Articles | Volume 16, issue 9
Atmos. Chem. Phys., 16, 5853–5866, 2016
https://doi.org/10.5194/acp-16-5853-2016
Atmos. Chem. Phys., 16, 5853–5866, 2016
https://doi.org/10.5194/acp-16-5853-2016

Research article 13 May 2016

Research article | 13 May 2016

Atmospheric changes caused by galactic cosmic rays over the period 1960–2010

Charles H. Jackman et al.

Related authors

Solar forcing for CMIP6 (v3.2)
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017,https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Middle atmospheric changes caused by the January and March 2012 solar proton events
C. H. Jackman, C. E. Randall, V. L. Harvey, S. Wang, E. L. Fleming, M. López-Puertas, B. Funke, and P. F. Bernath
Atmos. Chem. Phys., 14, 1025–1038, https://doi.org/10.5194/acp-14-1025-2014,https://doi.org/10.5194/acp-14-1025-2014, 2014

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
An Arctic ozone hole in 2020 if not for the Montreal Protocol
Catherine Wilka, Susan Solomon, Doug Kinnison, and David Tarasick
Atmos. Chem. Phys., 21, 15771–15781, https://doi.org/10.5194/acp-21-15771-2021,https://doi.org/10.5194/acp-21-15771-2021, 2021
Short summary
Effects of enhanced downwelling of NOx on Antarctic upper-stratospheric ozone in the 21st century
Ville Maliniemi, Hilde Nesse Tyssøy, Christine Smith-Johnsen, Pavle Arsenovic, and Daniel R. Marsh
Atmos. Chem. Phys., 21, 11041–11052, https://doi.org/10.5194/acp-21-11041-2021,https://doi.org/10.5194/acp-21-11041-2021, 2021
Short summary
Processes influencing lower stratospheric water vapour in monsoon anticyclones: insights from Lagrangian modelling
Nuria Pilar Plaza, Aurélien Podglajen, Cristina Peña-Ortiz, and Felix Ploeger
Atmos. Chem. Phys., 21, 9585–9607, https://doi.org/10.5194/acp-21-9585-2021,https://doi.org/10.5194/acp-21-9585-2021, 2021
Short summary
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021,https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021,https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary

Cited articles

Badhwar, G. D. and O'Neill, P. M.: An improved model of galactic cosmic radiation for space exploration missions, Nucl. Tracks Rad. Meas., 20, 403–410, 1992.
Badhwar, G. D. and O'Neill, P. M.: Long term modulation of galactic cosmic radiation and its model for space exploration, Adv. Space Res., 14, 749–757, 1994.
Badhwar, G. D. and O'Neill, P. M.: Galactic cosmic radiation model and its applications, Adv. Space Res., 17, 7–17, 1996.
Brasseur, G. and Solomon, S.: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, D. Reidel Publishing Company, Dordrecht, the Netherlands, 1995.
Calisto, M., Usoskin, I., Rozanov, E., and Peter, T.: Influence of Galactic Cosmic Rays on atmospheric composition and dynamics, Atmos. Chem. Phys., 11, 4547–4556, https://doi.org/10.5194/acp-11-4547-2011, 2011.
Download
Short summary
Two global models were used to investigate the impact of galactic cosmic ray (GCRs) on the atmosphere over the 1960-2010 time period. The primary impact of the naturally occurring GCRs on ozone was found to be due to their production of NOx and this impact varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. GCR-caused decreases of annual average global total ozone were computed to be 0.2 % or less.
Altmetrics
Final-revised paper
Preprint