Articles | Volume 18, issue 9
https://doi.org/10.5194/acp-18-6121-2018
https://doi.org/10.5194/acp-18-6121-2018
Research article
 | 
03 May 2018
Research article |  | 03 May 2018

Key drivers of ozone change and its radiative forcing over the 21st century

Fernando Iglesias-Suarez, Douglas E. Kinnison, Alexandru Rap, Amanda C. Maycock, Oliver Wild, and Paul J. Young

Related authors

Tuning a Climate Model with Machine-learning based Emulators and History Matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco A. Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
EGUsphere, https://doi.org/10.5194/egusphere-2024-2508,https://doi.org/10.5194/egusphere-2024-2508, 2024
Short summary
Seasonal impact of biogenic very short-lived bromocarbons on lowermost stratospheric ozone between 60° N and 60° S during the 21st century
Javier Alejandro Barrera, Rafael Pedro Fernandez, Fernando Iglesias-Suarez, Carlos Alberto Cuevas, Jean-Francois Lamarque, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 20, 8083–8102, https://doi.org/10.5194/acp-20-8083-2020,https://doi.org/10.5194/acp-20-8083-2020, 2020
Short summary

Related subject area

Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Comment on “An approach to sulfate geoengineering with surface emissions of carbonyl sulfide” by Quaglia et al. (2022)
Marc von Hobe, Christoph Brühl, Sinikka T. Lennartz, Mary E. Whelan, and Aleya Kaushik
Atmos. Chem. Phys., 23, 6591–6598, https://doi.org/10.5194/acp-23-6591-2023,https://doi.org/10.5194/acp-23-6591-2023, 2023
Short summary
The climate impact of hydrogen-powered hypersonic transport
Johannes Pletzer, Didier Hauglustaine, Yann Cohen, Patrick Jöckel, and Volker Grewe
Atmos. Chem. Phys., 22, 14323–14354, https://doi.org/10.5194/acp-22-14323-2022,https://doi.org/10.5194/acp-22-14323-2022, 2022
Short summary
Quantifying uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: Annual mean response in heating rates, temperature, and ozone
Markus Kunze, Tim Kruschke, Ulrike Langematz, Miriam Sinnhuber, Thomas Reddmann, and Katja Matthes
Atmos. Chem. Phys., 20, 6991–7019, https://doi.org/10.5194/acp-20-6991-2020,https://doi.org/10.5194/acp-20-6991-2020, 2020
Short summary
Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019,https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Effects of Arctic stratospheric ozone changes on spring precipitation in the northwestern United States
Xuan Ma, Fei Xie, Jianping Li, Xinlong Zheng, Wenshou Tian, Ruiqiang Ding, Cheng Sun, and Jiankai Zhang
Atmos. Chem. Phys., 19, 861–875, https://doi.org/10.5194/acp-19-861-2019,https://doi.org/10.5194/acp-19-861-2019, 2019

Cited articles

Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, International Geophysics Series, Academic press, San Diego, USA, 1987. 
Arblaster, J. M., and Gillett, N. P., Calvo, N., Forster, P. M., Polvani, L. M., Son, S. W., Waugh, D. W., and Young, P. J.: Stratospheric ozone changes and climate, Chapter 4, in: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project, 2014 
Austin, J. and Wilson, R. J.: Ensemble simulations of the decline and recovery of stratospheric ozone, J. Geophys. Res., 111, 2156–2202, https://doi.org/10.1029/2005JD006907, 2006. 
Avallone, L. M. and Prather, M. J.: Photochemical evolution of ozone in the lower tropical stratosphere, J. Geophys. Res., 101, 1457–1461, https://doi.org/10.1029/95JD03010, 1996. 
Banerjee, A., Archibald, A. T., Maycock, A. C., Telford, P., Abraham, N. L., Yang, X., Braesicke, P., and Pyle, J. A.: Lightning NOx, a key chemistry-climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity, Atmos. Chem. Phys., 14, 9871– 9881, https://doi.org/10.5194/acp-14-9871-2014, 2014. 
Download
Short summary
This study explores future ozone radiative forcing (RF) and the relative contribution due to different drivers. Climate-induced ozone RF is largely the result of the interplay between lightning-produced ozone and enhanced ozone destruction in a warmer and wetter atmosphere. These results demonstrate the importance of stratospheric–tropospheric interactions and the stratosphere as a key region controlling a large fraction of the tropospheric ozone RF.
Altmetrics
Final-revised paper
Preprint