Articles | Volume 13, issue 13
Atmos. Chem. Phys., 13, 6431–6446, 2013
https://doi.org/10.5194/acp-13-6431-2013

Special issue: Megapoli-Paris 2009/2010 campaign

Atmos. Chem. Phys., 13, 6431–6446, 2013
https://doi.org/10.5194/acp-13-6431-2013
Research article
08 Jul 2013
Research article | 08 Jul 2013

Hygroscopic mixing state of urban aerosol derived from size-resolved cloud condensation nuclei measurements during the MEGAPOLI campaign in Paris

Z. Jurányi et al.

Related authors

Technical note: Sea salt interference with black carbon quantification in snow samples using the single particle soot photometer
Marco Zanatta, Andreas Herber, Zsófia Jurányi, Oliver Eppers, Johannes Schneider, and Joshua P. Schwarz
Atmos. Chem. Phys., 21, 9329–9342, https://doi.org/10.5194/acp-21-9329-2021,https://doi.org/10.5194/acp-21-9329-2021, 2021
Short summary
One year of aerosol refractive index measurement from a coastal Antarctic site
Zsófia Jurányi and Rolf Weller
Atmos. Chem. Phys., 19, 14417–14430, https://doi.org/10.5194/acp-19-14417-2019,https://doi.org/10.5194/acp-19-14417-2019, 2019
Dual-wavelength light-scattering technique for selective detection of volcanic ash particles in the presence of water droplets
Z. Jurányi, H. Burtscher, M. Loepfe, M. Nenkov, and E. Weingartner
Atmos. Meas. Tech., 8, 5213–5222, https://doi.org/10.5194/amt-8-5213-2015,https://doi.org/10.5194/amt-8-5213-2015, 2015
Short summary
A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network
M. Paramonov, V.-M. Kerminen, M. Gysel, P. P. Aalto, M. O. Andreae, E. Asmi, U. Baltensperger, A. Bougiatioti, D. Brus, G. P. Frank, N. Good, S. S. Gunthe, L. Hao, M. Irwin, A. Jaatinen, Z. Jurányi, S. M. King, A. Kortelainen, A. Kristensson, H. Lihavainen, M. Kulmala, U. Lohmann, S. T. Martin, G. McFiggans, N. Mihalopoulos, A. Nenes, C. D. O'Dowd, J. Ovadnevaite, T. Petäjä, U. Pöschl, G. C. Roberts, D. Rose, B. Svenningsson, E. Swietlicki, E. Weingartner, J. Whitehead, A. Wiedensohler, C. Wittbom, and B. Sierau
Atmos. Chem. Phys., 15, 12211–12229, https://doi.org/10.5194/acp-15-12211-2015,https://doi.org/10.5194/acp-15-12211-2015, 2015
Short summary
Investigation of the effective peak supersaturation for liquid-phase clouds at the high-alpine site Jungfraujoch, Switzerland (3580 m a.s.l.)
E. Hammer, N. Bukowiecki, M. Gysel, Z. Jurányi, C. R. Hoyle, R. Vogt, U. Baltensperger, and E. Weingartner
Atmos. Chem. Phys., 14, 1123–1139, https://doi.org/10.5194/acp-14-1123-2014,https://doi.org/10.5194/acp-14-1123-2014, 2014

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the North China Plain
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022,https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Measurement report: The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 1: Correlation between soils and airborne samples
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022,https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
Constraining the particle-scale diversity of black carbon light absorption using a unified framework
Payton Beeler and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 14825–14836, https://doi.org/10.5194/acp-22-14825-2022,https://doi.org/10.5194/acp-22-14825-2022, 2022
Short summary
Survival probability of new atmospheric particles: closure between theory and measurements from 1.4 to 100 nm
Runlong Cai, Chenjuan Deng, Dominik Stolzenburg, Chenxi Li, Junchen Guo, Veli-Matti Kerminen, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 14571–14587, https://doi.org/10.5194/acp-22-14571-2022,https://doi.org/10.5194/acp-22-14571-2022, 2022
Short summary
Predicting atmospheric background number concentration of ice-nucleating particles in the Arctic
Guangyu Li, Jörg Wieder, Julie T. Pasquier, Jan Henneberger, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 14441–14454, https://doi.org/10.5194/acp-22-14441-2022,https://doi.org/10.5194/acp-22-14441-2022, 2022
Short summary

Cited articles

Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Anttila, T.: Sensitivity of cloud droplet formation to the numerical treatment of the particle mixing state, J. Geophys. Res., 115, D21205, https://doi.org/10.1029/2010JD013995, 2010.
Baltensperger, U., Streit, N., Weingartner, E., Nyeki, S., Prévôt, A. S. H., Van Dingenen, R., Virkkula, A., Putaud, J.-P., Even, A., ten Brink, H., Blatter, A., Neftel, A., and Gäggeler, H. W.: Urban and rural aerosol characterization of summer smog events during the PIPAPO field campaign in Milan, Italy, J. Geophys. Res., 107, 8193, https://doi.org/10.1029/2001JD001292, 2002.
Baron, P. and Willeke, K.: Aerosol Measurement Principles, Techniques and Applications, John Wiley and Sons, 2nd edition, 2001.
Download
Altmetrics
Final-revised paper
Preprint