Articles | Volume 14, issue 22
Research article
27 Nov 2014
Research article |  | 27 Nov 2014

Low temperatures enhance organic nitrate formation: evidence from observations in the 2012 Uintah Basin Winter Ozone Study

L. Lee, P. J. Wooldridge, J. B. Gilman, C. Warneke, J. de Gouw, and R. C. Cohen

Abstract. Nitrogen dioxide (NO2) and total alkyl nitrates (ΣANs) were measured using thermal dissociation laser-induced fluorescence during the 2012 Uintah Basin Winter Ozone Study (UBWOS) in Utah, USA. The observed NO2 concentration was highest before sunrise and lowest in the late afternoon, suggestive of a persistent local source of NO2 coupled with turbulent mixing out of the boundary layer. In contrast, ΣANs co-varied with solar radiation with a noontime maximum, indicating that local photochemical production combined with rapid mixing and/or deposition was the dominant factor in determining the ΣAN concentrations. We calculate that ΣANs were a large fraction (~60%) of the HOx free radical chain termination and show that the temperature dependence of the alkyl nitrate yields enhances the role of ΣANs in local chemistry during winter by comparison to what would occur in the warmer temperatures of summer.

Short summary
Alkyl nitrate formation is known to be an important sink of NOx in a wide range of environments. In a study in the Uintah basin in 2012, we find that formation of these compounds represents a more rapid NOx (NO + NO2) sink than does nitric acid formation. This rapid formation is in large part due to the low mean temperature (~0°C) during the study and is consistent with laboratory observations.
Final-revised paper