
Monks, P. S.: Gas-phase radical chemistry in the troposphere, Chem. Soc.
Rev., 34, 376–395,
https://doi.org/10.1039/B307982C, 2005.
Moxim, W. J. and Levy II, H.: A model analysis of the tropical South
Atlantic Ocean tropospheric ozone maximum: The interaction of transport and
chemistry, J. Geophys. Res., 105, 17393–17415, 2000.
Naja, M., Akimoto, H., and Staehelin, J.: Ozone in background and
photochemically aged air over central Europe: Analysis of long-term
ozonesonde data from Hohenpeissenberg and Payerne, J. Geophys. Res., 108,
4063,
https://doi.org/10.1029/2002JD002477,
2003.
Neu, J. L., Flury, T., Manney, G. L., Santee, M. L., Livesey, N. J., and
Worden, J.: Tropospheric ozone variations governed by changes in
stratospheric circulation, Nat. Geosci., 7, 340–344, https://doi.org/10.1038/ngeo2138,
2014.
Newman, P. A. and Nash, E. R.: Quantifying the wave driving of the
stratosphere, J. Geophys. Res., 105, 12485–12497, 2000.
Oltmans, S. J., Lefohn, A. S., Harris, J. M., Galbally, I.,
Scheel, H. E., Bodeker, G., Brunke, E., Claude, H.,
Tarasick, D. W., Johnson, B. J., Simmonds, P., Shadwick, D.,
Anlauf, K., Hayden, K., Schmidlin, F., Fujimoto, T., Akagi, K.,
Meyer, C., Nichol, S., Davies, J., Redondas, A., and Cuevas, E.:
Long-term changes in tropospheric ozone, Atmos. Environ., 40, 3156–3173,
https://doi.org/10.1029/2008JD010378,
2006.
Oltmans,
S. J., Lefohn, A. S., Harris, J. M., Tarasick, D. W., Thompson,
A. M., Wernli, H., Johnson, B. J., Davies, J., Novelli, P.,
Montzka, S., Sweeney, C., Patrick, L. C., Jefferson, A., Dann, T.,
Ray, J. D., Shapiro, M., and Holben, B. N.: Enhanced ozone over
western North America from biomass burning in Eurasia during April 2008 as
seen in surface and profile observations, Atmos. Environ., 44, 4497–4509,
10.1016/j.atmosenv.2010.07.004,
2010.
Oltmans, S. J., Lefohn, A. S., Shadwick, D., Harris, J. M., Scheel,
H. E., Galbally, I., Tarasick, D. W., Johnson, B. J., Brunke, E. G.,
Claude, H., Zeng, G., Nichol, S., Schmidlin, F., Davies, J.,
Cuevas, E., Redondas, A., Naoe, H., Nakano, T., and Kawasato, T.:
Recent tropospheric ozone changes – A pattern dominated by slow or no
growth, Atmos. Environ., 67, 331–351, https://doi.org/
10.1016/j.atmosenv.2012.10.057,
2013.
Oman, L. D., Douglass, A. R., Ziemke, J. R., Rodriguez, J. M.,
Waugh, D. W., and Nielsen, J. E.: The ozone response to ENSO in Aura
satellite measurements and a chemistry–climate simulation, J. Geophys.
Res.-Atmos., 118, 965–976, 2013.
Parrish, D. D., Holloway, J. S., Trainer, M., Murphy, P. C.,
Forbes, G. L., and Fehsenfeld, F. C.: Export of North American ozone
pollution to the North Atlantic Ocean, Science, 259, 1436–1439, 1993.
Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R.,
Tanimoto, H., Volz-Thomas, A., Gilge, S., Scheel, H.-E., Steinbacher, M., and
Chan, E.: Long-term changes in lower tropospheric baseline ozone
concentrations at northern mid-latitudes, Atmos. Chem. Phys., 12,
11485–11504, https://doi.org/10.5194/acp-12-11485-2012, 2012.
Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R.,
Cooper, O. R., Tanimoto, H., Volz-Thomas, A., Gilge, S.,
Scheel, H. E., Steinbacher, M., and Chan, E.: Lower tropospheric ozone
at northern midlatitudes: changing seasonal cycle, Geophys. Res. Lett., 40,
1631–1636,
https://doi.org/10.1002/grl.50303, 2013.
Parrish, D. D., Lamarque, J.-F., Naik, V., Horowitz, L.,
Shindell, D. T., Staehelin, J., Derwent, R., Cooper, O. R.,
Tanimoto, H., Volz-Thomas, A., Gilge, S., Scheel, H.-E.,
Steinbacher, M., and Fröhlich, M.: Long-term changes in lower
tropospheric baseline ozone concentrations: comparing chemistry-climate
models and observations at northern midlatitudes, J. Geophys. Res.-Atmos.,
119, 5719–5736,
https://doi.org/10.1002/2013JD021435,
2014.
Pascoe, C. L., Gray, L. J., Crooks, S. A., Juckes, M. N., and
Baldwin, M. P.: The quasi-biennial oscillation: analysis using ERA-40
data, J. Geophys. Res., 110, D08105,
https://doi.org/10.1029/2004JD004941,
1948.
Pfister, G. G., Emmons, L. K., Hess, P. G., Lamarque, J.-F.,
Thompson, A. M., and Yorks, J. E.: Analysis of the Summer 2004 ozone
budget over the United States using Intercontinental Transport Experiment
Ozonesonde Network Study (IONS) observations and Model of Ozone and Related
Tracers (MOZART-4) simulations, J. Geophys. Res., 113, D23306,
https://doi.org/10.1029/2008JD010190,
2008.
Pike, A. C.: Intertropical convergence zone studies with an interacting
atmosphere and ocean model, Mon. Weather Rev., 99, 469–477, 1971.
Randel, W. and Thompson, A.: Interannual variability and trends in
tropical ozone derived from SAGE II satellite data and SHADOZ
ozonesondes, J. Geophys. Res., 116, D07303,
https://doi.org/10.1029/2010JD015195,
2011.
Randel, W. J., Wu, F., Swinbank, Nash, R., and O'Neill, A.: Global
QBO circulation derived from UKMO stratospheric analyses, J. Atmos. Sci.,
56, 457–474, 1999.
Read, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J.,
Faria, B. V. E., Heard, D. E., Hopkins, J. R., Lee, J. D.,
Moller, S. J., Lewis, A. C., Mendes, L., McQuaid, J. B.,
Oetjen, H., Saiz-Lopez, A., Pilling, M. J., and Plane, J. M. C.:
Extensive halogen-mediated ozone destruction over the tropical Atlantic
Ocean, Nature, 453, 1232–1235, 2008.
Reichler, T., Kushner, P. J., and Polvani, L. M.: The Coupled
Stratosphere–Troposphere Response to Impulsive Forcing from the
Troposphere, J. Atmos. Sci., 62, 3337–3352,
https://doi.org/10.1175/JAS3527.1,
2005.
Reichler, T., Kushner, P. J., and Polvani, L. M.: The Coupled Stratosphere–Troposphere Response to Impulsive Forcing from the Troposphere, J. Atmos. Sci., 62, 3337-3352, https://doi.org/10.1175/JAS3527.1, 2005.
Reid, S. J., Tuck, A. F., and Kildaris, G.: On the changing abundance of ozone minima at Northern midlatitudes, J. Geophys. Res., 105, 12169–12180, 2000.
Revell, L. E., Tummon, F., Stenke, A., Sukhodolov, T., Coulon, A., Rozanov,
E., Garny, H., Grewe, V., and Peter, T.: Drivers of the tropospheric ozone
budget throughout the 21st century under the medium-high climate scenario RCP
6.0, Atmos. Chem. Phys., 15, 5887–5902, https://doi.org/10.5194/acp-15-5887-2015, 2015.
Romanski, J., Romanou, A. Bauer, M., and Tselioudis, G.: Teleconnections,
midlatitude cyclones and Aegean Sea turbulent heat flux variability on daily
through decadal time scales, Reg. Environ. Change, 14, 1713–1723,
https://doi.org/10.1007/s10113-013-0545-0,
2014.
Sauvage, B., Thouret, V., Cammas, J.-P., Gheusi, F., Athier, G., and
Nédélec, P.: Tropospheric ozone over Equatorial Africa: regional aspects
from the MOZAIC data, Atmos. Chem. Phys., 5, 311–335,
https://doi.org/10.5194/acp-5-311-2005, 2005.
Sauvage, B., Thouret, V., Thompson, A. M., Witte, J. C.,
Cammas, J. P., Nédélec, P., and Athier, G.: Enhanced view of the
tropical Atlantic ozone paradox and zonal wave one from the in situ MOZAIC
and SHADOZ data, J. Geophys. Res., 111, D01301,
https://doi.org/10.1029/2005JD006241,
2006.
Sauvage, B., Gheusi, F., Thouret, V., Cammas, J.-P., Duron, J., Escobar, J.,
Mari, C., Mascart, P., and Pont, V.: Medium-range mid-tropospheric transport
of ozone and precursors over Africa: two numerical case studies in dry and
wet seasons, Atmos. Chem. Phys., 7, 5357–5370,
https://doi.org/10.5194/acp-7-5357-2007,
2007a.
Sauvage, B., Martin, R. V., van Donkelaar, A., and Ziemke, J. R.:
Quantification of the factors controlling tropical tropospheric ozone and the
South Atlantic maximum, J. Geophys. Res., 112, D11309,
https://doi.org/10.1029/2006JD008008, 2007b.
Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R.
T., Dunstone, N., Eade, R., Fereday, D., Folland, C. K., Gordon,
M., Hermanson, L., Knight, J. R., Lea, D. J., MacLachlan, C.,
Maidens, A., Martin, M., Peterson, A. K., Smith, D., Vellinga, M.,
Wallace, E., Waters, J., and Williams, A.: Skillful long-range
prediction of European and North American winters, Geophys. Res. Lett., 41,
2514–2519,
https://doi.org/10.1002/2014gl059637,
2014.
Schneider, T., Bischoff, T., and Haug, G. H.: Migrations and dynamics
of the intertropical convergence zone, Nature, 513, 45–53,
https://doi.org/10.1038/nature13636, 2014.
Schultz, M. G., Jacob, D. J., Wang, Y., Logan, J. A., Atlas, E. L., Blake, D. R., Blake, N. J., Bradshaw, J. D., Browell, E. V.,
Fenn, M. A., Flocke, F., Gregory, G. L., Heikes, B. G., Sachse, G. W., Sandholm, S. T., Shetter, R. E.,
Singh, H. B., and Talbot, R. W.: On the origin of tropospheric ozone and NOx over the tropical South Pacific, J. Geophys. Res., 104, 5829–5843, https://doi.org/10.1029/98JD02309, 1999.
Shindell, D. T., Faluvegi, G., Lacis, A., Hansen, J., Ruedy, R., and Aguilar, E.: Role of tropospheric ozone increases in 20th-century climate change, J. Geophys. Res., 111,
D08302, https://doi.org/10.1029/2005JD006348, 2006.
Sillman, S., Logan, J. A., and Wofsy, S. C.: The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes, J. Geophys. Res., 95, 1837–1851,
https://doi.org/10.1029/JD095iD02p01837, 1990.
Simmonds, P. G., Derwent, R. G., Manning, A. L., and Spain, G.: Significant growth in surface ozone at Mace Head, Ireland, 1987–2003, Atmos. Environ., 38, 4769–4778, 2004.
Simpson, I. R., Shepherd, T. G., and Sigmond, M.: Dynamics of the lower stratospheric circulation response to ENSO, J. Atmos. Sci., 68, 2537–2556, 2011.
Stiller, G. P., von Clarmann, T., Haenel, F., Funke, B., Glatthor, N.,
Grabowski, U., Kellmann, S., Kiefer, M., Linden, A., Lossow, S., and
López-Puertas, M.: Observed temporal evolution of global mean age of
stratospheric air for the 2002 to 2010 period, Atmos. Chem. Phys., 12,
3311–3331, https://doi.org/10.5194/acp-12-3311-2012, 2012.
Stohl, A., Forster, C., Huntrieser, H., Mannstein, H., McMillan, W. W.,
Petzold, A., Schlager, H., and Weinzierl, B.: Aircraft measurements over
Europe of an air pollution plume from Southeast Asia – aerosol and chemical
characterization, Atmos. Chem. Phys., 7, 913–937,
https://doi.org/10.5194/acp-7-913-2007, 2007.
Tang, G., Wang, Y., Li, X., Ji, D., Hsu, S., and Gao, X.: Spatial-temporal
variations in surface ozone in Northern China as observed during 2009–2010
and possible implications for future air quality control strategies, Atmos.
Chem. Phys., 12, 2757–2776, https://doi.org/10.5194/acp-12-2757-2012, 2012.
Thompson, A. M., Doddridge, B. G., Witte, J. C., Hudson, R. D., Luke, W. T.,
Johnson, J. E., Johnson, B. J., Oltmans, S. J., and Weller, R.: A tropical
Atlantic paradox: shipboard and satellite views of a tropospheric ozone
maximum and wave-one in January–February 1999, Geophys. Res. Lett., 27,
3317–3320, 2000.
Thompson, A. M., Witte, J. C., Hudson, R. D., Guo, H., Herman, J. R., and Fujiwara, M.: Tropical tropospheric ozone and biomass burning, Science, 291, 2128–2132, 2001.
Thompson, A. M., Yorks, J. E., Miller, S. K., Witte, J. C., Dougherty, K. M.,
Morris, G. A., Baumgardner, D., Ladino, L., and Rappenglück, B.:
Tropospheric ozone sources and wave activity over Mexico City and Houston
during MILAGRO/Intercontinental Transport Experiment (INTEX-B) Ozonesonde
Network Study, 2006 (IONS-06), Atmos. Chem. Phys., 8, 5113–5125,
https://doi.org/10.5194/acp-8-5113-2008, 2008.
Thompson, A. M., Balashov, N. V., Witte, J. C., Coetzee, J. G. R., Thouret,
V., and Posny, F.: Tropospheric ozone increases over the southern Africa
region: bellwether for rapid growth in Southern Hemisphere pollution?, Atmos.
Chem. Phys., 14, 9855–9869, https://doi.org/10.5194/acp-14-9855-2014, 2014.
Tiao, G. C., Reinsel, G. C., Xu, D., Pedrick, J. H., Zhu, X.,
Miller, A. J., DeLuisi, J. J., Mateer, C. L., and Wuebbles, D. J.:
Effects of autocorrelation and temporal sampling schemes on estimates of
trend and spatial correlation, J. Geophys. Res., 95, 20507–20517, 1990.
TOR-2: Tropspheric Ozone Research, Eurotrac-2 Subproject Final Report, ISS GSF-National Research Center for Environment and Health, Munich, Germany, 2003.
Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A.,
Lau, N. C., and Ropelewski, C.: Progress during TOGA in understanding
and modeling global teleconnections associated with tropical sea surface
temperatures, J. Geophys. Res., 103, 14291–14324,
https://doi.org/10.1029/97JC01444, 1998.
Trenberth, K. E., Stepaniak, D. P., and
Caron, J. M.: The global monsoon as seen through the divergent atmospheric
circulation, J. Climate, 13, 3969–3993, 2000.
Trenberth, K. E., Caron, J. M., Stepaniak, D. P., and Worley, S.:
Evolution of El Niño–Southern Oscillation and global atmospheric
surface temperatures, J. Geophys. Res., 107 (D8),
https://doi.org/10.1029/2000JD000298,
2002.
Valks, P., Hao, N., Gimeno Garcia, S., Loyola, D., Dameris, M., Jöckel, P.,
and Delcloo, A.: Tropical tropospheric ozone column retrieval for GOME-2,
Atmos. Meas. Tech., 7, 2513–2530, https://doi.org/10.5194/amt-7-2513-2014, 2014.
Vestreng, V., Ntziachristos, L., Semb, A., Reis, S., Isaksen, I. S. A., and
Tarrasón, L.: Evolution of NOx emissions in Europe with focus on
road transport control measures, Atmos. Chem. Phys., 9, 1503–1520,
https://doi.org/10.5194/acp-9-1503-2009, 2009.
von Clarmann, T., Stiller, G., Grabowski, U., Eckert, E., and Orphal, J.:
Technical Note: Trend estimation from irregularly sampled, correlated data,
Atmos. Chem. Phys., 10, 6737–6747, https://doi.org/10.5194/acp-10-6737-2010, 2010.
von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.: Modelling halogen chemistry in the marine boundary layer, 1. Cloud-free MBL, J. Geophys. Res., 107, 4341–4356, 2002.
Wai, K. M., Wu, S., Kumar, A., and Liao, H.: Seasonal variability and
long-term evolution of tropospheric composition in the tropics and Southern
Hemisphere, Atmos. Chem. Phys., 14, 4859–4874, https://doi.org/10.5194/acp-14-4859-2014,
2014.
Wang, C.: ENSO, Atlantic climate variability, and the Walker and Hadley
circulations. in: The Hadley Circulation: Present, Past, and Future, edited
by: Diaz, H. F. and Bradley, R. S., Kluwer Academic Publishers, 173–202,
2005.
Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., Jackman, C. H., Bishop, L.,
Frith, S. M. H., DeLuisi, J., Keller, T., Oltmans, S. J., Fleming, E. L.,
Wuebbles, D. J., Kerr, J. B., Miller, A. J., Herman, J., McPeters, R.,
Nagatani, R. M., and Frederick, J. E.: Detecting the recovery of total column
ozone, J. Geophys. Res., 105, 22201–22210, https://doi.org/10.1029/2000JD900063, 2000.
Wild, O. and Akimoto, H.: Intercontinental transport of ozone and its precursors in a three-dimensional global CTM, J. Geophys. Res., 106, 27729–27744,
https://doi.org/10.1029/2000JD000123, 2001.
WMO: World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1998, Global Ozone Research and Monitoring Project–Report No. 44, Geneva, WMO 44, Geneva, Switzerland, 1999.
WMO (World Meteorological Organization), Scientific Assessment of Ozone
Depletion: 2010, Global Ozone Research and Monitoring Project-Report No. 52,
516 pp., Geneva, Switzerland, 2011.
Wu, L., Su, H., and Jiang, J. H.: Regional simulations of deep convection and biomass burning over South America: 1. Model evaluations using multiple satellite data sets, J. Geophys. Res., 116, D17208,
https://doi.org/10.1029/2011JD016105, 2011.
Xie, S. P. and Philander, S. G. H: A coupled ocean-atmosphere model of
relevance to the ITCZ in the eastern Pacific, Tellus, 46A, 340–350, 1994.
Xie, S. P. and Tanimoto, Y.: A pan-Atlantic decadal climate
oscillation, Geophys. Res. Lett., 25, 2185–2188, 1998.
Ye, D. Z. and Wu, G.: The role of the heat source of the Tibetan Plateau in the general circulations, Meteorol. Atmos. Phys., 67, 181–198,
https://doi.org/10.1007/BF01277509, 1998.
Zeng, G. and Pyle, J. A.: Influence of El Niño Southern Oscillation
on stratosphere/troposphere exchange and the global ozone budget, Geophys.
Res. Lett., 32, L01814,
https://doi.org/10.1029/2004GL021353,
2005.
Zhang, J., Rao, S. T., and Daggupaty, S. M.: Meteorological processes and ozone exceedances in the northeastern United States during the 12–16 July 1995 episode, J. Appl. Meteorol., 37, 776–789, 1998.
Zhang, P., Yang, S., and Kousky, W. E.: South Asian High and Asian-Pacific-American climate teleconnection, Adv. Atmos. Sci., 22, 915–923,
https://doi.org/10.1007/BF02918690, 2005.
Zhou, S., Miller, A. J., Wang, J., and Angell, J.: Trends of NAO and AO and their associations with stratospheric processes, Geophys. Res. Lett., 28, 4107–4110, 2001.
Ziemke, J. R., Chandra, S., and Bhartia, P. K.: A 25-year data record
of atmospheric ozone in the Pacific from Total Ozone Mapping Spectrometer
(TOMS) cloud slicing: implications for ozone trends in the stratosphere and
troposphere, J. Geophys. Res., 110, D15105,
https://doi.org/10.1029/2004JD005687,
2005.
Ziemke, J. R., Olsen, M. A., Witte, J. C., Douglass, A. R.,
Strahan, S. E., Wargan, K., Liu, X., Schoeberl, M. R., Yang, K.,
Kaplan, T. B., Pawson, S., Duncan, B. N., Newman, P. A.,
Bhartia, P. K., and Heney, M. K.: Assessment and applications of NASA
ozone data products derived from Aura OMI/MLS satellite measurements in
context of the GMI chemical transport model, J. Geophys. Res.-Atmos., 119,
5671–5699,
https://doi.org/10.1002/2013JD020914,
2014.
Ziemke, J. R., Douglass, A. R., Oman, L. D., Strahan, S. E., and Duncan, B.
N.: Tropospheric ozone variability in the tropics from ENSO to MJO and
shorter timescales, Atmos. Chem. Phys., 15, 8037–8049,
https://doi.org/10.5194/acp-15-8037-2015, 2015.
Short summary
The goal of this study is to determine the global and zonal changes in the tropospheric ozone data product derived from SCIAMACHY limb-nadir-matching (LNM) observations during the period 2003–2011.
Tropospheric O3 shows statistically significant increases over some regions of South Asia, the South American continent, Alaska, around Congo in Africa and over some continental outflows. Significant decrease in TOC is observed over some continents and oceans.
The goal of this study is to determine the global and zonal changes in the tropospheric ozone...
Altmetrics
Final-revised paper
Preprint