Articles | Volume 16, issue 18
Atmos. Chem. Phys., 16, 11883–11897, 2016
https://doi.org/10.5194/acp-16-11883-2016
Atmos. Chem. Phys., 16, 11883–11897, 2016
https://doi.org/10.5194/acp-16-11883-2016

Research article 23 Sep 2016

Research article | 23 Sep 2016

Porous aerosol in degassing plumes of Mt. Etna and Mt. Stromboli

Valery Shcherbakov et al.

Related authors

McRALI: a Monte Carlo high-spectral-resolution lidar and Doppler radar simulator for three-dimensional cloudy atmosphere remote sensing
Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, Valery Shcherbakov, Céline Cornet, Julien Delanoë, Yahya Gour, Olivier Jourdan, Sandra Banson, and Edouard Bray
Atmos. Meas. Tech., 14, 199–221, https://doi.org/10.5194/amt-14-199-2021,https://doi.org/10.5194/amt-14-199-2021, 2021
Short summary
Study of the diffraction pattern of cloud particles and the respective responses of optical array probes
Thibault Vaillant de Guélis, Alfons Schwarzenböck, Valery Shcherbakov, Christophe Gourbeyre, Bastien Laurent, Régis Dupuy, Pierre Coutris, and Christophe Duroure
Atmos. Meas. Tech., 12, 2513–2529, https://doi.org/10.5194/amt-12-2513-2019,https://doi.org/10.5194/amt-12-2513-2019, 2019
Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds
Martin Schnaiter, Emma Järvinen, Paul Vochezer, Ahmed Abdelmonem, Robert Wagner, Olivier Jourdan, Guillaume Mioche, Valery N. Shcherbakov, Carl G. Schmitt, Ugo Tricoli, Zbigniew Ulanowski, and Andrew J. Heymsfield
Atmos. Chem. Phys., 16, 5091–5110, https://doi.org/10.5194/acp-16-5091-2016,https://doi.org/10.5194/acp-16-5091-2016, 2016
Quantitative evaluation of seven optical sensors for cloud microphysical measurements at the Puy-de-Dôme Observatory, France
G. Guyot, C. Gourbeyre, G. Febvre, V. Shcherbakov, F. Burnet, J.-C. Dupont, K. Sellegri, and O. Jourdan
Atmos. Meas. Tech., 8, 4347–4367, https://doi.org/10.5194/amt-8-4347-2015,https://doi.org/10.5194/amt-8-4347-2015, 2015
Microphysical properties and high ice water content in continental and oceanic mesoscale convective systems and potential implications for commercial aircraft at flight altitude
J.-F. Gayet, V. Shcherbakov, L. Bugliaro, A. Protat, J. Delanoë, J. Pelon, and A. Garnier
Atmos. Chem. Phys., 14, 899–912, https://doi.org/10.5194/acp-14-899-2014,https://doi.org/10.5194/acp-14-899-2014, 2014

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The impact of cloudiness and cloud type on the atmospheric heating rate of black and brown carbon in the Po Valley
Luca Ferrero, Asta Gregorič, Griša Močnik, Martin Rigler, Sergio Cogliati, Francesca Barnaba, Luca Di Liberto, Gian Paolo Gobbi, Niccolò Losi, and Ezio Bolzacchini
Atmos. Chem. Phys., 21, 4869–4897, https://doi.org/10.5194/acp-21-4869-2021,https://doi.org/10.5194/acp-21-4869-2021, 2021
Short summary
Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning
Roland Stirnberg, Jan Cermak, Simone Kotthaus, Martial Haeffelin, Hendrik Andersen, Julia Fuchs, Miae Kim, Jean-Eudes Petit, and Olivier Favez
Atmos. Chem. Phys., 21, 3919–3948, https://doi.org/10.5194/acp-21-3919-2021,https://doi.org/10.5194/acp-21-3919-2021, 2021
Short summary
The seasonal cycle of ice-nucleating particles linked to the abundance of biogenic aerosol in boreal forests
Julia Schneider, Kristina Höhler, Paavo Heikkilä, Jorma Keskinen, Barbara Bertozzi, Pia Bogert, Tobias Schorr, Nsikanabasi Silas Umo, Franziska Vogel, Zoé Brasseur, Yusheng Wu, Simo Hakala, Jonathan Duplissy, Dmitri Moisseev, Markku Kulmala, Michael P. Adams, Benjamin J. Murray, Kimmo Korhonen, Liqing Hao, Erik S. Thomson, Dimitri Castarède, Thomas Leisner, Tuukka Petäjä, and Ottmar Möhler
Atmos. Chem. Phys., 21, 3899–3918, https://doi.org/10.5194/acp-21-3899-2021,https://doi.org/10.5194/acp-21-3899-2021, 2021
Short summary
Measurement report: Cloud processes and the transport of biological emissions affect southern ocean particle and cloud condensation nuclei concentrations
Kevin J. Sanchez, Gregory C. Roberts, Georges Saliba, Lynn M. Russell, Cynthia Twohy, J. Michael Reeves, Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, and Ian M. McRobert
Atmos. Chem. Phys., 21, 3427–3446, https://doi.org/10.5194/acp-21-3427-2021,https://doi.org/10.5194/acp-21-3427-2021, 2021
Short summary
Effects of marine fuel sulfur restrictions on particle number concentrations and size distributions in ship plumes in the Baltic Sea
Sami D. Seppälä, Joel Kuula, Antti-Pekka Hyvärinen, Sanna Saarikoski, Topi Rönkkö, Jorma Keskinen, Jukka-Pekka Jalkanen, and Hilkka Timonen
Atmos. Chem. Phys., 21, 3215–3234, https://doi.org/10.5194/acp-21-3215-2021,https://doi.org/10.5194/acp-21-3215-2021, 2021
Short summary

Cited articles

Abo Riziq, A., Erlick, C., Dinar, E., and Rudich, Y.: Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy, Atmos. Chem. Phys., 7, 1523–1536, https://doi.org/10.5194/acp-7-1523-2007, 2007.
Adler, G., Koop, T., Haspel, C., Taraniuk, I., Moise, T., Koren, I., Heiblum, R. H., and Rudich, Y.: Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds, Proc. Natl. Acad. Sci. USA, 110, 20414–20419, https://doi.org/10.1073/pnas.1317209110, 2013.
Adler, G., Haspel, C., Moise, T., and Rudich, Y.: Optical extinction of highly porous aerosol following atmospheric freeze drying, J. Geophys. Res.-Atmos., 119, 6768–6787, https://doi.org/10.1002/2013JD021314, 2014.
Allen, A. G., Mather, T. A., McGonigle, A. J. S., Aiuppa, A., Delmelle, P., Davison, B., Bobrowski, N., Oppenheimer, C., Pyle, D. M., and Inguaggiato, S.: Sources, size distribution, and downwind grounding of aerosols from Mount Etna, J. Geophys. Res.-Atmos., 111, D10302, https://doi.org/10.1029/2005JD006015, 2006.
Ammann, M. and Burtscher, H.: Characterization of ultrafine aerosol particles in Mt. Etna emissions, Bull. Volcanol., 52, 577–583, https://doi.org/10.1007/BF00301209, 1990.
Download
Altmetrics
Final-revised paper
Preprint