Articles | Volume 16, issue 9
Atmos. Chem. Phys., 16, 5853–5866, 2016
Atmos. Chem. Phys., 16, 5853–5866, 2016
Research article
13 May 2016
Research article | 13 May 2016

Atmospheric changes caused by galactic cosmic rays over the period 1960–2010

Charles H. Jackman et al.

Related authors

Solar forcing for CMIP6 (v3.2)
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302,,, 2017
Short summary
Middle atmospheric changes caused by the January and March 2012 solar proton events
C. H. Jackman, C. E. Randall, V. L. Harvey, S. Wang, E. L. Fleming, M. López-Puertas, B. Funke, and P. F. Bernath
Atmos. Chem. Phys., 14, 1025–1038,,, 2014

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Atmospheric impacts of chlorinated very short-lived substances over the recent past – Part 1: Stratospheric chlorine budget and the role of transport
Ewa M. Bednarz, Ryan Hossaini, Martyn P. Chipperfield, N. Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 22, 10657–10676,,, 2022
Short summary
Effects of reanalysis forcing fields on ozone trends and age of air from a chemical transport model
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Andreas Chrysanthou, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 22, 10635–10656,,, 2022
Short summary
The influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th century
Ville Maliniemi, Pavle Arsenovic, Annika Seppälä, and Hilde Nesse Tyssøy
Atmos. Chem. Phys., 22, 8137–8149,,, 2022
Short summary
From the middle stratosphere to the surface, using nitrous oxide to constrain the stratosphere–troposphere exchange of ozone
Daniel J. Ruiz and Michael J. Prather
Atmos. Chem. Phys., 22, 2079–2093,,, 2022
Short summary
An Arctic ozone hole in 2020 if not for the Montreal Protocol
Catherine Wilka, Susan Solomon, Doug Kinnison, and David Tarasick
Atmos. Chem. Phys., 21, 15771–15781,,, 2021
Short summary

Cited articles

Badhwar, G. D. and O'Neill, P. M.: An improved model of galactic cosmic radiation for space exploration missions, Nucl. Tracks Rad. Meas., 20, 403–410, 1992.
Badhwar, G. D. and O'Neill, P. M.: Long term modulation of galactic cosmic radiation and its model for space exploration, Adv. Space Res., 14, 749–757, 1994.
Badhwar, G. D. and O'Neill, P. M.: Galactic cosmic radiation model and its applications, Adv. Space Res., 17, 7–17, 1996.
Brasseur, G. and Solomon, S.: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, D. Reidel Publishing Company, Dordrecht, the Netherlands, 1995.
Calisto, M., Usoskin, I., Rozanov, E., and Peter, T.: Influence of Galactic Cosmic Rays on atmospheric composition and dynamics, Atmos. Chem. Phys., 11, 4547–4556,, 2011.
Short summary
Two global models were used to investigate the impact of galactic cosmic ray (GCRs) on the atmosphere over the 1960-2010 time period. The primary impact of the naturally occurring GCRs on ozone was found to be due to their production of NOx and this impact varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. GCR-caused decreases of annual average global total ozone were computed to be 0.2 % or less.
Final-revised paper