Articles | Volume 16, issue 18
Atmos. Chem. Phys., 16, 12159–12176, 2016
https://doi.org/10.5194/acp-16-12159-2016
Atmos. Chem. Phys., 16, 12159–12176, 2016
https://doi.org/10.5194/acp-16-12159-2016

Research article 28 Sep 2016

Research article | 28 Sep 2016

Future Arctic ozone recovery: the importance of chemistry and dynamics

Ewa M. Bednarz et al.

Related authors

Stratospheric Ozone Response to Sulfate Aerosol and Solar Dimming Climate Interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) Simulations
Simone Tilmes, Daniele Visioni, Andy Jones, James Haywood, Roland Séférian, Pierre Nabat, Olivier Boucher, Ewa Monica Bednarz, and Ulrike Niemeier
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1003,https://doi.org/10.5194/acp-2021-1003, 2021
Preprint under review for ACP
Short summary
Separating the role of direct radiative heating and photolysis in modulating the atmospheric response to the amplitude of the 11-year solar cycle forcing
Ewa M. Bednarz, Amanda C. Maycock, Peter Braesicke, Paul J. Telford, N. Luke Abraham, and John A. Pyle
Atmos. Chem. Phys., 19, 9833–9846, https://doi.org/10.5194/acp-19-9833-2019,https://doi.org/10.5194/acp-19-9833-2019, 2019
Short summary
Simulating the atmospheric response to the 11-year solar cycle forcing with the UM-UKCA model: the role of detection method and natural variability
Ewa M. Bednarz, Amanda C. Maycock, Paul J. Telford, Peter Braesicke, N. Luke Abraham, and John A. Pyle
Atmos. Chem. Phys., 19, 5209–5233, https://doi.org/10.5194/acp-19-5209-2019,https://doi.org/10.5194/acp-19-5209-2019, 2019
Short summary
Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018,https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Diagnosing the radiative and chemical contributions to future changes in tropical column ozone with the UM-UKCA chemistry–climate model
James Keeble, Ewa M. Bednarz, Antara Banerjee, N. Luke Abraham, Neil R. P. Harris, Amanda C. Maycock, and John A. Pyle
Atmos. Chem. Phys., 17, 13801–13818, https://doi.org/10.5194/acp-17-13801-2017,https://doi.org/10.5194/acp-17-13801-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
An Arctic ozone hole in 2020 if not for the Montreal Protocol
Catherine Wilka, Susan Solomon, Doug Kinnison, and David Tarasick
Atmos. Chem. Phys., 21, 15771–15781, https://doi.org/10.5194/acp-21-15771-2021,https://doi.org/10.5194/acp-21-15771-2021, 2021
Short summary
From the middle stratosphere to the surface, using nitrous oxide to constrain the stratosphere-troposphere exchange of ozone
Daniel J. Ruiz and Michael J. Prather
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-635,https://doi.org/10.5194/acp-2021-635, 2021
Revised manuscript accepted for ACP
Short summary
Effects of enhanced downwelling of NOx on Antarctic upper-stratospheric ozone in the 21st century
Ville Maliniemi, Hilde Nesse Tyssøy, Christine Smith-Johnsen, Pavle Arsenovic, and Daniel R. Marsh
Atmos. Chem. Phys., 21, 11041–11052, https://doi.org/10.5194/acp-21-11041-2021,https://doi.org/10.5194/acp-21-11041-2021, 2021
Short summary
Processes influencing lower stratospheric water vapour in monsoon anticyclones: insights from Lagrangian modelling
Nuria Pilar Plaza, Aurélien Podglajen, Cristina Peña-Ortiz, and Felix Ploeger
Atmos. Chem. Phys., 21, 9585–9607, https://doi.org/10.5194/acp-21-9585-2021,https://doi.org/10.5194/acp-21-9585-2021, 2021
Short summary
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021,https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary

Cited articles

Anderson, J. G., Brune, W. H., and Proffitt, M. H.: Ozone destruction by chlorine radicals within the Antarctic vortex – the spatial and temporal evolution of ClO-O3 anticorrelation based on insitu ER-2 data, J. Geophys. Res.-Atmos., 94, 11465–11479, https://doi.org/10.1029/JD094iD09p11465, 1989.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press, 489 pp., San Diego, 1987.
Austin, J. and Wilson, R. J.: Ensemble simulations of the decline and recovery of stratospheric ozone, J. Geophys. Res.-Atmos., 111, D16314, https://doi.org/10.1029/2005jd006907, 2006.
Bell, C. J., Gray, L. J., and Kettleborough, J.: Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations, Q. J. Roy. Meteor. Soc., 136, 1181–1190, https://doi.org/10.1002/qj.633, 2010.
Bodeker, G. E., Shiona, H., and Eskes, H.: Indicators of Antarctic ozone depletion, Atmos. Chem. Phys., 5, 2603–2615, https://doi.org/10.5194/acp-5-2603-2005, 2005.
Download
Short summary
Future trends in springtime Arctic ozone, and its chemical dynamical and radiative drivers, are analysed using a 7-member ensemble of chemistry–climate model integrations, allowing for a detailed assessment of interannual variability. Despite the future long-term recovery of Arctic ozone, there is large interannual variability and episodic reductions in springtime Arctic column ozone. Halogen chemistry will become a smaller but non-negligible driver of Arctic ozone variability over the century.
Altmetrics
Final-revised paper
Preprint