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Abstract. With the majority of the world population residing
in urban areas, attempts to monitor and mitigate greenhouse
gas emissions must necessarily center on cities. However, ex-
isting carbon dioxide observation networks are ill-equipped
to resolve the specific intra-city emission phenomena tar-
geted by regulation. Here we describe the design and im-
plementation of the BErkeley Atmospheric CO2 Observation
Network (BEACO2N), a distributed CO2 monitoring instru-
ment that utilizes low-cost technology to achieve unprece-
dented spatial density throughout and around the city of Oak-
land, California. We characterize the network in terms of four
performance parameters – cost, reliability, precision, and sys-
tematic uncertainty – and find the BEACO2N approach to be
sufficiently cost-effective and reliable while nonetheless pro-
viding high-quality atmospheric observations. First results
from the initial installation successfully capture hourly, daily,
and seasonal CO2 signals relevant to urban environments on
spatial scales that cannot be accurately represented by at-
mospheric transport models alone, demonstrating the utility
of high-resolution surface networks in urban greenhouse gas
monitoring efforts.

1 Introduction

As two-thirds of the human population stand to inhabit
cities by 2050 (United Nations, 2014), developing a thor-
ough understanding of urban greenhouse gas emissions is
of ever-growing importance. International and local law-
making bodies around the world are agreeing to caps on to-

tal emissions and enacting multi-faceted regulations aimed
at achieving these caps (e.g., A.B. 32, 2006; United Nations,
2015). As of yet there exists no mechanism for judging the
efficacy of these individual rules or verifying compliance
through direct observations of changes in CO2 at the scale
of cities (Duren and Miller, 2012).

Traditional strategies for assessing greenhouse gas emis-
sions are limited to a small handful of monitoring instru-
ments scattered sparsely across remote areas, mostly in de-
veloped nations (e.g., Worthy et al., 2003; Thompson et al.,
2009; Andrews et al., 2014). These stations are capable of
measuring regional averages and some integrated urban con-
centrations with extreme accuracy and precision, but are pur-
posefully distanced from, and experience reduced sensitivity
to, urban signals, thus giving little to no spatially resolved in-
formation on emissions in the precise areas that the majority
of greenhouse gas rules aim to regulate.

The increasing significance of urban emissions combined
with the proliferation of commercial cavity ring-down spec-
troscopic instrumentation has resulted in a recent trend to-
wards network sensing approaches for constraining green-
house gas emissions in cities. For example, Ehleringer et
al. (2008) maintain a CO2 monitoring network in the Salt
Lake City metropolitan area, the INFLUX network measures
CO2, 14CO2, and total column CO2 across the city of In-
dianapolis (Turnbull et al., 2015), and NASA’s Megacities
Carbon Project has established sensor networks in the pilot
cities of Los Angeles (Kort et al., 2013) and Paris (Bréon et
al., 2015). These ground-based monitoring efforts are com-
plemented by space-based observations from SCHIAMACY
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Figure 1. Map of the BEACO2N domain (a) in the context of the western United States and (b) showing individual node locations. Inset in
panel (b) shows the pair of nodes stationed in Sonoma County.
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Figure 2. North-facing schematic of Fig. 1 indicating the vertical
distribution of BEACO2N node sites (circles) over the topography
of Oakland, CA. The cloud marks the altitude and thickness of a
typical marine fog layer; the bridge delineates the height of the San
Francisco–Oakland Bay Bridge. Horizontal placement of nodes has
been skewed for visual clarity.

(Burrows et al., 1995), GOSAT (Yokota et al., 2009), and
most recently the Orbiting Carbon Observatory-2 (OCO-2),
launched in July 2014, which provides total column CO2
measurements over 1.29 by 2.25 km footprints once every 16
days (Eldering et al., 2012).

Thus far, the urban surface projects have relied on a rela-
tively small number of instruments (between 5 and 15) dis-
tributed with sensor-to-sensor distances of 5 to 35 km. Ini-
tial efforts suggest this approach may be effective at char-
acterizing average citywide emissions over monthly to an-
nual timescales (McKain et al., 2012), however it has yet
to be used to identify and quantify specific emission ac-
tivities at neighborhood scales. To resolve individual emis-
sion sources, much finer spatial resolution is needed. Sim-
ple Gaussian dispersion models with total reflection at the
surface predict > 95 % of the one-dimensional footprint of a

sensor 10 m above ground level to be within 1.1 km of the
sensor under typical conditions (Seinfeld and Pandis, 2006),
and prior studies (e.g., Zhu et al., 2006; Beckerman et al.,
2007; Choi et al., 2014) have observed e-folding distances of
∼ 100 to 1000 m for urban pollutant plumes mixing into the
local background.

Here we propose an alternative approach that strikes a dif-
ferent balance between instrument quality and quantity than
in previous CO2 monitoring efforts. The BErkeley Atmo-
spheric CO2 Observation Network (BEACO2N) is a large-
scale network instrument that aims to leverage low-cost sens-
ing techniques in order to enable a spatially dense network of
CO2-sensing “nodes” in and around the city of Oakland, Cal-
ifornia (Figs. 1 and 2). Using commercial CO2 instrumenta-
tion of moderate quality and a suite of low-cost trace gas sen-
sors for additional source attribution specificity, BEACO2N
is able to achieve an unprecedented spatial resolution of ap-
proximately 2 km – to our knowledge the only sensor net-
work to date that monitors CO2 on scale with the heteroge-
neous patterns of urban sources and sinks (see Fig. 3 for ex-
amples of intra-city CO2 flux gradients). We present an initial
description and characterization of the instrument, beginning
with a description of the nodes, their locations, and the de-
velopment of various laboratory and in situ calibration tech-
niques. We then evaluate the network in terms of four factors
– cost, reliability, precision, and systematic uncertainty, de-
scribed below – and conclude by demonstrating BEACO2N’s
ability to resolve CO2 signals of significance to the urban en-
vironment.
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Figure 3. A sample high-resolution bottom-up emissions inventory
for the Bay Area adapted from Turner et al. (2016).

1.1 Cost

In order to remain cost-competitive with other, less dense
networks employing higher-grade instrumentation, a high-
density network must utilize sensors with a price 1–2 orders
of magnitude lower. However, as sensor price often scales
with quality, low-cost instrumentation may carry associated
penalties in other domains, such as diminished precision, per-
sistent bias, or the need for frequent maintenance and/or re-
calibration. Thus, we seek to optimize the trade-off between
cost and the other considerations.

1.2 Reliability

Network reliability consists of sensor uptime and continuity
of the data stream and is crucial to enabling comparison and
averaging across sites as well as improving the statistics of
temporal analyses. Poor reliability also has an indirect impact
on cost via the resources expended on repeat maintenance
visits and/or replacement part purchases.

1.3 Precision

The precision requirements at each individual site vs. for a
network instrument as a whole vary depending on the phe-
nomena of interest. Metropolitan regions produce < 10 ppm
CO2 enhancements in the boundary layer (Pacala et al.,
2010), requiring sensitivity to changes that are orders of mag-
nitude smaller for the characterization of citywide integrated
inter-annual trends, for example. More specifically, accord-
ing to the First Update to the Climate Change Scoping Plan,
the state of California would have to reduce its overall CO2
emissions by 4.7 million metric tons per year to achieve its
goal of reaching 1990 emission levels by 2020 (Brown et

al., 2014). Assuming a fraction of that total reduction is at-
tributable to the San Francisco Bay Area in proportion to
its population (∼ 20 % of the California total), this amounts
to a change of −2.6× 106 kg CO2 day−1 for the San Fran-
cisco Bay Area. Given a residence time of air in the re-
gion of 1 day, these emissions reductions spread evenly over
the 22 681 km2 domain and through a 1 km boundary layer
would lead to a 65 ppb annual decrease in the daily CO2 con-
centrations. If the goal is verification of regional inter-annual
emissions targets, we would therefore require N instruments
of sufficient individual sensitivity and spatial representative-
ness such that their combined signals allow us to detect an-
nual changes of ∼ 65 ppb year−1 with confidence.

However, the true strength of the high-density approach
lies in the individual sensors’ (or sub-group of sensors’) sen-
sitivity to intra-city phenomena, which are orders of mag-
nitude larger by virtue of their proximity to sources not yet
diluted by advection. Larger signal sizes forgive poorer pre-
cision in the individual instruments, but demand sufficient
temporal resolution to capture these anomalous, often un-
expected, events of short duration on top of slowly varying
domain-wide fluctuations in the background concentration.
Because the BEACO2N instrument is unique in its sensitiv-
ity to these highly local processes, we will focus on this latter
specification of the instrument precision in the characteriza-
tion that follows.

1.4 Systematic uncertainty

Systematic uncertainties can be incurred somewhat abruptly
during the initial field installation (bias) or accrued more
gradually over time (drift). Systematic uncertainty in the sen-
sor readings is of particular concern in a large-scale network
deployment where on-site calibration materials such as refer-
ence gases are infeasible and frequent maintenance visits are
undesirable. To ensure trustworthy observations, a given net-
work sensing approach must demonstrate some combination
of (a) instrumentation that is reasonably robust against sud-
den or gradual introduction of systematic uncertainty, (b) a
post hoc correction for systematic uncertainty in the data
record, and/or (c) a procedure for identifying and replacing
sensors whose systematic uncertainties cannot be remedied
via the prior methods.

2 Node design, calibration, and deployment

Each BEACO2N node contains a non-dispersive infrared
Vaisala CarboCap GMP343 sensor for CO2 as well as SGX
Sensortech MiCS-4514 and MiCS-2614 metal oxide-based
micro-sensors used to detect CO/NO2 and O3, respectively.
Following a large-scale node refurbishment and upgrad-
ing effort in mid-2014, these core elements are now sup-
plemented with a Sensirion SHT15 and Bosch Sensortec
BMP180 sensor for measuring humidity (SHT15), pressure
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Figure 4. Current BEACO2N node design.

(BMP180), and temperature (both), a Shinyei PPD42NS
nephelometric particulate matter sensor, and a suite of Al-
phasense B4 electrochemical trace gas sensors for O3, CO,
NO, and NO2. Discussion of these latter, air-quality-related
technologies will follow in a forthcoming paper.

All sensors are assembled into compact, weatherproof en-
closures as seen in Fig. 4. A Raspberry Pi microprocessor
automates data collection via a serial-to-USB converter (for
CO2, every ∼ 2 s) and an Arduino Leonardo microcontroller
(for everything else, every ∼ 10 s), then transmits data to a
central server using either (a) a direct on-site Ethernet con-
nection, (b) a Ubiquiti NanoStation locoM2 Wi-Fi antenna,
or (c) an Adafruit FONA MiniGSM cellular module. The
latter has the unintended consequence of introducing a sig-
nificant amount of electrical noise into the system. We re-
duce the impact of this noise by limiting data transmission to
2 h per day, on a rotating schedule such that no periods are
disproportionately afflicted by elevated noise levels. Battery-
powered real-time clock modules are also included to ensure
timestamp accuracy during planned and unexpected hiatuses
in internet connectivity.

Airflow through the node is maintained by two 30 mm
fans, one positioned in the “intake” orientation and the other
in the “outflow” orientation. An additional, passive air outlet
is located adjacent to the AC/DC power supply converter to
prevent excessive heating inside the node. Node enclosures
measure 90 by 160 by 360 mm and are made of corrosion-
resistant die-cast aluminium that minimizes meteorological
and magnetic complications. Stainless steel fasteners and a
weatherproof seal prevent water intrusion into the enclosure.

Laboratory calibrations are performed on each Carbo-
Cap sensor upon receipt of the instrument from the sup-
plier and repeated whenever nodes are retrieved from the
field for maintenance, resulting in a re-calibration every 12–
18 months. Reference cylinders of 0, 1000, and either 320
or 370 ppm CO2 (±1 %) are used for ∼ 10 min deliveries of
each concentration to a chamber containing the sensor, which
includes a built-in microprocessor that accepts the results of
this multi-point calibration as input and automatically applies
the appropriate corrections to the subsequent observations.
The CarboCap microprocessor can also be configured to cor-
rect for the effects of oxygen, temperature, pressure, and hu-

midity. The built-in oxygen compensation is utilized at a con-
stant value of 20.95 %, while the latter three compensations
are turned off prior to sensor deployment. Instead, a post hoc
correction is derived from the ideal gas law and Dalton’s law
of partial pressures.

[CO2]dry = [CO2]raw×
1013.25hPa

Ptot
×

T

298.15K

×
1

1−
(
PH2O
Ptot

) (1)

Here [CO2]dry is the dry air mole fraction, or the amount
of CO2 that would be measured if the observed air parcel
was dried and brought to standard temperature and pressure.
[CO2]raw, T , Ptot, and PH2O are, respectively, the raw CO2
concentration output by the CarboCap software in ppm, the
temperature measured by the internal thermometer of the
CarboCap in K, the atmospheric pressure in hPa, and the par-
tial pressure of water in hPa, derived from the dew point tem-
perature (Tdew, in ◦C) using the August–Roche–Magnus ap-
proximation of the Clausius–Clapeyron relation as indicated
below.

PH2O = 6.1094hPa× exp
(

17.625Tdew

243.04+ Tdew

)
(2)

For post-2014 observations, we use the pressure and dew
point temperature measured inside each node enclosure by
the aforementioned BMP180 and SHT15 sensors, respec-
tively. For data collected prior to 2014, Eqs. (1) and (2)
are calculated from the average sea level pressures (adjusted
for altitude) and dew point temperatures measured within
∼ 50 km of the BEACO2N domain by weather stations in the
NOAA Integrated Surface Database (https://www.ncdc.noaa.
gov/isd/).

Figure 5 compares 1 min mean CO2 dry air mole fractions
calculated as described above with readings from a custom
cavity ring-down reference instrument based on the Picarro
G2301 analyzer system co-located with an in-field Carbo-
Cap over the course of 2 weeks in January 2016. The ra-
tios between the CarboCap and Picarro observations are then
shown in Fig. 6 as a function of temperature, total pressure,
and the partial pressure of water. Although most of the im-
pact of these environmental variables is removed by the ideal
gas-law-based correction in Eq. (1), slight dependencies on
each variable remain, likely due to their influence on the vi-
brational spectra of CO2 via pressure broadening, etc. Per-
forming similar analyses on observations from in situ co-
locations with other reference instruments (see the LI-COR
LI-820 in Sect. 3.4) reveals that the temperature and water
dependence vary in sign and magnitude between individual
sensors, while the pressure dependence is found to be quite
robust. We therefore apply the following empirical correc-
tion to all CO2 observations with coincident, on-site pressure
measurements (i.e., post-2014 data sets).

[CO2]corrected = [CO2]dry× (−0.00055Ptot+ 1.5) (3)

Atmos. Chem. Phys., 16, 13449–13463, 2016 www.atmos-chem-phys.net/16/13449/2016/
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Table 1. List of site names, abbreviated codes, geo-coordinates, and elevations.

Code Full site name Lat. Long. Elev. Elev.
(m a.s.l.) (m a.g.l.)

BEL Burckhalter Elementary School 37.775 −122.167 97 8
BOD Bishop O’Dowd High School 37.753 −122.155 82 8
CHA Chabot Space & Science Center 37.819 −122.181 476 11
CPS College Preparatory School 37.849 −122.241 102 4
EBM W. Oakland EBMUD Monitoring Stn. 37.814 −122.282 6 2
ELC El Cerrito High School 37.907 −122.294 49 13
EXB Exploratorium (Bay) 37.802 −122.397 13 9
EXE Exploratorium (Embarcadero) 37.801 −122.399 13 5
FTK Fred T. Korematsu Discovery Acad. 37.737 −122.173 16 6
HRS Head Royce School 37.809 −122.204 114 5
OIN International Community School 37.779 −122.231 19 6
KAI Kaiser Center 37.809 −122.264 115 111
LAU Laurel Elementary School 37.792 −122.196 74 6
LBL Lawrence Berkeley Nat’l Lab, Bldg. 70 37.876 −122.252 246 11
LCC Lighthouse Community Charter School 37.736 −122.196 9 5
MAR Berkeley Marina 37.863 −122.314 6 2
MON Montclair Elementary School 37.830 −122.211 193 4
NOC N. Oakland Community Charter School 37.833 −122.277 24 6
OHS Oakland High School 37.805 −122.236 49 7
PAP PLACE at Prescott Elementary 37.809 −122.298 12 6
PDS Park Day School 37.832 −122.257 39 7
PHS Piedmont Middle & High School 37.824 −122.233 86 10
POR Port of Oakland Headquarters 37.796 −122.279 35 32
ROS Rosa Parks Elementary School 37.865 −122.295 22 10
SET Stone Edge Farms (near turbine) 38.289 −122.503 54 2
SEV Stone Edge Farms (in vineyard) 38.291 −122.506 61 3
SHS Skyline High School 37.798 −122.161 359 3
STL St. Elizabeth High School 37.779 −122.222 28 11

The effect of this correction is shown in the histogram of
CarboCap–Picarro differences in Fig. 5 (gray bars). The off-
set between the two instruments is reduced from −1 to
∼ 0 ppm and the standard deviation of their differences is
tightened from ±1.5 to ±1.4 ppm. This still exceeds the
±1.0 ppm precision one would expect under average con-
ditions given the form of Eqs. (1) and (2) and the manu-
facturer’s specifications for the meteorological sensors (see
Sect. 3.5), the CarboCap, and the Picarro (Sect. 3.3), sug-
gesting that the combined effect of the lingering temperature
and water biases with any unknown factors is ±0.4 ppm.

Calibrated nodes are installed on trailers and buildings
2–111 m above ground level (6–476 m above sea level),
mounted to existing infrastructure or weighted industrial
tripods. Rooftop position and intake orientation are chosen to
optimize wireless connectivity (if applicable), maximize air
exchange with the surrounding area, and minimize sampling
of extremely local emission sources (e.g., rooftop ventilation
ducts). BEACO2N nodes are sited on an approximately 2 km
square grid across the Oakland metropolitan area (see Figs. 1
and 2 and Table 1), often on top of schools and museums,
which possess roughly the desired spatial density and also

assist the service of the educational and outreach goals of
the project (see http://beacon.berkeley.edu). The 2 km spac-
ing is chosen to ensure an approximately 1 km proximity to
any significant CO2 source or sink in the metropolitan area,
maximizing coverage without undue overlap between neigh-
boring footprints. Additional sites outside the 2 km grid are
also included for sensitivity to potential emission sources of
interest, for co-location with useful reference instruments, or
as pilots for network expansion.

This largely opportunistic siting approach avoids the logis-
tical and financial obstacles associated with tall tower sam-
pling mechanisms, although it does present additional chal-
lenges for the quantification of network-wide phenomena in
that no low-lying instrument can singlehandedly provide sen-
sitivity to the entire domain. Installing sensors near the sur-
face and/or built environment does ensure heightened sensi-
tivity to individual, ground-level emissions phenomena, but
it is currently unknown whether a well-reasoned combination
of these locally sensitive signals from a high volume of sen-
sors could nonetheless yield reliable information about the
integrated region. A full exploration of this possibility is be-
yond the scope of this study; the following analyses focus
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Figure 5. 1 min mean results from a two week co-location of a Vaisala CarboCap GMP343 and a custom cavity ring-down reference
instrument based on the Picarro G2301 system: (a) representative five day time series, (b) 1 h running mean of the differences over the same
five day period, (c) direct comparison, (d) histogram of the differences. CarboCap observations are dry air mole fractions calculated using
Eq. (1) and subsequently pressure corrected with Eq. (3).

instead on establishing BEACO2N as a viable platform for
investigating such hypotheses.

3 Node performance

3.1 Cost

The Vaisala CarboCap GMP343 CO2 sensor in this study
is used in its 0 to 1000 ppm measurement range and “dif-
fusion sampling” mode, such that representative air sam-
ples passively diffuse into the path of the infrared light
beam. With these specifications, each CarboCap costs ap-
proximately USD 2800. Although less expensive technolo-
gies are available, the CarboCap design has a clear advantage
in that the unit contains a digitally controlled Fabry–Pérot in-
terferometer to switch on (4.26 µm) and off (3.9 µm) of the
asymmetric stretching mode of CO2, generating a baseline
intensity measurement for each observation that compensates
for variability in the light source.

Additional sensors, ancillary hardware, and labor then
bring the total cost per node to∼USD 5500, or USD 154 000
for the entire 28-node BEACO2N instrument. For compari-
son, a single commercial cavity ring-down analyzer is priced
around USD 60 000 and the total equipment cost can exceed
USD 85 000 after accounting for pumps, data loggers, etc.

3.2 Reliability

Table 2 gives the percent uptime for nine representative
BEACO2N nodes over the course of 2013, calculated as the
fraction of total minutes in the year during which a given
node collected valid data. All nine nodes exhibit uptimes in
excess of 50 % via either hardwired Ethernet connections or
Wi-Fi antennas, with five collecting data > 80 % of the time.
Maintenance visits to these sites beginning in mid-2014 re-
vealed little to no incidence of hardware failure. Instead, ex-
ternal issues, such as interruptions in the electricity or Wi-Fi
connectivity, are found to be the limiting factors in determin-
ing sensor uptime. Transplanting nodes to sites with more de-
pendable electricity supplies and increasing implementation
of cellular modules (which are insensitive to interruptions in
on-site Wi-Fi networks) continue to enhance network relia-
bility over time. For example, the nine most reliable nodes
during the January 2015–April 2016 period all exhibit upti-
mes > 80 %, with five collecting data and transmitting them
within the next 48 h ∼ 100 % of the time via either Ethernet
or cellular data communication.

3.3 Precision

From a qualitative perspective, the Vaisala CarboCap
GMP343 demonstrates exceptional sensitivity to CO2 en-
hancements on scales typical of an urban environment. Fig-
ure 7 compares the 1 min mean CO2 dry air mole fractions
measured at two nearby in-field BEACO2N nodes (EXB and

Atmos. Chem. Phys., 16, 13449–13463, 2016 www.atmos-chem-phys.net/16/13449/2016/
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Figure 6. Ratio of 1 min mean CO2 dry air mole fractions presented in Fig. 5, shown as a function of temperature (a), pressure (b), and the
partial pressure of water (c).
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Figure 7. Representative week-long time series of observations collected at or near two nearby in-field BEACO2N nodes (EXB and EXE in
Fig. 1; ∼ 250 m apart) in October 2015: (a) temperature and pressure averaged to 1 min, (b) wind speed and direction collected once every
6 min, (c) drift- and bias-corrected CO2 dry air mole fractions averaged to 1 min.

EXE in Fig. 1) during 1 week in early October 2015. As
these sensors are not precisely co-located (one is stationed
approximately 5 m above roadside in downtown San Fran-
cisco, while the other sits ∼ 250 m back from the road, near
the bay), an exact correlation is not expected. The two sen-
sors nonetheless demonstrate remarkable agreement; while
typical diurnal CO2 variations during the same period are
on the order of 20–60 ppm, the CarboCaps simultaneously

detect CO2 events as small as 8 ppm, providing preliminary
evidence of the suitability of these sensors for high-density
urban deployment.

More quantitatively, Vaisala advertises the CarboCap as
possessing a response time of 75 s and a precision of±3 ppm
at 2 s measurement frequency. Here we present our own
characterization of the sensors’ precision via comparison to

www.atmos-chem-phys.net/16/13449/2016/ Atmos. Chem. Phys., 16, 13449–13463, 2016
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Table 2. Descriptive statistics for the drift- and bias-corrected CO2
dry air mole fractions measured at nine representative sites dur-
ing 2013. Upper row for each site gives the daytime (11:00–18:00
LT) statistics; lower row gives the nighttime (22:00–04:00 LT). The
ELC node is corrected using weekly minimum LI-COR measure-
ments as the regional background.

Site Uptime Mean SD Max Min
Code (%) (ppm) (ppm) (ppm) (ppm)

CPS 94.6 416 21.6 589 385
423 24.3 730 384

ELC 90.1 411 18.5 581 387
415 21.3 567 388

FTK 73.4 415 17.7 609 387
418 26.4 567 383

HRS 69.1 410 14.7 506 384
428 18.4 514 398

LAU 82.6 429 22.4 687 392
421 26.4 603 381

KAI 83.1 442 21.8 820 396
418 24.7 604 382

NOC 87.3 411 18.4 560 387
428 50.5 724 384

PAP 55.5 403 9.57 500 387
411 19.1 548 388

STL 59.1 417 17.5 586 389
421 36.9 616 383

(a) in-laboratory reference gases and (b) a co-located in situ
reference instrument.

After exposing an ensemble of CarboCaps to a constant
stream of reference gas, we find the 1 min mean dry air
mole fractions to exhibit 1σ precision between ±1.2 and
±2.0 ppm, roughly in keeping with the±2 ppm precision ob-
served by Rigby et al. (2008). Figure 5 shows the results
from our aforementioned co-location with a Picarro G2301
reference instrument, demonstrating near perfect correlation
(R2
= 0.9999), slope ∼=1, and an offset of approximately

0 ppm after meteorological corrections. In this case the 1σ
precision of the 1 min averages is ±1.4 ppm, given by the
standard deviation of the differences between the minute-
averaged CarboCap and Picarro observations and the Pi-
carro’s precision (±0.1 ppm at 5 s measurement frequency).
This presents a slight improvement over the ±2.18 ppm in
situ precision recorded by van Leeuwen (2010), although
still greater variability than would be expected given the
manufacturer’s 2 s specifications and a 1 min averaging time
(3 ppm/

√
30= 0.55 ppm). Nonetheless, the agreement be-

tween the time series of the Picarro and CarboCap measure-
ments demonstrates this noise level to be effectively negligi-
ble on the scale of ambient urban CO2 fluctuations.

Also presented in Fig. 5 is a time series of the running 1 h
means of the differences between the minute-averaged Car-
boCap and Picarro observations, demonstrating a short-term
drift incurred on approximately hourly timescales found to

range between 0.01 and 2.9 ppm during any given 6 h pe-
riod of the co-location. The upper bound exceeds the±1 ppm
manufacturer-specified 6 h short-term stability as well as the
1.5 ppm maximum short-term drift observed by Rigby et
al. (2008), but in many cases longer averaging times can be
used to reduce the influence of short-term drift to well be-
low 1 ppm. Some modeling studies, for example, utilize time
steps of 6 h or more (e.g., Bréon et al., 2015; Wu et al., 2016),
and average diurnal cycles can often be assessed across sev-
eral days. Although some applications require finer temporal
resolution, these are typically plume-based analyses that rely
on rapidly varying enhancements above recent background
concentrations, essentially eliminating concerns about short-
term drift.

3.4 Systematic uncertainty

Given the limited access to validation and calibration infras-
tructure, a major concern for a long-term field deployment is
systematic uncertainty resulting from a combination of grad-
ual temporal drift (Utemporal, in ppm day−1) and constant bi-
ases or offsets from the “true” value (Uatemporal, in ppm), per-
haps incurred abruptly upon installation. The measurement
at a given site ([CO2]node, in ppm) is therefore the sum of the
real regional and local influences at said site ([CO2]background
and [CO2]local, respectively), as well as these systematic un-
certainties.

[CO2]node = [CO2]background+ [CO2]local

+Uatemporal+
(
Utemporal × days

)
(4)

To derive post hoc corrections for Uatemporal and Utemporal
at a given site, we first remove the [CO2]background signal
from the data record by subtracting the weekly minimum
CO2 concentrations recorded at a reference site within the
network domain. BEACO2N’s unique location near the Pa-
cific coast results in a relatively consistent wind direction
from largely unpolluted over-ocean origins, such that the
weekly minima can be assumed to reflect both the seasonal
and synoptic variations in network-wide baseline CO2 con-
centrations while avoiding the influence of shorter-term vari-
ability in local sources and sinks. This assumption is sup-
ported by preliminary analyses comparing observations from
a LI-COR LI-820 non-dispersive infrared CO2 gas analyzer
with a smoothed, three-dimensional “curtain” of surface CO2
Pacific boundary conditions produced by NOAA’s Global
Greenhouse Gas Reference Network (Jeong et al., 2013). The
LI-COR, positioned at sea level between the EXB and EXE
nodes (see Fig. 1), is maintained by NOAA’s Pacific Ma-
rine Environmental Laboratory and calibrated against com-
pressed gas (400–500 ppm CO2) prior to every hourly mea-
surement and is assumed to have negligible bias. Despite
a proximity to local surface-level emissions and complex
boundary layer dynamics, the LI-COR’s weekly minima are
found to generally follow variations in the Pacific curtain,
with an average residual of ∼ 2 ppm.
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Figure 8. Weekly minimum CO2 concentrations measured by a LI-COR LI-820 reference instrument compared with weekly minima calcu-
lated from the BEACO2N data record before and after correction for systematic uncertainties.

Table 3. Results from drift- and bias-correction analysis at sites for
which at least 3 months of observations are available for comparison
with the ELC BEACO2N node.

Site code Utemporal Uatemporal
(ppm day−1) (ppm)

BEL 0.03± 0.02 −3± 1
CPS −0.014± 0.002 3.1± 0.5
FTK 0.02± 0.01 6.1± 0.8
HRS −0.12± 0.01 1.2± 0.8
LAU 0.10± 0.01 −26.9± 0.8
KAI 0.04± 0.01; −0.08± 0.05 −23± 1; 6± 4
NOC −0.11± 0.02; 0.030± 0.006 22± 1; −2.7± 0.7
PAP −0.092± 0.005 8.7± 0.7
STL −0.03± 0.01 9± 1

Once the [CO2]background term is removed, effectively de-
seasonalizing the observations, we re-calculate the weekly
minima of this new data record and fit the result as a (piece-
wise, if necessary) linear function of time, the slope of which
gives the value of Utemporal. This linear fit is then itself
subtracted from the de-seasonalized data record, yielding a
remainder comprised of only the [CO2]local and Uatemporal
terms. While the [CO2]local component varies rapidly, the
contribution of Uatemporal is, by definition, constant in time,
so we once again compute the weekly minima of the new data
record and define the mean weekly minimum as Uatemporal.
Having obtained values for Utemporal and Uatemporal, we sim-
ply subtract these components from the original data record
to generate the unbiased observations at each site.

Table 3 gives the results from one iteration of the cor-
rection procedure outlined above, executed using the ELC
BEACO2N node (see Fig. 1) as the reference site needed

to calculate [CO2]background. Only sites that enable at least
3 months of comparison to the ELC node are included; mul-
tiple values at a single site correspond to the piecewise lin-
ear fits employed whenUtemporal exhibits discontinuities over
the data record. Because we universally define Day 1 to be
1 January 2013 and Uatemporal is strongly influenced by the
intercept of the linear fit used to characterize the temporal
drift, it should be noted that the magnitude of Uatemporal does
not necessarily represent the actual bias present at a node
on its deployment date (which may be before or after 1 Jan-
uary 2013), but rather an extrapolation of this initial bias for-
wards or backwards in time. Uncertainties in Utemporal and
Uatemporal shown in Table 3 are calculated given ±1.4 ppm
random error in the 1 min averages, ±2.9 ppm short-term
drift, and±2 ppm agreement with the reference site’s weekly
minima, assumed to add in quadrature. Mapped onto the ob-
servations, these uncertainties result in a mean 1 min error of
±4 ppm. This is the assumed cumulative error used in this
study, although longer averaging times could be used to re-
duce this figure.

To evaluate the efficacy of this procedure, we compare the
weekly minima of both the raw and corrected data records to
the weekly minimum CO2 concentrations measured by the
aforementioned LI-COR LI-820. The results of said com-
parison are shown in Fig. 8, demonstrating significantly im-
proved agreement (3.7 vs. 9.8 ppm mean residuals) with the
LI-COR weekly minima after correction. This is likely a con-
servative estimate of the uncertainty reduction achievable
with this method, as the ELC node we use to compute our
[CO2]background value is not itself an uncertainty-free refer-
ence. Although the raw ELC data record demonstrates the
least systematic uncertainty of all the BEACO2N nodes in
an initial comparison with the LI-COR, its observations are
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nonetheless afflicted by some unknown nonzero drift and/or
atemporal bias. Direct in situ calibration of the reference in-
strument would allow us to constrain systematic uncertainties
even further.

3.5 Performance of ancillary sensor technology

According to manufacturer documentation, the Sensirion
SHT15 provides relative humidity measurements to 0.05 %
resolution, with an advertised accuracy of±2.0 %, a repeata-
bility of ±0.1 %, an 8 s response time, and a long-term drift
of < 0.5 % per year. Its temperature measurements are pro-
vided to 0.01 ◦C resolution, with an advertised accuracy of
±0.3 ◦C, a precision of±0.1 ◦C, a response time of 5 to 30 s,
and a long-term drift of < 0.04 ◦C per year. The Bosch Sen-
sortec BMP180 provides pressure measurements to 0.01 hPa
resolution, with an advertised accuracy of ±0.12 hPa, a pre-
cision of± 0.05 hPa, and a long-term drift of ±1.0 hPa per
year. Its temperature measurements are provided to 0.1 ◦C
resolution, with an advertised accuracy of ±1.0 ◦C. An in-
dependent verification of these performance specifications is
not attempted here. However, the temperature observations
from both sensors closely follow the structure of that detected
by the internal temperature sensor of the CarboCap, although
the CarboCap’s readings are consistently slightly elevated, as
expected given the heat produced by the instrument itself.

The BMP180 and SHT15 are not intended to reflect local
meteorological conditions, but rather to provide a representa-
tive picture of conditions inside the node. These internal con-
ditions are integral to various posterior corrections applied to
the observations (see Sect. 2).

4 Initial field results

The BEACO2N field campaign is a long-term, ongoing mon-
itoring effort. Here we provide a time series of data collected
from 16 BEACO2N sites between January 2013 and April
2016 (Fig. 9) and some initial descriptive statistics of the
drift- and bias-corrected dry air CO2 mole fractions at nine
representative sites in 2013 (Table 2).

Figure 9 demonstrates the volume and diversity of urban
CO2 concentrations sampled, exhibiting extreme short-term
variability superimposed on a slower, seasonal fluctuation in
the minimum values. For clarity, the bottom panels depict-
ing month- and week-long samples of the overall time series
show data from six representative sites. Network-wide, day-
time (11:00–18:00 LT) means between 403 and 442 ppm are
observed, with maximum values between 500 and 820 ppm
and minima between 384 and 396 ppm. Standard deviations
are seen to range from 9.57 to 22.4 ppm, all of which are
lower than the corresponding nighttime (22:00–04:00 LT)
standard deviations due to the reduced convective mixing in
the shallow nocturnal boundary layer. Similarly, the major-
ity of nighttime means and maxima exceed the daytime val-

ues at the same location, with the exception of four sites:
ELC, FTK, LAU, and KAI. The dampened or inverted diur-
nal trends at these sites may be due to unique boundary layer
dynamics at those locales or unusually large daytime CO2
sources nearby. Daytime and nighttime minima do not differ
as significantly.

Individual BEACO2N nodes are observed to capture a
number of patterns and cycles typical of ambient CO2 mon-
itoring. Figure 10 shows the monthly minimum CO2 con-
centrations at six select sites in 2013, as the difference from
their July value (defined as 0 ppm at each site). A distinct sea-
sonal cycle is observed, with wintertime minima exceeding
summertime values by 7 to 24 ppm. For reference, the gray
curve presents a similar treatment of the aforementioned Pa-
cific boundary curtain. At many sites, the BEACO2N min-
ima are seen to exhibit a seasonal variation of a magnitude
roughly in keeping with that observed in the curtain, while
other sites demonstrate a more exaggerated summer–winter
contrast, as might be expected within an urban dome.

Figure 11 shows representative diurnal cycles in the drift-
and bias-corrected CO2 dry air mole fractions at three dif-
ferent BEACO2N nodes in September 2013. We observe ele-
vated concentrations at night corresponding to a shallow noc-
turnal boundary layer, significant enhancements around the
morning rush hour when emissions are increasing faster than
boundary layer height, and midday minima reflecting mix-
ing into the largest volume of air before the boundary layer
collapses again at sunset. However, within this qualitatively
well understood average behavior remains a degree of intra-
network variability that allows us to discover and probe local-
scale phenomena of unknown origin. At FTK, for example,
concentrations are seen to decrease after an initial rush hour
peak (∼ 08:00 LT) but remain somewhat elevated until sun-
set, never achieving the much more pronounced afternoon
minimum observed at PAP, 13.5 km away.

Such intra-city heterogeneities are difficult to capture ac-
curately using atmospheric transport models alone. We sim-
ulate hourly CO2 concentrations (ŷ) at each site in the net-
work using the Stochastic Time-Inverted Lagrangian Trans-
port model (STILT; Lin et al., 2003) coupled to the Weather
Research and Forecasting model (WRF; Skamarock et al.,
2008). The coupled model is known as “WRF-STILT”
(Nehrkorn et al., 2010) and the setup used here follows that of
Turner et al. (2016; see their Sect. S1 for details of the WRF
setup). WRF-STILT advects an ensemble of 500 particles 3
days backwards in time, each with a small random pertur-
bation, from the spatio-temporal locations of the BEACO2N
observations using the meteorological fields from WRF. The
trajectories of these 500 particles are then used to construct
footprints for each observation that represent the sensitivity
of the observation to a perturbation in emissions from a given
location. The footprints can be represented in matrix form
(H) and multiplied by a set of gridded emissions (x, from
the high-resolution bottom-up CO2 inventory in Turner et al.
2016) to compute the CO2 enhancement at each site due to
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Figure 9. Time series of drift- and bias-corrected CO2 dry air mole fractions collected over the course of ∼ 2.5 years at 16 BEACO2N sites
(top), 1 month at six representative sites (middle), and 1 week at the same six sites (bottom). The hiatus around 23 August corresponds to a
large-scale hardware refurbishment effort that began in mid-2014.
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Figure 10. Monthly minimum drift- and bias-corrected CO2 dry air mole fractions observed during 2013 at the same six BEACO2N sites
shown in the bottom panels of Fig. 9, plotted as the enhancement above the July value. Bold gray curve shows a similar treatment of the
surface level Pacific Ocean empirical boundary curtain values for 38◦ N.

local emissions.

1y =Hx (5)

We then add this local enhancement to a background concen-
tration (yB, from the aforementioned Pacific boundary cur-
tain) to obtain a model estimate of the BEACO2N observa-
tions shown as black squares in Fig. 11.

ŷ =1y+ yB =Hx+ yB (6)

While the model captures midday conditions at NOC and
evening levels at PAP, the presence of both over- and under-

estimations at other times suggests a need to re-examine the
bottom-up emissions inventory as well as the model’s treat-
ment of boundary layer dynamics. BEACO2N provides the
ground truth necessary to identify such deficiencies and po-
tentially improve upon them via inverse modeling, data as-
similation, etc.

Comparison of diurnal cycles during noteworthy local
scale emission events with averages such as those seen in
Fig. 11 gives further insight into the potential application
of BEACO2N observations to CO2 source attribution. Fig-
ure 12 offers one such comparison using hourly averages
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Figure 11. Diurnal variation in drift- and bias-corrected CO2 dry air mole fractions observed and modeled at three representative BEACO2N
sites during September 2013. Error bars indicate the standard error of the mean (instrument error is negligible at this timescale); thick shaded
curves indicate standard deviation.
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Figure 12. Comparison of diurnal variation in drift- and bias-corrected CO2 dry air mole fractions observed at Oakland High School (OHS
in Fig. 1) during a rain-related school closure on 11 December 2014 vs. the mean variation observed on other Tuesdays, Wednesdays, and
Thursdays during December 2014 when the school was operating normally. Mean values from five other BEACO2N sites operational during
these time periods are also shown for reference. Error bars indicate standard error (instrument error is negligible at this timescale).

collected from a BEACO2N node positioned on top of Oak-
land High School (OHS in Fig. 1 and Table 1) during a
weather-related school closure that occurred on 11 December
2014. Clear reductions in CO2 concentrations are observed
relative to what is typical at this site (and indeed network-
wide, although to a lesser extent), as is expected in the ab-
sence of emissions related to students’ commutes and pres-
ence on campus. The sensing technology implemented in the
BEACO2N nodes therefore proves adequate to resolve not

only CO2 patterns typical of an urban environment, but also
short-term deviations during anomalous emission events, po-
sitioning BEACO2N as an essential tool for the characteriza-
tion of current urban conditions as well as the verification of
subsequent emissions reductions.
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5 Discussion and conclusions

We have described the design, implementation, and initial
observations from a novel high-resolution CO2 surface mon-
itoring network instrument. We demonstrate that low-cost in-
strumentation enables an unprecedented level of spatial den-
sity, and describe a calibration protocol with post hoc correc-
tions for systematic uncertainties that permits the network to
operate precisely and reliably enough to characterize varia-
tions in ambient concentrations with magnitudes relevant to
metropolitan life.

Our preliminary analysis of the first ∼ 3 years of CO2 ob-
servations provides evidence of the expected diurnal and sea-
sonal cycles as well as an encouraging sensitivity to short-
term changes in local emission events. Furthermore, we show
significant qualitative and quantitative differences among
the diurnal cycles at individual nodes on spatial scales that
cannot yet be accurately captured by atmospheric transport
models, confirming the necessity of a high-density approach
when attempting to faithfully represent the variability of a
complex urban environment.

Although BEACO2N demonstrates sensitivity to both
highly local fluctuations as well as slowly varying hemi-
spheric cycles, how best to bootstrap the network’s mea-
surements into the analysis of intermediary mesoscale phe-
nomena remains to be determined. Future work will focus
on constructing inferred emissions patterns and trends at
this scale from the body of observations. In an initial ef-
fort in this regard, Turner et al. (2016) constructed and ap-
plied a WRF–STILT inverse model to synthetic observations
with density similar to BEACO2N. For an area source the
size of the Oakland metropolitan area, emissions were es-
timated to within 18 % accuracy; for a freeway-sized line
source to within 36 %; and to within 60 % for the sum of
six industrial point sources – consistently outperforming a
smaller hypothetical network (three sites) with significantly
better precision. Using week-long averages, the BEACO2N-
like network was able to further reduce the uncertainty in
the integrated urban area source to < 2 %, a significant im-
provement over the citywide emissions estimates provided
by real and proposed ∼ 10 site sensor networks described
by Lauvaux et al. (2016) (25 % uncertainty in five day aver-
ages), Kort et al. (2013) (> 10 % uncertainty in monthly aver-
ages), and Wu et al. (2016) (11 % uncertainty in monthly to-
tals). These other studies use more conservative estimates of
the combined instrument, model, and representativeness er-
ror (≥ 3 ppm, as opposed to ±1 ppm). These combined error
budgets are typically dominated by transport (model) error,
which potentially explains why models based on BEACO2N-
like networks perform comparably to or better than those
based on sparser networks of higher-quality sensors, for
which instrument error may be reduced but accurately repre-
senting transport between observation sites is of greater im-
portance. Further work is needed to fully assess the efficacy
of inverse methods based on the BEACO2N approach.

In addition, further characterization of the trace gas and
particulate matter sensors will allow for more specific source
attribution via the exploitation of emissions factors unique to
various combustion activities (e.g., Ban-Weiss et al., 2008;
Harley et al., 2015), while providing public-health-relevant
air quality information as well. There is also potential for
fine-grained verification of space-based observations or even
of personal sensors when their inherent mobility brings them
within the geographical area well represented by the fixed
BEACO2N network.

This work constitutes a promising initial infrastructure
upon which further advances in high-density atmospheric
monitoring can be built, capable of providing research, regu-
latory, and layperson communities with greenhouse gas and
air toxics information on the scale at which emissions and
personal exposure actually occur. We are currently planning
to expand this validated pilot network into the neighboring
locales of San Francisco and Richmond, California, allow-
ing us to characterize other emissions sources, such as oil
refining facilities. These efforts will be complemented by
modeling studies comparing different sampling resolutions
(i.e., 2 km vs. 4 km sensor spacing) and spatial configura-
tions, yielding general network optimization principles that
will facilitate future implementations of high-resolution CO2
monitoring networks in diverse locations.

6 Data availability

The BEACO2N data used in this study and all subse-
quently collected data are available in near real time on the
BEACO2N website: http://beacon.berkeley.edu/Sites.aspx.
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