Articles | Volume 19, issue 9
Research article
16 May 2019
Research article |  | 16 May 2019

Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products

Mengchu Tao, Paul Konopka, Felix Ploeger, Xiaolu Yan, Jonathon S. Wright, Mohamadou Diallo, Stephan Fueglistaler, and Martin Riese

Related authors

Tropospheric transport and unresolved convection: numerical experiments with CLaMS 2.0/MESSy
Paul Konopka, Mengchu Tao, Marc von Hobe, Lars Hoffmann, Corinna Kloss, Fabrizio Ravegnani, C. Michael Volk, Valentin Lauther, Andreas Zahn, Peter Hoor, and Felix Ploeger
Geosci. Model Dev., 15, 7471–7487,,, 2022
Short summary
Estimation of isentropic stirring and mixing and their diagnosis for the stratospheric polar vortex
Zhiting Wang, Nils Hase, Wenshou Tian, and Mengchu Tao
Atmos. Chem. Phys. Discuss.,,, 2022
Publication in ACP not foreseen
Short summary
Long-term variations in ozone levels in the troposphere and lower stratosphere over Beijing: observations and model simulations
Yuli Zhang, Mengchu Tao, Jinqiang Zhang, Yi Liu, Hongbin Chen, Zhaonan Cai, and Paul Konopka
Atmos. Chem. Phys., 20, 13343–13354,,, 2020
Tropospheric mixing and parametrization of unresolved convective updrafts as implemented in the Chemical Lagrangian Model of the Stratosphere (CLaMS v2.0)
Paul Konopka, Mengchu Tao, Felix Ploeger, Mohamadou Diallo, and Martin Riese
Geosci. Model Dev., 12, 2441–2462,,, 2019
Short summary
How robust are stratospheric age of air trends from different reanalyses?
Felix Ploeger, Bernard Legras, Edward Charlesworth, Xiaolu Yan, Mohamadou Diallo, Paul Konopka, Thomas Birner, Mengchu Tao, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 19, 6085–6105,,, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Analysis of a newly homogenised ozonesonde dataset from Lauder, New Zealand
Guang Zeng, Richard Querel, Hisako Shiona, Deniz Poyraz, Roeland Van Malderen, Alex Geddes, Penny Smale, Dan Smale, John Robinson, and Olaf Morgenstern
Atmos. Chem. Phys., 24, 6413–6432,,, 2024
Short summary
Correction of stratospheric age of air (AoA) derived from sulfur hexafluoride (SF6) for the effect of chemical sinks
Hella Garny, Roland Eichinger, Johannes C. Laube, Eric A. Ray, Gabriele P. Stiller, Harald Bönisch, Laura Saunders, and Marianna Linz
Atmos. Chem. Phys., 24, 4193–4215,,, 2024
Short summary
Opinion: Stratospheric ozone – depletion, recovery and new challenges
Martyn P. Chipperfield and Slimane Bekki
Atmos. Chem. Phys., 24, 2783–2802,,, 2024
Short summary
Quantum yields of CHDO above 300 nm
Ernst-Peter Röth and Luc Vereecken
Atmos. Chem. Phys., 24, 2625–2638,,, 2024
Short summary
Sensitivities of atmospheric composition and climate to altitude and latitude of hypersonic aircraft emissions
Johannes Pletzer and Volker Grewe
Atmos. Chem. Phys., 24, 1743–1775,,, 2024
Short summary

Cited articles

Abalos, M., Legras, B., Ploeger, F., and Randel, W. J.: Evaluating the advective Brewer-Dobson circulation in three reanalyses for the period 1979–2012, J. Geophys. Res., 120, 7534–7554, 2015. a, b
Bannister, R., O'neill, A., Gregory, A., and Nissen, K.: The role of the south-east Asian monsoon and other seasonal features in creating the “tape-recorder” signal in the Unified Model, Q. J. Roy. Meteor. Soc., 130, 1531–1554, 2004. a, b
Bloom, S. C., Takacs, L. L., da Silva, A. M., and Ledvina, D.: Data assimilation using incremental analysis updates, Mon. Weather Rev., 124, 1256–1271, 1996. a
Brewer, A. W.: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere, Q. J. Roy. Meteor. Soc., 75, 351–363, 1949. a
Short summary
This paper examines the annual and interannual variations as well as long-term trend of modeled stratospheric water vapor with a Lagrangian chemical transport model driven by ERA-I, MERRA-2 and JRA-55. We find reasonable consistency among the annual cycle, QBO and the variabilities induced by ENSO and volcanic aerosols. The main discrepancies are linked to the differences in reanalysis upwelling rates in the lower stratosphere. The trends are sensitive to the reanalyses that drives the model.
Final-revised paper