Articles | Volume 16, issue 21
Atmos. Chem. Phys., 16, 13449–13463, 2016
https://doi.org/10.5194/acp-16-13449-2016
Atmos. Chem. Phys., 16, 13449–13463, 2016
https://doi.org/10.5194/acp-16-13449-2016
Research article
 | Highlight paper
31 Oct 2016
Research article  | Highlight paper | 31 Oct 2016

The BErkeley Atmospheric CO2 Observation Network: initial evaluation

Alexis A. Shusterman et al.

Related authors

Observing local CO2 sources using low-cost, near-surface urban monitors
Alexis A. Shusterman, Jinsol Kim, Kaitlyn J. Lieschke, Catherine Newman, Paul J. Wooldridge, and Ronald C. Cohen
Atmos. Chem. Phys., 18, 13773–13785, https://doi.org/10.5194/acp-18-13773-2018,https://doi.org/10.5194/acp-18-13773-2018, 2018
Short summary
The BErkeley Atmospheric CO2 Observation Network: field calibration and evaluation of low-cost air quality sensors
Jinsol Kim, Alexis A. Shusterman, Kaitlyn J. Lieschke, Catherine Newman, and Ronald C. Cohen
Atmos. Meas. Tech., 11, 1937–1946, https://doi.org/10.5194/amt-11-1937-2018,https://doi.org/10.5194/amt-11-1937-2018, 2018
Short summary
Network design for quantifying urban CO2 emissions: assessing trade-offs between precision and network density
Alexander J. Turner, Alexis A. Shusterman, Brian C. McDonald, Virginia Teige, Robert A. Harley, and Ronald C. Cohen
Atmos. Chem. Phys., 16, 13465–13475, https://doi.org/10.5194/acp-16-13465-2016,https://doi.org/10.5194/acp-16-13465-2016, 2016
Short summary
On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol
S. E. Pusede, K. C. Duffey, A. A. Shusterman, A. Saleh, J. L. Laughner, P. J. Wooldridge, Q. Zhang, C. L. Parworth, H. Kim, S. L. Capps, L. C. Valin, C. D. Cappa, A. Fried, J. Walega, J. B. Nowak, A. J. Weinheimer, R. M. Hoff, T. A. Berkoff, A. J. Beyersdorf, J. Olson, J. H. Crawford, and R. C. Cohen
Atmos. Chem. Phys., 16, 2575–2596, https://doi.org/10.5194/acp-16-2575-2016,https://doi.org/10.5194/acp-16-2575-2016, 2016

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Temporal variability of tropospheric ozone and ozone profiles in the Korean Peninsula during the East Asian summer monsoon: insights from multiple measurements and reanalysis datasets
Juseon Bak, Eun-Ji Song, Hyo-Jung Lee, Xiong Liu, Ja-Ho Koo, Joowan Kim, Wonbae Jeon, Jae-Hwan Kim, and Cheol-Hee Kim
Atmos. Chem. Phys., 22, 14177–14187, https://doi.org/10.5194/acp-22-14177-2022,https://doi.org/10.5194/acp-22-14177-2022, 2022
Short summary
Retrieving CH4-emission rates from coal mine ventilation shafts using UAV-based AirCore observations and the genetic algorithm–interior point penalty function (GA-IPPF) model
Tianqi Shi, Zeyu Han, Ge Han, Xin Ma, Huilin Chen, Truls Andersen, Huiqin Mao, Cuihong Chen, Haowei Zhang, and Wei Gong
Atmos. Chem. Phys., 22, 13881–13896, https://doi.org/10.5194/acp-22-13881-2022,https://doi.org/10.5194/acp-22-13881-2022, 2022
Short summary
Measurement report: Atmospheric mercury in a coastal city of Southeast China – inter-annual variations and influencing factors
Jiayan Shi, Yuping Chen, Lingling Xu, Youwei Hong, Mengren Li, Xiaolong Fan, Liqian Yin, Yanting Chen, Chen Yang, Gaojie Chen, Taotao Liu, Xiaoting Ji, and Jinsheng Chen
Atmos. Chem. Phys., 22, 11187–11202, https://doi.org/10.5194/acp-22-11187-2022,https://doi.org/10.5194/acp-22-11187-2022, 2022
Short summary
Tropospheric and stratospheric ozone profiles during the 2019 TROpomi vaLIdation eXperiment (TROLIX-19)
John T. Sullivan, Arnoud Apituley, Nora Mettig, Karin Kreher, K. Emma Knowland, Marc Allaart, Ankie Piters, Michel Van Roozendael, Pepijn Veefkind, Jerry R. Ziemke, Natalya Kramarova, Mark Weber, Alexei Rozanov, Laurence Twigg, Grant Sumnicht, and Thomas J. McGee
Atmos. Chem. Phys., 22, 11137–11153, https://doi.org/10.5194/acp-22-11137-2022,https://doi.org/10.5194/acp-22-11137-2022, 2022
Short summary
Enhanced Natural Releases of Mercury in Response to Reduction of Anthropogenic Emissions during the COVID-19 Lockdown by Explainable Machine Learning
Xiaofei Qin, Shengqian Zhou, Hao Li, Guochen Wang, Cheng Chen, Chengfeng Liu, Xiaohao Wang, Juntao Huo, Yanfen Lin, Jia Chen, Qingyan Fu, Yusen Duan, Kan Huang, and Congrui Deng
EGUsphere, https://doi.org/10.5194/egusphere-2022-773,https://doi.org/10.5194/egusphere-2022-773, 2022
Short summary

Cited articles

A.B. 32: California Global Warming Solutions Act, Assemb. Reg. Sess. 2005–2006, CA, 2006.
Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C., Zhao, C. L., Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M. J., Lee, J. T., Baumann, D. D., Desai, A. R., Stanier, C. O., De Wekker, S. F. J., Wolfe, D. E., Munger, J. W., and Tans, P. P.: CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts, Atmos. Meas. Tech., 7, 647–687, https://doi.org/10.5194/amt-7-647-2014, 2014.
Ban-Weiss, G. A., McLaughlin, J. P., Harley, R. A., Lunden, M. M., Kirchstetter, T. W., Kean, A. J., Strawa, A. W., Stevenson, E. D., and Kendall, G. R.: Long-term changes in emissions of nitrogen oxides and particulate matter from on-road gasoline and diesel vehicles, Atmos. Environ., 42, 220–232, https://doi.org/10.1016/j.atmosenv.2007.09.049, 2008.
Beckerman, B., Jerrett, M., Brook, J. R., Verma, D. K., Arain, M. A., and Finkelstein, M. M.: Correlation of nitrogen dioxide with other traffic pollutants near a major expressway, Atmos. Environ., 42, 275–290, https://doi.org/10.1016/j.atmosenv.2007.09.042, 2008.
Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., Dieudonné, E., Lopez, M., Schmidt, M., Perrussel, O., and Ciais, P.: An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements, Atmos. Chem. Phys., 15, 1707–1724, https://doi.org/10.5194/acp-15-1707-2015, 2015.
Download
Short summary
We describe the design of and first results from the BErkeley Atmospheric CO2 Observation Network, a distributed instrument of 28 CO2 sensors stationed across and around the city of Oakland, California at ~ 2 km intervals. We evaluate the network via 4 performance parameters (cost, reliability, precision, systematic uncertainty) and find this high density technique to be sufficiently cost-effective and rigorous to inform understanding of small-scale urban emissions relevant to climate regulation.
Altmetrics
Final-revised paper
Preprint