Articles | Volume 20, issue 7
https://doi.org/10.5194/acp-20-4227-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-4227-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influences of oceanic ozone deposition on tropospheric photochemistry
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
Tomás Sherwen
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK
Detlev Helmig
Institute of Alpine and Arctic Research, University of Colorado at Boulder, Boulder, CO 80303, USA
Lucy J. Carpenter
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
Mat J. Evans
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK
Related authors
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024, https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Short summary
Iodine-mediated loss of ozone to the ocean surface and the subsequent emission of iodine species has a large effect on the troposphere. Here we combine recent experimental insights to develop a box model of the process, which we then parameterize and incorporate into the GEOS-Chem transport model. We find that these new insights have a small impact on the total emission of iodine but significantly change its distribution.
Lucy V. Brown, Ryan J. Pound, Lyndsay S. Ives, Matthew R. Jones, Stephen J. Andrews, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 3905–3923, https://doi.org/10.5194/acp-24-3905-2024, https://doi.org/10.5194/acp-24-3905-2024, 2024
Short summary
Short summary
Ozone is deposited from the lower atmosphere to the surface of the ocean; however, the chemical reactions which drive this deposition are currently not well understood. Of particular importance is the reaction between ozone and iodide, and this work measures the kinetics of this reaction and its temperature dependence, which we find to be negligible. We then investigate the subsequent emissions of iodine-containing species from the surface ocean, which can further impact ozone.
David C. Loades, Mingxi Yang, Thomas G. Bell, Adam R. Vaughan, Ryan J. Pound, Stefan Metzger, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020, https://doi.org/10.5194/amt-13-6915-2020, 2020
Short summary
Short summary
The loss of ozone to the sea surface was measured from the south coast of the UK and was found to be more rapid than previous observations over the open ocean. This is likely a consequence of different chemistry and biology in coastal environments. Strong winds appeared to speed up the loss of ozone. A better understanding of what influences ozone loss over the sea will lead to better model estimates of total ozone in the troposphere.
Leigh R. Crilley, Marvin Shaw, Ryan Pound, Louisa J. Kramer, Robin Price, Stuart Young, Alastair C. Lewis, and Francis D. Pope
Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, https://doi.org/10.5194/amt-11-709-2018, 2018
Short summary
Short summary
The affordability and small size of low-cost particle sensors make them attractive for air pollution experiments that require multiple instruments, or take place in hard-to-access locations or low-income countries. For any sensor to be useful, its accuracy and precision need to be known. We evaluate the Alphasense OPC-N2 for monitoring airborne particles at typical UK urban background sites. The devices were found to be accurate provided they are correctly calibrated.
Alex T. Archibald, Bablu Sinha, Maria R. Russo, Emily Matthews, Freya A. Squires, N. Luke Abraham, Stephane J.-B. Bauguitte, Thomas J. Bannan, Thomas G. Bell, David Berry, Lucy J. Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian A. King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Bengamin I. Moat, Katie Read, Chris Reed, Malcolm J. Roberts, Reinhard Schiemann, David Schroeder, Timothy J. Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Mingxi Yang
Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, https://doi.org/10.5194/essd-17-135-2025, 2025
Short summary
Short summary
Here, we present an overview of the data generated as part of the North Atlantic Climate System Integrated Study (ACSIS) programme that are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA; www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC; bodc.ac.uk). The datasets described here cover the North Atlantic Ocean, the atmosphere above (it including its composition), and Arctic sea ice.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025, https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024, https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Short summary
Iodine-mediated loss of ozone to the ocean surface and the subsequent emission of iodine species has a large effect on the troposphere. Here we combine recent experimental insights to develop a box model of the process, which we then parameterize and incorporate into the GEOS-Chem transport model. We find that these new insights have a small impact on the total emission of iodine but significantly change its distribution.
Andrew O. Langford, Raul J. Alvarez II, Kenneth C. Aikin, Sunil Baidar, W. Alan Brewer, Steven S. Brown, Matthew M. Coggan, Patrick D. Cullis, Jessica Gilman, Georgios I. Gkatzelis, Detlev Helmig, Bryan J. Johnson, K. Emma Knowland, Rajesh Kumar, Aaron D. Lamplugh, Audra McClure-Begley, Brandi J. McCarty, Ann M. Middlebrook, Gabriele Pfister, Jeff Peischl, Irina Petropavlovskikh, Pamela S. Rickley, Andrew W. Rollins, Scott P. Sandberg, Christoph J. Senff, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1938, https://doi.org/10.5194/egusphere-2024-1938, 2024
Short summary
Short summary
High ozone (O3) formed by reactions of nitrogen oxides (NOx) and volatile organic compounds (VOCs) can harm human health and welfare. High O3 is usually associated with hot summer days, but under certain conditions, high O3 can also form under winter conditions. In this study, we describe a high O3 event that occurred in Colorado during the COVID-19 quarantine that was caused in part by the decrease in traffic, and in part by a shallow inversion created by descent of stratospheric air.
Matthew J. Rowlinson, Mat J. Evans, Lucy J. Carpenter, Katie A. Read, Shalini Punjabi, Adedayo Adedeji, Luke Fakes, Ally Lewis, Ben Richmond, Neil Passant, Tim Murrells, Barron Henderson, Kelvin H. Bates, and Detlev Helmig
Atmos. Chem. Phys., 24, 8317–8342, https://doi.org/10.5194/acp-24-8317-2024, https://doi.org/10.5194/acp-24-8317-2024, 2024
Short summary
Short summary
Ethane and propane are volatile organic compounds emitted from human activities which help to form ozone, a pollutant and greenhouse gas, and also affect the chemistry of the lower atmosphere. Atmospheric models tend to do a poor job of reproducing the abundance of these compounds in the atmosphere. By using regional estimates of their emissions, rather than globally consistent estimates, we can significantly improve the simulation of ethane in the model and make some improvement for propane.
Lucy V. Brown, Ryan J. Pound, Lyndsay S. Ives, Matthew R. Jones, Stephen J. Andrews, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 3905–3923, https://doi.org/10.5194/acp-24-3905-2024, https://doi.org/10.5194/acp-24-3905-2024, 2024
Short summary
Short summary
Ozone is deposited from the lower atmosphere to the surface of the ocean; however, the chemical reactions which drive this deposition are currently not well understood. Of particular importance is the reaction between ozone and iodide, and this work measures the kinetics of this reaction and its temperature dependence, which we find to be negligible. We then investigate the subsequent emissions of iodine-containing species from the surface ocean, which can further impact ozone.
Kelvin H. Bates, Mathew J. Evans, Barron H. Henderson, and Daniel J. Jacob
Geosci. Model Dev., 17, 1511–1524, https://doi.org/10.5194/gmd-17-1511-2024, https://doi.org/10.5194/gmd-17-1511-2024, 2024
Short summary
Short summary
Accurate representation of rates and products of chemical reactions in atmospheric models is crucial for simulating concentrations of pollutants and climate forcers. We update the widely used GEOS-Chem atmospheric chemistry model with reaction parameters from recent compilations of experimental data and demonstrate the implications for key atmospheric chemical species. The updates decrease tropospheric CO mixing ratios and increase stratospheric nitrogen oxide mixing ratios, among other changes.
Brandon Bottorff, Michelle M. Lew, Youngjun Woo, Pamela Rickly, Matthew D. Rollings, Benjamin Deming, Daniel C. Anderson, Ezra Wood, Hariprasad D. Alwe, Dylan B. Millet, Andrew Weinheimer, Geoff Tyndall, John Ortega, Sebastien Dusanter, Thierry Leonardis, James Flynn, Matt Erickson, Sergio Alvarez, Jean C. Rivera-Rios, Joshua D. Shutter, Frank Keutsch, Detlev Helmig, Wei Wang, Hannah M. Allen, Johnathan H. Slade, Paul B. Shepson, Steven Bertman, and Philip S. Stevens
Atmos. Chem. Phys., 23, 10287–10311, https://doi.org/10.5194/acp-23-10287-2023, https://doi.org/10.5194/acp-23-10287-2023, 2023
Short summary
Short summary
The hydroxyl (OH), hydroperoxy (HO2), and organic peroxy (RO2) radicals play important roles in atmospheric chemistry and have significant air quality implications. Here, we compare measurements of OH, HO2, and total peroxy radicals (XO2) made in a remote forest in Michigan, USA, to predictions from a series of chemical models. Lower measured radical concentrations suggest that the models may be missing an important radical sink and overestimating the rate of ozone production in this forest.
Adedayo R. Adedeji, Stephen J. Andrews, Matthew J. Rowlinson, Mathew J. Evans, Alastair C. Lewis, Shigeru Hashimoto, Hitoshi Mukai, Hiroshi Tanimoto, Yasunori Tohjima, and Takuya Saito
Atmos. Chem. Phys., 23, 9229–9244, https://doi.org/10.5194/acp-23-9229-2023, https://doi.org/10.5194/acp-23-9229-2023, 2023
Short summary
Short summary
We use the GEOS-Chem model to interpret observations of CO, C2H6, C3H8, NOx, NOy and O3 made from Hateruma Island in 2018. The model captures many synoptic-scale events and the seasonality of most pollutants at the site but underestimates C2H6 and C3H8 during the winter. These underestimates are unlikely to be reconciled by increases in biomass burning emissions but could be reconciled by increasing the Asian anthropogenic source of C2H6 and C3H8 by factors of around 2 and 3, respectively.
Viral Shah, Daniel J. Jacob, Ruijun Dang, Lok N. Lamsal, Sarah A. Strode, Stephen D. Steenrod, K. Folkert Boersma, Sebastian D. Eastham, Thibaud M. Fritz, Chelsea Thompson, Jeff Peischl, Ilann Bourgeois, Ilana B. Pollack, Benjamin A. Nault, Ronald C. Cohen, Pedro Campuzano-Jost, Jose L. Jimenez, Simone T. Andersen, Lucy J. Carpenter, Tomás Sherwen, and Mat J. Evans
Atmos. Chem. Phys., 23, 1227–1257, https://doi.org/10.5194/acp-23-1227-2023, https://doi.org/10.5194/acp-23-1227-2023, 2023
Short summary
Short summary
NOx in the free troposphere (above 2 km) affects global tropospheric chemistry and the retrieval and interpretation of satellite NO2 measurements. We evaluate free tropospheric NOx in global atmospheric chemistry models and find that recycling NOx from its reservoirs over the oceans is faster than that simulated in the models, resulting in increases in simulated tropospheric ozone and OH. Over the U.S., free tropospheric NO2 contributes the majority of the tropospheric NO2 column in summer.
Simone T. Andersen, Beth S. Nelson, Katie A. Read, Shalini Punjabi, Luis Neves, Matthew J. Rowlinson, James Hopkins, Tomás Sherwen, Lisa K. Whalley, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 22, 15747–15765, https://doi.org/10.5194/acp-22-15747-2022, https://doi.org/10.5194/acp-22-15747-2022, 2022
Short summary
Short summary
The cycling of NO and NO2 is important to understand to be able to predict O3 concentrations in the atmosphere. We have used long-term measurements from the Cape Verde Atmospheric Observatory together with model outputs to investigate the cycling of nitrogen oxide (NO) and nitrogen dioxide (NO2) in very clean marine air. This study shows that we understand the processes occurring in very clean air, but with small amounts of pollution in the air, known chemistry cannot explain what is observed.
William F. Swanson, Chris D. Holmes, William R. Simpson, Kaitlyn Confer, Louis Marelle, Jennie L. Thomas, Lyatt Jaeglé, Becky Alexander, Shuting Zhai, Qianjie Chen, Xuan Wang, and Tomás Sherwen
Atmos. Chem. Phys., 22, 14467–14488, https://doi.org/10.5194/acp-22-14467-2022, https://doi.org/10.5194/acp-22-14467-2022, 2022
Short summary
Short summary
Radical bromine molecules are seen at higher concentrations during the Arctic spring. We use the global model GEOS-Chem to test whether snowpack and wind-blown snow sources can explain high bromine concentrations. We run this model for the entire year of 2015 and compare results to observations of bromine from floating platforms on the Arctic Ocean and at Utqiaġvik. We find that the model performs best when both sources are enabled but may overestimate bromine production in summer and fall.
Vanessa Selimovic, Damien Ketcherside, Sreelekha Chaliyakunnel, Catherine Wielgasz, Wade Permar, Hélène Angot, Dylan B. Millet, Alan Fried, Detlev Helmig, and Lu Hu
Atmos. Chem. Phys., 22, 14037–14058, https://doi.org/10.5194/acp-22-14037-2022, https://doi.org/10.5194/acp-22-14037-2022, 2022
Short summary
Short summary
Arctic warming has led to an increase in plants that emit gases in response to stress, but how these gases affect regional chemistry is largely unknown due to lack of observational data. Here we present the most comprehensive gas-phase measurements for this area to date and compare them to predictions from a global transport model. We report 78 gas-phase species and investigate their importance to atmospheric chemistry in the area, with broader implications for similar plant types.
Detlev Helmig, Alex Guenther, Jacques Hueber, Ryan Daly, Wei Wang, Jeong-Hoo Park, Anssi Liikanen, and Arnaud P. Praplan
Atmos. Meas. Tech., 15, 5439–5454, https://doi.org/10.5194/amt-15-5439-2022, https://doi.org/10.5194/amt-15-5439-2022, 2022
Short summary
Short summary
This research demonstrates a new method for determination of the chemical reactivity of volatile organic compounds that are emitted from the leaves and needles of trees. These measurements allow elucidating if and how much of these emissions and their associated reactivity are captured and quantified by currently applicable chemical analysis methods.
Albane Barbero, Roberto Grilli, Markus M. Frey, Camille Blouzon, Detlev Helmig, Nicolas Caillon, and Joël Savarino
Atmos. Chem. Phys., 22, 12025–12054, https://doi.org/10.5194/acp-22-12025-2022, https://doi.org/10.5194/acp-22-12025-2022, 2022
Short summary
Short summary
The high reactivity of the summer Antarctic boundary layer results in part from the emissions of nitrogen oxides produced during photo-denitrification of the snowpack, but its underlying mechanisms are not yet fully understood. The results of this study suggest that more NO2 is produced from the snowpack early in the photolytic season, possibly due to stronger UV irradiance caused by a smaller solar zenith angle near the solstice.
Hannah Walker, Daniel Stone, Trevor Ingham, Sina Hackenberg, Danny Cryer, Shalini Punjabi, Katie Read, James Lee, Lisa Whalley, Dominick V. Spracklen, Lucy J. Carpenter, Steve R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 22, 5535–5557, https://doi.org/10.5194/acp-22-5535-2022, https://doi.org/10.5194/acp-22-5535-2022, 2022
Short summary
Short summary
Glyoxal is a ubiquitous reactive organic compound in the atmosphere, which may form organic aerosol and impact the atmosphere's oxidising capacity. There are limited measurements of glyoxal's abundance in the remote marine atmosphere. We made new measurements of glyoxal using a highly sensitive technique over two 4-week periods in the tropical Atlantic atmosphere. We show that daytime measurements are mostly consistent with our chemical understanding but a potential missing source at night.
Kelvin H. Bates, Daniel J. Jacob, Ke Li, Peter D. Ivatt, Mat J. Evans, Yingying Yan, and Jintai Lin
Atmos. Chem. Phys., 21, 18351–18374, https://doi.org/10.5194/acp-21-18351-2021, https://doi.org/10.5194/acp-21-18351-2021, 2021
Short summary
Short summary
Simple aromatic compounds (benzene, toluene, xylene) have complex gas-phase chemistry that is inconsistently represented in atmospheric models. We compile recent experimental and theoretical insights to develop a new mechanism for gas-phase aromatic oxidation that is sufficiently compact for use in multiscale models. We compare our new mechanism to chamber experiments and other mechanisms, and implement it in a global model to quantify the impacts of aromatic oxidation on tropospheric chemistry.
Leigh R. Crilley, Louisa J. Kramer, Francis D. Pope, Chris Reed, James D. Lee, Lucy J. Carpenter, Lloyd D. J. Hollis, Stephen M. Ball, and William J. Bloss
Atmos. Chem. Phys., 21, 18213–18225, https://doi.org/10.5194/acp-21-18213-2021, https://doi.org/10.5194/acp-21-18213-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) is a key source of atmospheric oxidants. We evaluate if the ocean surface is a source of HONO for the marine boundary layer, using measurements from two contrasting coastal locations. We observed no evidence for a night-time ocean surface source, in contrast to previous work. This points to significant geographical variation in the predominant HONO formation mechanisms in marine environments, reflecting possible variability in the sea-surface microlayer composition.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Tomás Sherwen, Rainer Volkamer, Theodore K. Koenig, Tanguy Giroud, and Thomas Peter
Geosci. Model Dev., 14, 6623–6645, https://doi.org/10.5194/gmd-14-6623-2021, https://doi.org/10.5194/gmd-14-6623-2021, 2021
Short summary
Short summary
Here, we present the iodine chemistry module in the SOCOL-AERv2 model. The obtained iodine distribution demonstrated a good agreement when validated against other simulations and available observations. We also estimated the iodine influence on ozone in the case of present-day iodine emissions, the sensitivity of ozone to doubled iodine emissions, and when considering only organic or inorganic iodine sources. The new model can be used as a tool for further studies of iodine effects on ozone.
Hélène Angot, Connor Davel, Christine Wiedinmyer, Gabrielle Pétron, Jashan Chopra, Jacques Hueber, Brendan Blanchard, Ilann Bourgeois, Isaac Vimont, Stephen A. Montzka, Ben R. Miller, James W. Elkins, and Detlev Helmig
Atmos. Chem. Phys., 21, 15153–15170, https://doi.org/10.5194/acp-21-15153-2021, https://doi.org/10.5194/acp-21-15153-2021, 2021
Short summary
Short summary
After a multidecadal global decline in atmospheric abundance of ethane and propane (precursors of tropospheric ozone and aerosols), previous work showed a reversal of this trend in 2009–2015 in the Northern Hemisphere due to the growth in oil and natural gas production in North America. Here we show a temporary pause in the growth of atmospheric ethane and propane in 2015–2018 and highlight the critical need for additional top-down studies to further constrain ethane and propane emissions.
Xuan Wang, Daniel J. Jacob, William Downs, Shuting Zhai, Lei Zhu, Viral Shah, Christopher D. Holmes, Tomás Sherwen, Becky Alexander, Mathew J. Evans, Sebastian D. Eastham, J. Andrew Neuman, Patrick R. Veres, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Thomas J. Bannan, Carl J. Percival, Ben H. Lee, and Joel A. Thornton
Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021, https://doi.org/10.5194/acp-21-13973-2021, 2021
Short summary
Short summary
Halogen radicals have a broad range of implications for tropospheric chemistry, air quality, and climate. We present a new mechanistic description and comprehensive simulation of tropospheric halogens in a global 3-D model and compare the model results with surface and aircraft measurements. We find that halogen chemistry decreases the global tropospheric burden of ozone by 11 %, NOx by 6 %, and OH by 4 %.
Simone T. Andersen, Lucy J. Carpenter, Beth S. Nelson, Luis Neves, Katie A. Read, Chris Reed, Martyn Ward, Matthew J. Rowlinson, and James D. Lee
Atmos. Meas. Tech., 14, 3071–3085, https://doi.org/10.5194/amt-14-3071-2021, https://doi.org/10.5194/amt-14-3071-2021, 2021
Short summary
Short summary
NOx has been measured in remote marine air via chemiluminescence detection using two different methods for NO2 to NO photolytic conversion: (a) internal diodes and a reaction chamber made of Teflon-like barium-doped material, which causes a NO2 artefact, and (b) external diodes and a quartz photolysis cell. Once corrections are made for the artefact of (a), the two converters are shown to give comparable NO2 mixing ratios, giving confidence in the quantitative measurement of NOx at low levels.
Christoph A. Keller, Mathew J. Evans, K. Emma Knowland, Christa A. Hasenkopf, Sruti Modekurty, Robert A. Lucchesi, Tomohiro Oda, Bruno B. Franca, Felipe C. Mandarino, M. Valeria Díaz Suárez, Robert G. Ryan, Luke H. Fakes, and Steven Pawson
Atmos. Chem. Phys., 21, 3555–3592, https://doi.org/10.5194/acp-21-3555-2021, https://doi.org/10.5194/acp-21-3555-2021, 2021
Short summary
Short summary
This study combines surface observations and model simulations to quantify the impact of COVID-19 restrictions on air quality across the world. The presented methodology removes the confounding impacts of meteorology on air pollution. Our results indicate that surface concentrations of nitrogen dioxide, an important air pollutant emitted during the combustion of fossil fuels, declined by up to 60 % following the implementation of COVID-19 containment measures.
Angharad C. Stell, Luke M. Western, Tomás Sherwen, and Matthew Rigby
Atmos. Chem. Phys., 21, 1717–1736, https://doi.org/10.5194/acp-21-1717-2021, https://doi.org/10.5194/acp-21-1717-2021, 2021
Short summary
Short summary
Although it is the second-most important greenhouse gas, our understanding of the atmospheric-methane budget is limited. The uncertainty highlights the need for new tools to investigate sources and sinks. Here, we use a Gaussian process emulator to efficiently approximate the response of atmospheric-methane observations to changes in the most uncertain emission or loss processes. With this new method, we rigorously quantify the sensitivity of atmospheric observations to budget uncertainties.
Mike J. Newland, Daniel J. Bryant, Rachel E. Dunmore, Thomas J. Bannan, W. Joe F. Acton, Ben Langford, James R. Hopkins, Freya A. Squires, William Dixon, William S. Drysdale, Peter D. Ivatt, Mathew J. Evans, Peter M. Edwards, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, C. Nicholas Hewitt, James D. Lee, Tianqu Cui, Jason D. Surratt, Xinming Wang, Alastair C. Lewis, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 1613–1625, https://doi.org/10.5194/acp-21-1613-2021, https://doi.org/10.5194/acp-21-1613-2021, 2021
Short summary
Short summary
We report the formation of secondary pollutants in the urban megacity of Beijing that are typically associated with remote regions such as rainforests. This is caused by extremely low levels of nitric oxide (NO), typically expected to be high in urban areas, observed in the afternoon. This work has significant implications for how we understand atmospheric chemistry in the urban environment and thus for how to implement effective policies to improve urban air quality.
David C. Loades, Mingxi Yang, Thomas G. Bell, Adam R. Vaughan, Ryan J. Pound, Stefan Metzger, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020, https://doi.org/10.5194/amt-13-6915-2020, 2020
Short summary
Short summary
The loss of ozone to the sea surface was measured from the south coast of the UK and was found to be more rapid than previous observations over the open ocean. This is likely a consequence of different chemistry and biology in coastal environments. Strong winds appeared to speed up the loss of ozone. A better understanding of what influences ozone loss over the sea will lead to better model estimates of total ozone in the troposphere.
Hélène Angot, Katelyn McErlean, Lu Hu, Dylan B. Millet, Jacques Hueber, Kaixin Cui, Jacob Moss, Catherine Wielgasz, Tyler Milligan, Damien Ketcherside, M. Syndonia Bret-Harte, and Detlev Helmig
Biogeosciences, 17, 6219–6236, https://doi.org/10.5194/bg-17-6219-2020, https://doi.org/10.5194/bg-17-6219-2020, 2020
Short summary
Short summary
We report biogenic volatile organic compounds (BVOCs) ambient levels and emission rates from key vegetation species in the Alaskan arctic tundra, providing a new data set to further constrain isoprene chemistry under low NOx conditions in models. We add to the growing body of evidence that climate-induced changes in the vegetation composition will significantly affect the BVOC emission potential of the tundra, with implications for atmospheric oxidation processes and climate feedbacks.
Swaleha Inamdar, Liselotte Tinel, Rosie Chance, Lucy J. Carpenter, Prabhakaran Sabu, Racheal Chacko, Sarat C. Tripathy, Anvita U. Kerkar, Alok K. Sinha, Parli Venkateswaran Bhaskar, Amit Sarkar, Rajdeep Roy, Tomás Sherwen, Carlos Cuevas, Alfonso Saiz-Lopez, Kirpa Ram, and Anoop S. Mahajan
Atmos. Chem. Phys., 20, 12093–12114, https://doi.org/10.5194/acp-20-12093-2020, https://doi.org/10.5194/acp-20-12093-2020, 2020
Short summary
Short summary
Iodine chemistry is generating a lot of interest because of its impacts on the oxidising capacity of the marine boundary and depletion of ozone. However, one of the challenges has been predicting the right levels of iodine in the models, which depend on parameterisations for emissions from the sea surface. This paper discusses the different parameterisations available and compares them with observations, showing that our current knowledge is still insufficient, especially on a regional scale.
Wei Wang, Laurens Ganzeveld, Samuel Rossabi, Jacques Hueber, and Detlev Helmig
Atmos. Chem. Phys., 20, 11287–11304, https://doi.org/10.5194/acp-20-11287-2020, https://doi.org/10.5194/acp-20-11287-2020, 2020
Short summary
Short summary
Trees exchange with the atmosphere nitrogen oxides and ozone, affecting the tropospheric composition and consequently air quality and ecosystem health. We examined the leaf-level gas exchanges for four typical tree species (pine, maple, oak, aspen) found in northern Michigan, US. The leaves largely absorb the gases, showing little evidence of emission. We measured the uptake rates that can be used to improve model studies of the source and sink processes controlling these gases in forests.
Dean Howard, Yannick Agnan, Detlev Helmig, Yu Yang, and Daniel Obrist
Biogeosciences, 17, 4025–4042, https://doi.org/10.5194/bg-17-4025-2020, https://doi.org/10.5194/bg-17-4025-2020, 2020
Short summary
Short summary
The Arctic tundra represents a vast store of carbon that may be broken down by microbial activity into greenhouse gases such as CO2 and CH4. Though microbes are less active in winter, the long duration of the cold season makes this period very important for carbon cycling. We show that, under conditions of warmer winter air temperatures and greater snowfall, deeper soils can remain warm enough to sustain significantly enhanced CH4 emission. This could have large implications for future climates.
Peter D. Ivatt and Mathew J. Evans
Atmos. Chem. Phys., 20, 8063–8082, https://doi.org/10.5194/acp-20-8063-2020, https://doi.org/10.5194/acp-20-8063-2020, 2020
Short summary
Short summary
We investigate the potential of using a decision tree algorithm to identify and correct the tropospheric ozone bias in a chemical transport model. We train the algorithm on 2010–2015 ground and column observation data and test the algorithm on the 2016–2017 data using the ground data as well as independent flight data. We find the algorithm is successfully able to identify and correct the bias, improving the model performance.
Katherine R. Travis, Colette L. Heald, Hannah M. Allen, Eric C. Apel, Stephen R. Arnold, Donald R. Blake, William H. Brune, Xin Chen, Róisín Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, James W. Elkins, Mathew J. Evans, Samuel R. Hall, Eric J. Hintsa, Rebecca S. Hornbrook, Prasad S. Kasibhatla, Michelle J. Kim, Gan Luo, Kathryn McKain, Dylan B. Millet, Fred L. Moore, Jeffrey Peischl, Thomas B. Ryerson, Tomás Sherwen, Alexander B. Thames, Kirk Ullmann, Xuan Wang, Paul O. Wennberg, Glenn M. Wolfe, and Fangqun Yu
Atmos. Chem. Phys., 20, 7753–7781, https://doi.org/10.5194/acp-20-7753-2020, https://doi.org/10.5194/acp-20-7753-2020, 2020
Short summary
Short summary
Atmospheric models overestimate the rate of removal of trace gases by the hydroxyl radical (OH). This is a concern for studies of the climate and air quality impacts of human activities. Here, we evaluate the performance of a commonly used model of atmospheric chemistry against data from the NASA Atmospheric Tomography Mission (ATom) over the remote oceans where models have received little validation. The model is generally successful, suggesting that biases in OH may be a concern over land.
Jiayue Huang, Lyatt Jaeglé, Qianjie Chen, Becky Alexander, Tomás Sherwen, Mat J. Evans, Nicolas Theys, and Sungyeon Choi
Atmos. Chem. Phys., 20, 7335–7358, https://doi.org/10.5194/acp-20-7335-2020, https://doi.org/10.5194/acp-20-7335-2020, 2020
Short summary
Short summary
Large-scale enhancements of tropospheric BrO and the depletion of surface ozone are often observed in the springtime Arctic. Here, we use a chemical transport model to examine the role of sea salt aerosol from blowing snow in explaining these phenomena. We find that our simulation can account for the spatiotemporal variability of satellite observations of BrO. However, the model has difficulty in producing the magnitude of observed ozone depletion events.
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Short summary
An introduction to a comprehensive field campaign performed at the Cape Verde Atmospheric Observatory regarding ocean–atmosphere interactions is given. Chemical, physical, biological and meteorological techniques were applied, and measurements of bulk water, the sea surface microlayer, cloud water and ambient aerosol particles took place. Oceanic compounds were found to be transferred to atmospheric aerosol and to the cloud level; however, sea spray contributions to CCN and INPs were limited.
Becky Alexander, Tomás Sherwen, Christopher D. Holmes, Jenny A. Fisher, Qianjie Chen, Mat J. Evans, and Prasad Kasibhatla
Atmos. Chem. Phys., 20, 3859–3877, https://doi.org/10.5194/acp-20-3859-2020, https://doi.org/10.5194/acp-20-3859-2020, 2020
Short summary
Short summary
Nitrogen oxides are important for the formation of tropospheric oxidants and are removed from the atmosphere mainly through the formation of nitrate. We compare observations of the oxygen isotopes of nitrate with a global model to test our understanding of the chemistry nitrate formation. We use the model to quantify nitrate formation pathways in the atmosphere and identify key uncertainties and their relevance for the oxidation capacity of the atmosphere.
Michal T. Filus, Elliot L. Atlas, Maria A. Navarro, Elena Meneguz, David Thomson, Matthew J. Ashfold, Lucy J. Carpenter, Stephen J. Andrews, and Neil R. P. Harris
Atmos. Chem. Phys., 20, 1163–1181, https://doi.org/10.5194/acp-20-1163-2020, https://doi.org/10.5194/acp-20-1163-2020, 2020
Short summary
Short summary
The effectiveness of transport of short-lived halocarbons to the upper troposphere and lower stratosphere remains an important unknown in quantifying the supply of ozone-depleting substances to the stratosphere. In early 2014, a major field campaign in Guam in the western Pacific, involving UK and US research aircraft, sampled the tropical troposphere and lower stratosphere. The resulting measurements of CH3I, CHBr3 and CH2Br2 are compared here with calculations from a Lagrangian model.
Detlev Helmig, Daniel Liptzin, Jacques Hueber, and Joel Savarino
The Cryosphere, 14, 199–209, https://doi.org/10.5194/tc-14-199-2020, https://doi.org/10.5194/tc-14-199-2020, 2020
Short summary
Short summary
We present 15 months of trace gas observations from air withdrawn within the snowpack and from above the snow at Concordia Station in Antarctica. The data show occasional positive spikes, indicative of pollution from the station generator. The pollution signal can be seen in snowpack air shortly after it is observed above the snow surface, and lasting for up to several days, much longer than above the surface.
Sophie L. Haslett, Jonathan W. Taylor, Mathew Evans, Eleanor Morris, Bernhard Vogel, Alima Dajuma, Joel Brito, Anneke M. Batenburg, Stephan Borrmann, Johannes Schneider, Christiane Schulz, Cyrielle Denjean, Thierry Bourrianne, Peter Knippertz, Régis Dupuy, Alfons Schwarzenböck, Daniel Sauer, Cyrille Flamant, James Dorsey, Ian Crawford, and Hugh Coe
Atmos. Chem. Phys., 19, 15217–15234, https://doi.org/10.5194/acp-19-15217-2019, https://doi.org/10.5194/acp-19-15217-2019, 2019
Short summary
Short summary
Three aircraft datasets from the DACCIWA campaign in summer 2016 are used here to show there is a background mass of pollution present in the lower atmosphere in southern West Africa. We suggest that this likely comes from biomass burning in central and southern Africa, which has been carried into the region over the Atlantic Ocean. This would have a negative health impact on populations living near the coast and may alter the impact of growing city emissions on cloud formation and the monsoon.
Martin Jiskra, Jeroen E. Sonke, Yannick Agnan, Detlev Helmig, and Daniel Obrist
Biogeosciences, 16, 4051–4064, https://doi.org/10.5194/bg-16-4051-2019, https://doi.org/10.5194/bg-16-4051-2019, 2019
Short summary
Short summary
The tundra plays a pivotal role in Arctic mercury cycling by storing atmospheric mercury deposition and shuttling it to the Arctic Ocean. We used the isotopic fingerprint of mercury to investigate the processes controlling atmospheric mercury deposition. We found that the uptake of atmospheric mercury by vegetation was the major deposition source. Direct deposition to snow or soils only played a minor role. These results improve our understanding of Arctic mercury cycling.
Tomás Sherwen, Rosie J. Chance, Liselotte Tinel, Daniel Ellis, Mat J. Evans, and Lucy J. Carpenter
Earth Syst. Sci. Data, 11, 1239–1262, https://doi.org/10.5194/essd-11-1239-2019, https://doi.org/10.5194/essd-11-1239-2019, 2019
Short summary
Short summary
Iodine plays an important role in the Earth system, as a nutrient to the biosphere and by changing the concentrations of climate and air-quality species. However, there are uncertainties on the magnitude of iodine’s role, and a key uncertainty is our understanding of iodide in the global sea-surface. Here we take a data-driven approach using a machine learning algorithm to convert a sparse set of sea-surface iodide observations into a spatially and temporally resolved dataset for use in models.
Leon King, Ieuan J. Roberts, Liselotte Tinel, and Lucy J. Carpenter
Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-87, https://doi.org/10.5194/os-2019-87, 2019
Preprint withdrawn
Short summary
Short summary
Recent studies suggest that the sea surface microlayer is ubiquitously enriched in surfactants, even at high wind speeds, which exert a control on air-sea gas exchange. These conclusions are partly based on voltammetry measurements of
surfactant activity(SA). Here, we show that the response of SA-voltammetry varies widely for different surfactants, becomes saturated above total surfactant concentrations of 1–2 mg L-1, and shows a poor correlation in natural waters with surface film pressure.
Lei Zhu, Daniel J. Jacob, Sebastian D. Eastham, Melissa P. Sulprizio, Xuan Wang, Tomás Sherwen, Mat J. Evans, Qianjie Chen, Becky Alexander, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Michael Le Breton, Thomas J. Bannan, and Carl J. Percival
Atmos. Chem. Phys., 19, 6497–6507, https://doi.org/10.5194/acp-19-6497-2019, https://doi.org/10.5194/acp-19-6497-2019, 2019
Short summary
Short summary
We quantify the effect of sea salt aerosol on tropospheric bromine chemistry with a new mechanistic description of the halogen chemistry in a global atmospheric chemistry model. For the first time, we are able to reproduce the observed levels of bromide activation from the sea salt aerosol in a manner consistent with bromine oxide radical measured from various platforms. Sea salt aerosol plays a far more complex role in global tropospheric chemistry than previously recognized.
Christoph A. Keller and Mat J. Evans
Geosci. Model Dev., 12, 1209–1225, https://doi.org/10.5194/gmd-12-1209-2019, https://doi.org/10.5194/gmd-12-1209-2019, 2019
Short summary
Short summary
Computer simulations of atmospheric chemistry are a central tool to study the impact of air pollutants on the environment. These models are highly complex and require a lot of computing resources. In this study we show that machine learning can be used to predict air pollution with an accuracy that is comparable to the traditional, computationally expensive method. Such a machine-learning-based model has the potential to be orders of magnitude faster.
Xuan Wang, Daniel J. Jacob, Sebastian D. Eastham, Melissa P. Sulprizio, Lei Zhu, Qianjie Chen, Becky Alexander, Tomás Sherwen, Mathew J. Evans, Ben H. Lee, Jessica D. Haskins, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Gregory L. Huey, and Hong Liao
Atmos. Chem. Phys., 19, 3981–4003, https://doi.org/10.5194/acp-19-3981-2019, https://doi.org/10.5194/acp-19-3981-2019, 2019
Short summary
Short summary
Chlorine radicals have a broad range of implications for tropospheric chemistry, air quality, and climate. We present a comprehensive simulation of tropospheric chlorine in a global 3-D model, which includes explicit accounting of chloride mobilization from sea salt aerosol. We find the chlorine chemistry contributes 1.0 % of the global oxidation of methane and decreases global burdens of tropospheric ozone by 7 % and OH by 3 % through the associated bromine radical chemistry.
Alba Badia, Claire E. Reeves, Alex R. Baker, Alfonso Saiz-Lopez, Rainer Volkamer, Theodore K. Koenig, Eric C. Apel, Rebecca S. Hornbrook, Lucy J. Carpenter, Stephen J. Andrews, Tomás Sherwen, and Roland von Glasow
Atmos. Chem. Phys., 19, 3161–3189, https://doi.org/10.5194/acp-19-3161-2019, https://doi.org/10.5194/acp-19-3161-2019, 2019
Short summary
Short summary
The oceans have an impact on the composition and reactivity of the troposphere through the emission of gases and particles. Thus, a quantitative understanding of the marine atmosphere is crucial to examine the oxidative capacity and climate forcing. This study investigates the impact of halogens in the tropical troposphere and explores the sensitivity of this to uncertainties in the fluxes and their chemical processing. Our modelled tropospheric Ox loss due to halogens ranges from 20 % to 60 %.
Kate R. Smith, Peter M. Edwards, Peter D. Ivatt, James D. Lee, Freya Squires, Chengliang Dai, Richard E. Peltier, Mat J. Evans, Yele Sun, and Alastair C. Lewis
Atmos. Meas. Tech., 12, 1325–1336, https://doi.org/10.5194/amt-12-1325-2019, https://doi.org/10.5194/amt-12-1325-2019, 2019
Short summary
Short summary
Clusters of low-cost, low-power atmospheric gas sensors were built into a sensor instrument to monitor NO2 and O3 in Beijing, alongside reference instruments, aiming to improve the reliability of sensor measurements. Clustering identical sensors and using the median sensor signal was used to minimize drift over short and medium timescales. Three different machine learning techniques were used for all the sensor data in an attempt to correct for cross-interferences, which worked to some degree.
Federica Pacifico, Claire Delon, Corinne Jambert, Pierre Durand, Eleanor Morris, Mat J. Evans, Fabienne Lohou, Solène Derrien, Venance H. E. Donnou, Arnaud V. Houeto, Irene Reinares Martínez, and Pierre-Etienne Brilouet
Atmos. Chem. Phys., 19, 2299–2325, https://doi.org/10.5194/acp-19-2299-2019, https://doi.org/10.5194/acp-19-2299-2019, 2019
Short summary
Short summary
Biogenic fluxes from soil at a local and regional scale are crucial to study air pollution and climate. Here we present field measurements of soil fluxes of nitric oxide (NO) and ammonia (NH3) observed over four different land cover types, i.e. bare soil, grassland, maize field, and forest, at an inland rural site in Benin, West Africa, during the DACCIWA field campaign in
June and July 2016.
Lu Hu, Christoph A. Keller, Michael S. Long, Tomás Sherwen, Benjamin Auer, Arlindo Da Silva, Jon E. Nielsen, Steven Pawson, Matthew A. Thompson, Atanas L. Trayanov, Katherine R. Travis, Stuart K. Grange, Mat J. Evans, and Daniel J. Jacob
Geosci. Model Dev., 11, 4603–4620, https://doi.org/10.5194/gmd-11-4603-2018, https://doi.org/10.5194/gmd-11-4603-2018, 2018
Short summary
Short summary
We present a full-year online global simulation of tropospheric chemistry at 12.5 km resolution. To the best of our knowledge, such a resolution in a state-of-the-science global simulation of tropospheric chemistry is unprecedented. This simulation will serve as the Nature Run for observing system simulation experiments to support the future geostationary satellite constellation for tropospheric chemistry, and can also be used for various air quality applications.
Shaojie Song, Hélène Angot, Noelle E. Selin, Hubert Gallée, Francesca Sprovieri, Nicola Pirrone, Detlev Helmig, Joël Savarino, Olivier Magand, and Aurélien Dommergue
Atmos. Chem. Phys., 18, 15825–15840, https://doi.org/10.5194/acp-18-15825-2018, https://doi.org/10.5194/acp-18-15825-2018, 2018
Short summary
Short summary
Mercury is a trace metal with adverse health effects on human and wildlife. Its unique property makes it undergo long-range transport, and even remote Antarctica receives significant inputs. This paper presents the first model that aims to understand mercury behavior over the Antarctic Plateau. We find that mercury is quickly cycled between snow and air in the sunlit period, likely driven by bromine chemistry, and that several uncertain processes contribute to its behavior in the dark period.
Liang Feng, Paul I. Palmer, Robyn Butler, Stephen J. Andrews, Elliot L. Atlas, Lucy J. Carpenter, Valeria Donets, Neil R. P. Harris, Ross J. Salawitch, Laura L. Pan, and Sue M. Schauffler
Atmos. Chem. Phys., 18, 14787–14798, https://doi.org/10.5194/acp-18-14787-2018, https://doi.org/10.5194/acp-18-14787-2018, 2018
Short summary
Short summary
We infer surface fluxes of bromoform (CHBr3) and dibromoform (CH2Br2) from CAST and CONTRAST aircraft observations over the western Pacific, using a tagged version of the GEOS-Chem global 3-D atmospheric chemistry model and a Maximum A Posteriori inverse model. Using the aircraft data, we estimate the regional fluxes about 20–40 % smaller than the prior inventories by Ordóñez et al. (2012). We find no evidence to support a robust linear relationship between CHBr3 and CH2Br2 oceanic emissions.
Qianjie Chen, Tomás Sherwen, Mathew Evans, and Becky Alexander
Atmos. Chem. Phys., 18, 13617–13637, https://doi.org/10.5194/acp-18-13617-2018, https://doi.org/10.5194/acp-18-13617-2018, 2018
Short summary
Short summary
Uncertainty in the natural tropospheric sulfur cycle represents the largest source of uncertainty in radiative forcing estimates of sulfate aerosol. This study investigates the natural sulfur cycle in the marine troposphere using the GEOS-Chem model. We found that BrO is important for DMS oxidation and multiphase chemistry is important for MSA production and loss, which have implications for the yield of SO2 and MSA from DMS oxidation and the radiative effect of DMS-derived sulfate aerosol.
Robyn Butler, Paul I. Palmer, Liang Feng, Stephen J. Andrews, Elliot L. Atlas, Lucy J. Carpenter, Valeria Donets, Neil R. P. Harris, Stephen A. Montzka, Laura L. Pan, Ross J. Salawitch, and Sue M. Schauffler
Atmos. Chem. Phys., 18, 13135–13153, https://doi.org/10.5194/acp-18-13135-2018, https://doi.org/10.5194/acp-18-13135-2018, 2018
Short summary
Short summary
Natural sources of short-lived bromoform and dibromomethane are important for determining the inorganic bromine budget in the stratosphere that drives ozone loss. Two new modelling techniques describe how different geographical source regions influence their atmospheric variability over the western Pacific. We find that it is driven primarily by open ocean sources, and we use atmospheric observations to help estimate their contributions to the upper tropospheric inorganic bromine budget.
Prasad Kasibhatla, Tomás Sherwen, Mathew J. Evans, Lucy J. Carpenter, Chris Reed, Becky Alexander, Qianjie Chen, Melissa P. Sulprizio, James D. Lee, Katie A. Read, William Bloss, Leigh R. Crilley, William C. Keene, Alexander A. P. Pszenny, and Alma Hodzic
Atmos. Chem. Phys., 18, 11185–11203, https://doi.org/10.5194/acp-18-11185-2018, https://doi.org/10.5194/acp-18-11185-2018, 2018
Short summary
Short summary
Recent measurements of NOx and HONO suggest that photolysis of particulate nitrate in sea-salt aerosols is important in terms of marine boundary layer oxidant chemistry. We present the first global-scale assessment of the significance of this new chemical pathway for NOx, O3, and OH in the marine boundary layer. We also present a preliminary assessment of the potential impact of photolysis of particulate nitrate associated with other aerosol types on continental boundary layer chemistry.
Yannick Agnan, Thomas A. Douglas, Detlev Helmig, Jacques Hueber, and Daniel Obrist
The Cryosphere, 12, 1939–1956, https://doi.org/10.5194/tc-12-1939-2018, https://doi.org/10.5194/tc-12-1939-2018, 2018
Short summary
Short summary
In this study, we investigated mercury dynamics in an interior arctic tundra at Toolik Field Station (200 km from the Arctic Ocean) during two full snow seasons. We continuously measured atmospheric, snow gas phase, and soil pores mercury concentrations. We observed consistent concentration declines from the atmosphere to snowpack to soils, indicating that soils are continuous sinks of mercury. We suggest that interior arctic snowpacks may be negligible sources of mercury.
Mike J. Newland, Andrew R. Rickard, Tomás Sherwen, Mathew J. Evans, Luc Vereecken, Amalia Muñoz, Milagros Ródenas, and William J. Bloss
Atmos. Chem. Phys., 18, 6095–6120, https://doi.org/10.5194/acp-18-6095-2018, https://doi.org/10.5194/acp-18-6095-2018, 2018
Short summary
Short summary
Stabilised Criegee intermediates (SCIs) are formed in the reaction of alkenes with ozone, both of which are ubiquitous throughout the troposphere. We determine the fate and global distribution of SCI from monoterpene ozonolysis. One major fate of SCI is reaction with H2O, but for a fraction of SCIs, unimolecular reactions dominate. Concentrations of SCIs are high enough regionally to play a key role in the conversion of sulfur dioxide to aerosol, affecting air quality and climate.
Richard Newton, Geraint Vaughan, Eric Hintsa, Michal T. Filus, Laura L. Pan, Shawn Honomichl, Elliot Atlas, Stephen J. Andrews, and Lucy J. Carpenter
Atmos. Chem. Phys., 18, 5157–5171, https://doi.org/10.5194/acp-18-5157-2018, https://doi.org/10.5194/acp-18-5157-2018, 2018
Short summary
Short summary
We consider the ozone measurements from aircraft during the CAST/CONTRAST/ATTREX campaigns of 2014. Low concentrations of ozone were found in the layer of 10–15 km altitude, which is indicative of uplift of ozone-poor air from near the sea surface to 10–15 km altitude. Chemicals that have origins in the sea were found in greater abundance when ozone concentrations were low compared to when ozone concentrations were high. The lowest ozone concentrations were found in the Southern Hemisphere.
Jacob T. Shaw, Richard T. Lidster, Danny R. Cryer, Noelia Ramirez, Fiona C. Whiting, Graham A. Boustead, Lisa K. Whalley, Trevor Ingham, Andrew R. Rickard, Rachel E. Dunmore, Dwayne E. Heard, Ally C. Lewis, Lucy J. Carpenter, Jacqui F. Hamilton, and Terry J. Dillon
Atmos. Chem. Phys., 18, 4039–4054, https://doi.org/10.5194/acp-18-4039-2018, https://doi.org/10.5194/acp-18-4039-2018, 2018
Short summary
Short summary
The lifetime of a chemical in the atmosphere is largely governed by the rate of its reaction with the hydroxyl radical (OH). Measurements of rates for many of the thousands of identified volatile organic compounds (VOCs) have yet to be determined experimentally. We have developed a new technique for the rapid determination of gas-phase rate coefficients for the simultaneous reactions between multiple VOCs and OH. The method is tasted across a range of scenarios and is used to derive new values.
Daniel Stone, Tomás Sherwen, Mathew J. Evans, Stewart Vaughan, Trevor Ingham, Lisa K. Whalley, Peter M. Edwards, Katie A. Read, James D. Lee, Sarah J. Moller, Lucy J. Carpenter, Alastair C. Lewis, and Dwayne E. Heard
Atmos. Chem. Phys., 18, 3541–3561, https://doi.org/10.5194/acp-18-3541-2018, https://doi.org/10.5194/acp-18-3541-2018, 2018
Short summary
Short summary
Halogen chemistry in the troposphere impacts oxidising capacity, but model studies assessing the nature of these impacts can vary according to the model framework used. In this work we present simulations of OH and HO2 radicals using both box and global model frameworks, and compare to observations made at the Cape Verde Atmospheric Observatory. We highlight, and rationalise, differences between the model frameworks.
Leigh R. Crilley, Marvin Shaw, Ryan Pound, Louisa J. Kramer, Robin Price, Stuart Young, Alastair C. Lewis, and Francis D. Pope
Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, https://doi.org/10.5194/amt-11-709-2018, 2018
Short summary
Short summary
The affordability and small size of low-cost particle sensors make them attractive for air pollution experiments that require multiple instruments, or take place in hard-to-access locations or low-income countries. For any sensor to be useful, its accuracy and precision need to be known. We evaluate the Alphasense OPC-N2 for monitoring airborne particles at typical UK urban background sites. The devices were found to be accurate provided they are correctly calibrated.
Theodore K. Koenig, Rainer Volkamer, Sunil Baidar, Barbara Dix, Siyuan Wang, Daniel C. Anderson, Ross J. Salawitch, Pamela A. Wales, Carlos A. Cuevas, Rafael P. Fernandez, Alfonso Saiz-Lopez, Mathew J. Evans, Tomás Sherwen, Daniel J. Jacob, Johan Schmidt, Douglas Kinnison, Jean-François Lamarque, Eric C. Apel, James C. Bresch, Teresa Campos, Frank M. Flocke, Samuel R. Hall, Shawn B. Honomichl, Rebecca Hornbrook, Jørgen B. Jensen, Richard Lueb, Denise D. Montzka, Laura L. Pan, J. Michael Reeves, Sue M. Schauffler, Kirk Ullmann, Andrew J. Weinheimer, Elliot L. Atlas, Valeria Donets, Maria A. Navarro, Daniel Riemer, Nicola J. Blake, Dexian Chen, L. Gregory Huey, David J. Tanner, Thomas F. Hanisco, and Glenn M. Wolfe
Atmos. Chem. Phys., 17, 15245–15270, https://doi.org/10.5194/acp-17-15245-2017, https://doi.org/10.5194/acp-17-15245-2017, 2017
Short summary
Short summary
Tropospheric inorganic bromine (BrO and Bry) shows a C-shaped profile over the tropical western Pacific Ocean, and supports previous speculation that marine convection is a source for inorganic bromine from sea salt to the upper troposphere. The Bry profile in the tropical tropopause layer (TTL) is complex, suggesting that the total Bry budget in the TTL is not closed without considering aerosol bromide. The implications for atmospheric composition and bromine sources are discussed.
Yaoxian Huang, Shiliang Wu, Louisa J. Kramer, Detlev Helmig, and Richard E. Honrath
Atmos. Chem. Phys., 17, 14661–14674, https://doi.org/10.5194/acp-17-14661-2017, https://doi.org/10.5194/acp-17-14661-2017, 2017
Short summary
Short summary
A global chemical transport model (GEOS-Chem) was employed to simulate surface ozone and its precursors at Summit, Greenland in the Arctic and compare them with 2-year in situ surface observations. The model performed well in simulating certain species (such as carbon monoxide and propane), but some significant discrepancies were identified for other species (e.g., nitrogen oxides, ethane, PAN, and ozone). We further investigated the exact causes for model–data biases.
Ben Newsome and Mat Evans
Atmos. Chem. Phys., 17, 14333–14352, https://doi.org/10.5194/acp-17-14333-2017, https://doi.org/10.5194/acp-17-14333-2017, 2017
Short summary
Short summary
We explore the uncertainty in the predictions of a chemical transport model (GEOS-Chem) from uncertainty in 60 inorganic rate constants and photolysis rates. We find uncertainty in the global mean ozone burden of 10 %, in global mean OH of 16 %, methane lifetimes of 16 %, and tropospheric ozone radiative forcings of 13 %. Reductions in the uncertainty of rate constants of these simple reactions would reduce uncertainty in our understanding of atmospheric composition.
Peter M. Edwards and Mathew J. Evans
Atmos. Chem. Phys., 17, 13669–13680, https://doi.org/10.5194/acp-17-13669-2017, https://doi.org/10.5194/acp-17-13669-2017, 2017
Short summary
Short summary
Understanding tropospheric ozone chemistry has been at the centre of the field of atmospheric chemistry for the last 30 years. However, our conceptual approach to diagnosing ozone production in global models has not advanced in this time. Our work presents a new and powerful approach for diagnosing tropospheric ozone production, providing a significant enhancement in our ability to understand the processes controlling ozone and how we can validate our assessment of these processes.
Peter Knippertz, Andreas H. Fink, Adrien Deroubaix, Eleanor Morris, Flore Tocquer, Mat J. Evans, Cyrille Flamant, Marco Gaetani, Christophe Lavaysse, Celine Mari, John H. Marsham, Rémi Meynadier, Abalo Affo-Dogo, Titike Bahaga, Fabien Brosse, Konrad Deetz, Ridha Guebsi, Issaou Latifou, Marlon Maranan, Philip D. Rosenberg, and Andreas Schlueter
Atmos. Chem. Phys., 17, 10893–10918, https://doi.org/10.5194/acp-17-10893-2017, https://doi.org/10.5194/acp-17-10893-2017, 2017
Short summary
Short summary
In June–July 2016 DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa), a large, EU-funded European–African project, organised an international field campaign in densely populated southern West Africa, including measurements from ground sites, research aircraft, weather balloons and urban sites. This paper gives an overview of the atmospheric evolution during this period focusing on meteorological (precipitation, cloudiness, winds) and composition (gases, particles) aspects.
Mike J. Newland, Patricia Martinerie, Emmanuel Witrant, Detlev Helmig, David R. Worton, Chris Hogan, William T. Sturges, and Claire E. Reeves
Atmos. Chem. Phys., 17, 8269–8283, https://doi.org/10.5194/acp-17-8269-2017, https://doi.org/10.5194/acp-17-8269-2017, 2017
Short summary
Short summary
We report increasing levels of alkyl nitrates in the Northern Hemisphere atmosphere between 1960 and the mid-1990s. These increases are symptomatic of large-scale changes to the chemical composition of the atmosphere, particularly with regards to the amounts of short-lived, reactive species. The observed increases are likely driven by increasing levels of nitrogen oxides. These changes have direct implications for the lifetimes of climate-relevant species in the atmosphere, such as methane.
Katie A. Read, Luis M. Neves, Lucy J. Carpenter, Alastair C. Lewis, Zoe L. Fleming, and John Kentisbeer
Atmos. Chem. Phys., 17, 5393–5406, https://doi.org/10.5194/acp-17-5393-2017, https://doi.org/10.5194/acp-17-5393-2017, 2017
Short summary
Short summary
This paper presents 4 years of total gaseous mercury data obtained from measurements made at the Cape Verde Atmospheric Observatory, a subtropical site in the Atlantic Ocean. The data show a clear decreasing trend in the overall concentrations but in air from sub-Saharan Africa the trend is less significant and the data more variable. We attribute this result to an influence from artisanal small-scale gold mining in this region, a source for which there is uncertain information.
Chris Reed, Mathew J. Evans, Leigh R. Crilley, William J. Bloss, Tomás Sherwen, Katie A. Read, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 17, 4081–4092, https://doi.org/10.5194/acp-17-4081-2017, https://doi.org/10.5194/acp-17-4081-2017, 2017
Short summary
Short summary
The source of ozone-depleting compounds in the remote troposphere has been thought to be long-range transport of secondary pollutants such as organic nitrates. Processing of organic nitrates to nitric acid and subsequent deposition on surfaces in the atmosphere was thought to remove these nitrates from the ozone–NOx–HOx cycle. We found through observation of NOx in the remote tropical troposphere at the Cape Verde Observatory that surface nitrates can be released back into the atmosphere.
Tomás Sherwen, Mat J. Evans, Lucy J. Carpenter, Johan A. Schmidt, and Loretta J. Mickley
Atmos. Chem. Phys., 17, 1557–1569, https://doi.org/10.5194/acp-17-1557-2017, https://doi.org/10.5194/acp-17-1557-2017, 2017
Short summary
Short summary
We model pre-industrial to present day changes using the GEOS-Chem global chemical transport model with halogens (Cl, Br, I). The model better captures pre-industrial O3 observations with halogens included. Halogens buffer the tropospheric forcing of O3 (RFTO3) from pre-industrial to present day, reducing RFTO3 by 0.087 Wm−2. This reduction is greater than that from halogens on stratospheric O3 (−0.05 Wm−2). This suggests that models that do not include halogens will overestimate RFTO3by ~ 25%.
Tomás Sherwen, Johan A. Schmidt, Mat J. Evans, Lucy J. Carpenter, Katja Großmann, Sebastian D. Eastham, Daniel J. Jacob, Barbara Dix, Theodore K. Koenig, Roman Sinreich, Ivan Ortega, Rainer Volkamer, Alfonso Saiz-Lopez, Cristina Prados-Roman, Anoop S. Mahajan, and Carlos Ordóñez
Atmos. Chem. Phys., 16, 12239–12271, https://doi.org/10.5194/acp-16-12239-2016, https://doi.org/10.5194/acp-16-12239-2016, 2016
Short summary
Short summary
We present a simulation of tropospheric Cl, Br, I chemistry within the GEOS-Chem CTM. We find a decrease in tropospheric ozone burden of 18.6 % and a 8.2 % decrease in global mean OH concentrations. Cl oxidation of some VOCs range from 15 to 27 % of the total loss. Bromine plays a small role in oxidising oVOCs. Surface ozone, ozone sondes, and methane lifetime are in general improved by the inclusion of halogens. We argue that simulated bromine and chlorine represent a lower limit.
Dene R. Bowdalo, Mathew J. Evans, and Eric D. Sofen
Atmos. Chem. Phys., 16, 8295–8308, https://doi.org/10.5194/acp-16-8295-2016, https://doi.org/10.5194/acp-16-8295-2016, 2016
Short summary
Short summary
We introduce a new methodology for the assessment of atmospheric models with observations. We apply a spectral analysis methodology to hourly ozone observations and the equivalent model output. The spectrally transformed observational data show significant peaks on daily and annual timescales. Comparison between the amplitude and phase of these peaks introduces a new comparison methodology between model and measurements. We find the model shows significant biases on an annual timescale.
Hélène Angot, Olivier Magand, Detlev Helmig, Philippe Ricaud, Boris Quennehen, Hubert Gallée, Massimo Del Guasta, Francesca Sprovieri, Nicola Pirrone, Joël Savarino, and Aurélien Dommergue
Atmos. Chem. Phys., 16, 8249–8264, https://doi.org/10.5194/acp-16-8249-2016, https://doi.org/10.5194/acp-16-8249-2016, 2016
Short summary
Short summary
While the Arctic has been extensively monitored, there is still much to be learned from the Antarctic continent regarding the processes that govern the budget of atmospheric mercury species. We report here the first year-round measurements of gaseous elemental mercury (Hg(0)) in the atmosphere and in snowpack interstitial air on the East Antarctic ice sheet. The striking reactivity observed on the Antarctic plateau most likely influences the cycle of atmospheric mercury on a continental scale.
Michel Legrand, Susanne Preunkert, Joël Savarino, Markus M. Frey, Alexandre Kukui, Detlev Helmig, Bruno Jourdain, Anna E. Jones, Rolf Weller, Neil Brough, and Hubert Gallée
Atmos. Chem. Phys., 16, 8053–8069, https://doi.org/10.5194/acp-16-8053-2016, https://doi.org/10.5194/acp-16-8053-2016, 2016
Short summary
Short summary
Surface ozone, the most abundant atmospheric oxidant, has been measured since 2004 at the coastal East Antarctic site of Dumont d’Urville, and since 2007 at the Concordia station located on the high East Antarctic plateau. Long-term changes, seasonal and diurnal cycles, as well as inter-annual summer variability observed at these two East Antarctic sites are discussed. Influences like sea ice extent and outflow from inland Antarctica are discussed.
Alicia Gressent, Bastien Sauvage, Daniel Cariolle, Mathew Evans, Maud Leriche, Céline Mari, and Valérie Thouret
Atmos. Chem. Phys., 16, 5867–5889, https://doi.org/10.5194/acp-16-5867-2016, https://doi.org/10.5194/acp-16-5867-2016, 2016
Short summary
Short summary
In chemical transport models, NOx emitted by lightning (LNOx) is instantaneously diluted into the grid. A plume-in-grid parameterization to account for the sub-grid chemistry of LNOx is presented. This approach was implemented into the GEOS-Chem model and leads to a relative increase of NOx and O3 (18 % and 2 %, respectively, in July) on a large scale downwind of lightning emissions and a relative decrease (25 % and 8 %, respectively, over central Africa in July) over the regions of emissions.
Chris Reed, Mathew J. Evans, Piero Di Carlo, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 16, 4707–4724, https://doi.org/10.5194/acp-16-4707-2016, https://doi.org/10.5194/acp-16-4707-2016, 2016
Short summary
Short summary
The self-cleaning capacity of the atmosphere in places like Antarctica can be measured by quantifying very low amounts of combustion products that exist in a well-known ratio. When this ratio deviates from 1 it points to the existence of unknown compounds. Several unknown compounds have been theorized to exist but never measured. We have found the method for measuring the ratio of combustion products suffers a bias in remote places, which when taken into account disproves any unknown compounds.
Frank A. F. Winiberg, Terry J. Dillon, Stephanie C. Orr, Christoph B. M Groß, Iustinian Bejan, Charlotte A. Brumby, Matthew J. Evans, Shona C. Smith, Dwayne E. Heard, and Paul W. Seakins
Atmos. Chem. Phys., 16, 4023–4042, https://doi.org/10.5194/acp-16-4023-2016, https://doi.org/10.5194/acp-16-4023-2016, 2016
Short summary
Short summary
OH radicals are important intermediates in the atmosphere, and the high concentrations observed in tropical regions are yet to be fully explained. Radical-radical reactions such as the title reaction can contribute to OH formation. This is the most fully comprehensive study of the CH3C(O)O2 + HO2 reaction with direct observation of products in all reaction channels. The implications of the new measurements on OH, PAN and NOx concentrations are considered via global models.
E. D. Sofen, D. Bowdalo, M. J. Evans, F. Apadula, P. Bonasoni, M. Cupeiro, R. Ellul, I. E. Galbally, R. Girgzdiene, S. Luppo, M. Mimouni, A. C. Nahas, M. Saliba, and K. Tørseth
Earth Syst. Sci. Data, 8, 41–59, https://doi.org/10.5194/essd-8-41-2016, https://doi.org/10.5194/essd-8-41-2016, 2016
Short summary
Short summary
We have brought together all publicly available surface ozone observations from online databases from 1971–2015, with 2200 sites representing regional background conditions appropriate for the evaluation of chemical transport and chemistry-climate models for projects such as the Chemistry-Climate Model Initiative. Gridded data sets of ozone metrics (mean, percentiles, MDA8, SOMO35, etc.) are available from the British Atmospheric Data Centre.
E. D. Sofen, D. Bowdalo, and M. J. Evans
Atmos. Chem. Phys., 16, 1445–1457, https://doi.org/10.5194/acp-16-1445-2016, https://doi.org/10.5194/acp-16-1445-2016, 2016
Short summary
Short summary
We explore the global representativeness of a global surface ozone data set from a range of perspectives (area, biomes, chemical regimes, model uncertainty, model trends). We conclude that the current network fails to provide sufficient constraints for important regions/regimes, leading to uncertainty for a range of atmospheric composition challenges. We suggest 20 new locations for making surface ozone observations, which would significantly enhance our observational capability.
T. Sherwen, M. J. Evans, L. J. Carpenter, S. J. Andrews, R. T. Lidster, B. Dix, T. K. Koenig, R. Sinreich, I. Ortega, R. Volkamer, A. Saiz-Lopez, C. Prados-Roman, A. S. Mahajan, and C. Ordóñez
Atmos. Chem. Phys., 16, 1161–1186, https://doi.org/10.5194/acp-16-1161-2016, https://doi.org/10.5194/acp-16-1161-2016, 2016
Short summary
Short summary
Using a global chemical transport model (GEOS-Chem) with additional iodine emissions, chemistry, and deposition we show that iodine is responsible for ~ 9 % of global ozone loss but has negligible impacts on global OH. Uncertainties are large in the chemistry and emissions and future research is needed in both. Measurements of iodine species (especially HOI) would be useful. We believe iodine chemistry should be considered in future chemistry-climate and in air quality modelling.
E. D. Sofen, M. J. Evans, and A. C. Lewis
Atmos. Chem. Phys., 15, 13627–13632, https://doi.org/10.5194/acp-15-13627-2015, https://doi.org/10.5194/acp-15-13627-2015, 2015
Short summary
Short summary
As an air pollutant, O3 is monitored photometrically to assess compliance with air quality legislation. A recent study found a 1.8% reduction in its absorption cross section, which would lead to an equivalent increase in observed O3 concentrations. We estimate this would increase the number of sites out of compliance with air quality regulations in the EU and US by 20%. We draw attention to how small changes in gas metrology impacts attainment and compliance with legal air quality standards.
R. E. Dunmore, J. R. Hopkins, R. T. Lidster, J. D. Lee, M. J. Evans, A. R. Rickard, A. C. Lewis, and J. F. Hamilton
Atmos. Chem. Phys., 15, 9983–9996, https://doi.org/10.5194/acp-15-9983-2015, https://doi.org/10.5194/acp-15-9983-2015, 2015
Short summary
Short summary
Technological shifts between fuel sources have had unexpected impacts on atmospheric composition and these significant changes can go undetected if source-specific monitoring infrastructure is not in place. We present chemically comprehensive, continuous measurements of organic compounds in a developed megacity (London), that show diesel-related hydrocarbons can dominate reactive carbon and ozone formation potential, highlighting a serious underestimation of this source in emission inventories.
H. M. Walker, D. Stone, T. Ingham, S. Vaughan, M. Cain, R. L. Jones, O. J. Kennedy, M. McLeod, B. Ouyang, J. Pyle, S. Bauguitte, B. Bandy, G. Forster, M. J. Evans, J. F. Hamilton, J. R. Hopkins, J. D. Lee, A. C. Lewis, R. T. Lidster, S. Punjabi, W. T. Morgan, and D. E. Heard
Atmos. Chem. Phys., 15, 8179–8200, https://doi.org/10.5194/acp-15-8179-2015, https://doi.org/10.5194/acp-15-8179-2015, 2015
L. J. Kramer, D. Helmig, J. F. Burkhart, A. Stohl, S. Oltmans, and R. E. Honrath
Atmos. Chem. Phys., 15, 6827–6849, https://doi.org/10.5194/acp-15-6827-2015, https://doi.org/10.5194/acp-15-6827-2015, 2015
L. K. Emmons, S. R. Arnold, S. A. Monks, V. Huijnen, S. Tilmes, K. S. Law, J. L. Thomas, J.-C. Raut, I. Bouarar, S. Turquety, Y. Long, B. Duncan, S. Steenrod, S. Strode, J. Flemming, J. Mao, J. Langner, A. M. Thompson, D. Tarasick, E. C. Apel, D. R. Blake, R. C. Cohen, J. Dibb, G. S. Diskin, A. Fried, S. R. Hall, L. G. Huey, A. J. Weinheimer, A. Wisthaler, T. Mikoviny, J. Nowak, J. Peischl, J. M. Roberts, T. Ryerson, C. Warneke, and D. Helmig
Atmos. Chem. Phys., 15, 6721–6744, https://doi.org/10.5194/acp-15-6721-2015, https://doi.org/10.5194/acp-15-6721-2015, 2015
Short summary
Short summary
Eleven 3-D tropospheric chemistry models have been compared and evaluated with observations in the Arctic during the International Polar Year (IPY 2008). Large differences are seen among the models, particularly related to the model chemistry of volatile organic compounds (VOCs) and reactive nitrogen (NOx, PAN, HNO3) partitioning. Consistency among the models in the underestimation of CO, ethane and propane indicates the emission inventory is too low for these compounds.
S. Preunkert, M. Legrand, M. M. Frey, A. Kukui, J. Savarino, H. Gallée, M. King, B. Jourdain, W. Vicars, and D. Helmig
Atmos. Chem. Phys., 15, 6689–6705, https://doi.org/10.5194/acp-15-6689-2015, https://doi.org/10.5194/acp-15-6689-2015, 2015
Short summary
Short summary
During two austral summers HCHO was investigated in air, snow, and interstitial air at the Concordia site located on the East Antarctic Plateau. Snow emission fluxes were estimated to be around 1 to 2 and 3 to 5 x 10^12 molecules m-2 s-1 at night and at noon, respectively. Shading experiments suggest that the photochemical HCHO production in the snowpack at Concordia remains negligible. The mean HCHO level of 130pptv observed at 1m above the surface is quite well reproduced by 1-D simulations.
K. Dzepina, C. Mazzoleni, P. Fialho, S. China, B. Zhang, R. C. Owen, D. Helmig, J. Hueber, S. Kumar, J. A. Perlinger, L. J. Kramer, M. P. Dziobak, M. T. Ampadu, S. Olsen, D. J. Wuebbles, and L. R. Mazzoleni
Atmos. Chem. Phys., 15, 5047–5068, https://doi.org/10.5194/acp-15-5047-2015, https://doi.org/10.5194/acp-15-5047-2015, 2015
Short summary
Short summary
Aerosol was sampled at the Pico Mountain Observatory located at 2.2km amsl on Pico Island of the North Atlantic Azores archipelago. Two aerosol samples characterized by ultrahigh resolution mass spectrometry had biomass burning and marine emissions origins, as corroborated by collocated gas- and particle-phase measurements, air masses analyses and satellites. The paper presents the first molecular characterization of aged and processed aerosol intercepted at a remote lower free troposphere
L. K. Whalley, D. Stone, I. J. George, S. Mertes, D. van Pinxteren, A. Tilgner, H. Herrmann, M. J. Evans, and D. E. Heard
Atmos. Chem. Phys., 15, 3289–3301, https://doi.org/10.5194/acp-15-3289-2015, https://doi.org/10.5194/acp-15-3289-2015, 2015
R. Ahmadov, S. McKeen, M. Trainer, R. Banta, A. Brewer, S. Brown, P. M. Edwards, J. A. de Gouw, G. J. Frost, J. Gilman, D. Helmig, B. Johnson, A. Karion, A. Koss, A. Langford, B. Lerner, J. Olson, S. Oltmans, J. Peischl, G. Pétron, Y. Pichugina, J. M. Roberts, T. Ryerson, R. Schnell, C. Senff, C. Sweeney, C. Thompson, P. R. Veres, C. Warneke, R. Wild, E. J. Williams, B. Yuan, and R. Zamora
Atmos. Chem. Phys., 15, 411–429, https://doi.org/10.5194/acp-15-411-2015, https://doi.org/10.5194/acp-15-411-2015, 2015
Short summary
Short summary
High 2013 wintertime O3 pollution events associated with oil/gas production within the Uinta Basin are studied using a 3D model. It's able quantitatively to reproduce these events using emission estimates of O3 precursors based on ambient measurements (top-down approach), but unable to reproduce them using a recent bottom-up emission inventory for the oil/gas industry. The role of various physical and meteorological processes, chemical species and pathways contributing to high O3 are quantified.
S. J. Lawson, P. W. Selleck, I. E. Galbally, M. D. Keywood, M. J. Harvey, C. Lerot, D. Helmig, and Z. Ristovski
Atmos. Chem. Phys., 15, 223–240, https://doi.org/10.5194/acp-15-223-2015, https://doi.org/10.5194/acp-15-223-2015, 2015
Short summary
Short summary
Glyoxal and methylglyoxal are short-lived organic trace gases and important precursors of secondary organic aerosol. Measurements over oceans are sparse. We present the first in situ glyoxal and methylglyoxal observations over remote temperate oceans, alongside observations of precursor gases. Precursor gases cannot explain observed mixing ratios, highlighting an unknown source. We show a large discrepancy between calculated vertical column densities of glyoxal and those retrieved by satellite.
S. J. Oltmans, A. Karion, R. C. Schnell, G. Pétron, C. Sweeney, S. Wolter, D. Neff, S. A. Montzka, B. R. Miller, D. Helmig, B. J. Johnson, and J. Hueber
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-20117-2014, https://doi.org/10.5194/acpd-14-20117-2014, 2014
Revised manuscript not accepted
P. Boylan, D. Helmig, and J.-H. Park
Atmos. Meas. Tech., 7, 1231–1244, https://doi.org/10.5194/amt-7-1231-2014, https://doi.org/10.5194/amt-7-1231-2014, 2014
B. Zhang, R. C. Owen, J. A. Perlinger, A. Kumar, S. Wu, M. Val Martin, L. Kramer, D. Helmig, and R. E. Honrath
Atmos. Chem. Phys., 14, 2267–2287, https://doi.org/10.5194/acp-14-2267-2014, https://doi.org/10.5194/acp-14-2267-2014, 2014
D. Helmig, V. Petrenko, P. Martinerie, E. Witrant, T. Röckmann, A. Zuiderweg, R. Holzinger, J. Hueber, C. Thompson, J. W. C. White, W. Sturges, A. Baker, T. Blunier, D. Etheridge, M. Rubino, and P. Tans
Atmos. Chem. Phys., 14, 1463–1483, https://doi.org/10.5194/acp-14-1463-2014, https://doi.org/10.5194/acp-14-1463-2014, 2014
D. Stone, M. J. Evans, H. Walker, T. Ingham, S. Vaughan, B. Ouyang, O. J. Kennedy, M. W. McLeod, R. L. Jones, J. Hopkins, S. Punjabi, R. Lidster, J. F. Hamilton, J. D. Lee, A. C. Lewis, L. J. Carpenter, G. Forster, D. E. Oram, C. E. Reeves, S. Bauguitte, W. Morgan, H. Coe, E. Aruffo, C. Dari-Salisburgo, F. Giammaria, P. Di Carlo, and D. E. Heard
Atmos. Chem. Phys., 14, 1299–1321, https://doi.org/10.5194/acp-14-1299-2014, https://doi.org/10.5194/acp-14-1299-2014, 2014
A. Kumar, S. Wu, M. F. Weise, R. Honrath, R. C. Owen, D. Helmig, L. Kramer, M. Val Martin, and Q. Li
Atmos. Chem. Phys., 13, 12537–12547, https://doi.org/10.5194/acp-13-12537-2013, https://doi.org/10.5194/acp-13-12537-2013, 2013
P. M. Edwards, M. J. Evans, K. L. Furneaux, J. Hopkins, T. Ingham, C. Jones, J. D. Lee, A. C. Lewis, S. J. Moller, D. Stone, L. K. Whalley, and D. E. Heard
Atmos. Chem. Phys., 13, 9497–9514, https://doi.org/10.5194/acp-13-9497-2013, https://doi.org/10.5194/acp-13-9497-2013, 2013
P. M. Edwards, C. J. Young, K. Aikin, J. deGouw, W. P. Dubé, F. Geiger, J. Gilman, D. Helmig, J. S. Holloway, J. Kercher, B. Lerner, R. Martin, R. McLaren, D. D. Parrish, J. Peischl, J. M. Roberts, T. B. Ryerson, J. Thornton, C. Warneke, E. J. Williams, and S. S. Brown
Atmos. Chem. Phys., 13, 8955–8971, https://doi.org/10.5194/acp-13-8955-2013, https://doi.org/10.5194/acp-13-8955-2013, 2013
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013, https://doi.org/10.5194/acp-13-6239-2013, 2013
L. Hu, D. B. Millet, S. Y. Kim, K. C. Wells, T. J. Griffis, E. V. Fischer, D. Helmig, J. Hueber, and A. J. Curtis
Atmos. Chem. Phys., 13, 3379–3392, https://doi.org/10.5194/acp-13-3379-2013, https://doi.org/10.5194/acp-13-3379-2013, 2013
J. R. Pierce, M. J. Evans, C. E. Scott, S. D. D'Andrea, D. K. Farmer, E. Swietlicki, and D. V. Spracklen
Atmos. Chem. Phys., 13, 3163–3176, https://doi.org/10.5194/acp-13-3163-2013, https://doi.org/10.5194/acp-13-3163-2013, 2013
A. C. Lewis, M. J. Evans, J. R. Hopkins, S. Punjabi, K. A. Read, R. M. Purvis, S. J. Andrews, S. J. Moller, L. J. Carpenter, J. D. Lee, A. R. Rickard, P. I. Palmer, and M. Parrington
Atmos. Chem. Phys., 13, 851–867, https://doi.org/10.5194/acp-13-851-2013, https://doi.org/10.5194/acp-13-851-2013, 2013
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The improved Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST): update, validation and applications
Tracing the origins of stratospheric ozone intrusions: direct vs. indirect pathways and their impacts on Central and Eastern China in spring–summer 2019
Flow-dependent observation errors for greenhouse gas inversions in an ensemble Kalman smoother
Observational and model evidence for a prominent stratospheric influence on variability in tropospheric nitrous oxide
Estimation of Canada's methane emissions: inverse modelling analysis using the Environment and Climate Change Canada (ECCC) measurement network
Spatiotemporal source apportionment of ozone pollution over the Greater Bay Area
The importance of moist thermodynamics on neutral buoyancy height for plumes from anthropogenic sources
Partitioning anthropogenic and natural methane emissions in Finland during 2000–2021 by combining bottom-up and top-down estimates
Potential of 14C-based vs. ΔCO-based ΔffCO2 observations to estimate urban fossil fuel CO2 (ffCO2) emissions
On the uncertainty of anthropogenic aromatic volatile organic compound emissions: model evaluation and sensitivity analysis
A mechanism of stratospheric O3 intrusion into the atmospheric environment: a case study of the North China Plain
Influence of atmospheric circulation on the interannual variability of transport from global and regional emissions into the Arctic
The role of OCO-3 XCO2 retrievals in estimating global terrestrial net ecosystem exchanges
Surface networks in the Arctic may miss a future methane bomb
Potential of using CO2 observations over India in a regional carbon budget estimation by improving the modelling system
A bottom-up emission estimate for the 2022 Nord Stream gas leak: derivation, simulations, and evaluation
European CH4 inversions with ICON-ART coupled to the CarbonTracker Data Assimilation Shell
Extreme weather exacerbates ozone pollution in the Pearl River Delta, China: role of natural processes
Multidecadal ozone trends in China and implications for human health and crop yields: a hybrid approach combining a chemical transport model and machine learning
On the influence of vertical mixing, boundary layer schemes, and temporal emission profiles on tropospheric NO2 in WRF-Chem – comparisons to in situ, satellite, and MAX-DOAS observations
Decreasing trends of ammonia emissions over Europe seen from remote sensing and inverse modelling
The sensitivity of Southern Ocean atmospheric dimethyl sulfide (DMS) to modeled oceanic DMS concentrations and emissions
Impacts of maritime shipping on air pollution along the US East Coast
Understanding greenhouse gas (GHG) column concentrations in Munich using the Weather Research and Forecasting (WRF) model
Impact of transport model resolution and a priori assumptions on inverse modeling of Swiss F-gas emissions
Estimation of power plant SO2 emissions using the HYSPLIT dispersion model and airborne observations with plume rise ensemble runs
Can we use atmospheric CO2 measurements to verify emission trends reported by cities? Lessons from a 6-year atmospheric inversion over Paris
A new steady-state gas–particle partitioning model of polycyclic aromatic hydrocarbons: implication for the influence of the particulate proportion in emissions
An analysis of CMAQ gas-phase dry deposition over North America through grid-scale and land-use-specific diagnostics in the context of AQMEII4
Rethinking the role of transport and photochemistry in regional ozone pollution: insights from ozone concentration and mass budgets
Decreasing seasonal cycle amplitude of methane in the northern high latitudes being driven by lower-latitude changes in emissions and transport
The effect of anthropogenic emission, meteorological factors, and carbon dioxide on the surface ozone increase in China from 2008 to 2018 during the East Asia summer monsoon season
Development of a CMAQ–PMF-based composite index for prescribing an effective ozone abatement strategy: a case study of sensitivity of surface ozone to precursor volatile organic compound species in southern Taiwan
Comment on “Climate consequences of hydrogen emissions” by Ocko and Hamburg (2022)
Constraining emissions of volatile organic compounds from western US wildfires with WE-CAN and FIREX-AQ airborne observations
Satellite quantification of methane emissions and oil–gas methane intensities from individual countries in the Middle East and North Africa: implications for climate action
Coupled mesoscale–microscale modeling of air quality in a polluted city using WRF-LES-Chem
Impact of aerosol optics on vertical distribution of ozone in autumn over Yangtze River Delta
A view of the European carbon flux landscape through the lens of the ICOS atmospheric observation network
Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020
Evaluation of simulated CO2 power plant plumes from six high-resolution atmospheric transport models
Impacts of urbanization on air quality and the related health risks in a city with complex terrain
Optimizing 4 years of CO2 biospheric fluxes from OCO-2 and in situ data in TM5: fire emissions from GFED and inferred from MOPITT CO data
Development and application of a multi-scale modeling framework for urban high-resolution NO2 pollution mapping
Towards monitoring the CO2 source–sink distribution over India via inverse modelling: quantifying the fine-scale spatiotemporal variability in the atmospheric CO2 mole fraction
Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations
Estimated regional CO2 flux and uncertainty based on an ensemble of atmospheric CO2 inversions
Assessing the representativity of NH3 measurements influenced by boundary-layer dynamics and the turbulent dispersion of a nearby emission source
Analysis of CO2, CH4, and CO surface and column concentrations observed at Réunion Island by assessing WRF-Chem simulations
Technical note: Interpretation of field observations of point-source methane plume using observation-driven large-eddy simulations
Zhou Zang, Jane Liu, David Tarasick, Omid Moeini, Jianchun Bian, Jinqiang Zhang, Anne M. Thompson, Roeland Van Malderen, Herman G. J. Smit, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige
Atmos. Chem. Phys., 24, 13889–13912, https://doi.org/10.5194/acp-24-13889-2024, https://doi.org/10.5194/acp-24-13889-2024, 2024
Short summary
Short summary
The Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST) provides a global-scale, long-term ozone climatology that is horizontally and vertically resolved. In this study, we improved, updated and validated TOST from 1970 to 2021. Based on this TOST dataset, we characterized global ozone variations spatially in both the troposphere and stratosphere and temporally by season and decade. We also showed a stagnant lower stratospheric ozone variation since the late 1990s.
Kai Meng, Tianliang Zhao, Yongqing Bai, Ming Wu, Le Cao, Xuewei Hou, Yuehan Luo, and Yongcheng Jiang
Atmos. Chem. Phys., 24, 12623–12642, https://doi.org/10.5194/acp-24-12623-2024, https://doi.org/10.5194/acp-24-12623-2024, 2024
Short summary
Short summary
We studied the impact of stratospheric intrusions (SIs) on tropospheric and near-surface ozone in Central and Eastern China from a stratospheric source tracing perspective. SIs contribute the most in the eastern plains, with a contribution exceeding 15 %, and have a small contribution to the west and south. Western Siberia and Mongolia are the most critical source areas for indirect and direct SIs, with the Rossby wave and northeast cold vortex being important driving circulation systems.
Michael Steiner, Luca Cantarello, Stephan Henne, and Dominik Brunner
Atmos. Chem. Phys., 24, 12447–12463, https://doi.org/10.5194/acp-24-12447-2024, https://doi.org/10.5194/acp-24-12447-2024, 2024
Short summary
Short summary
Atmospheric greenhouse gas inversions have great potential to independently check reported bottom-up emissions; however they are subject to large uncertainties. It is paramount to address and reduce the largest source of uncertainty, which stems from the representation of atmospheric transport in the models. In this study, we show that the use of a temporally varying flow-dependent atmospheric transport uncertainty can enhance the accuracy of emission estimation in an idealized experiment.
Cynthia D. Nevison, Qing Liang, Paul A. Newman, Britton B. Stephens, Geoff Dutton, Xin Lan, Roisin Commane, Yenny Gonzalez, and Eric Kort
Atmos. Chem. Phys., 24, 10513–10529, https://doi.org/10.5194/acp-24-10513-2024, https://doi.org/10.5194/acp-24-10513-2024, 2024
Short summary
Short summary
This study examines the drivers of interannual variability in tropospheric N2O. New insights are obtained from aircraft data and a chemistry–climate model that explicitly simulates stratospheric N2O. The stratosphere is found to be the dominant driver of N2O variability in the Northern Hemisphere, while both the stratosphere and El Niño cycles are important in the Southern Hemisphere. These results are consistent with known atmospheric dynamics and differences between the hemispheres.
Misa Ishizawa, Douglas Chan, Doug Worthy, Elton Chan, Felix Vogel, Joe R. Melton, and Vivek K. Arora
Atmos. Chem. Phys., 24, 10013–10038, https://doi.org/10.5194/acp-24-10013-2024, https://doi.org/10.5194/acp-24-10013-2024, 2024
Short summary
Short summary
Methane (CH4) emissions in Canada for 2007–2017 were estimated using Canada’s surface greenhouse gas measurements. The estimated emissions show no significant trend, but emission uncertainty was reduced as more measurement sites became available. Notably for climate change, we find the wetland CH4 emissions show a positive correlation with surface air temperature in summer. Canada’s measurement network could monitor future CH4 emission changes and compliance with climate change mitigation goals.
Yiang Chen, Xingcheng Lu, and Jimmy C. H. Fung
Atmos. Chem. Phys., 24, 8847–8864, https://doi.org/10.5194/acp-24-8847-2024, https://doi.org/10.5194/acp-24-8847-2024, 2024
Short summary
Short summary
This study investigates the contribution of pollutants from different emitting periods to ozone episodes over the Greater Bay Area. The analysis reveals the variation in major spatiotemporal contributors to the O3 pollution under the influence of typhoons and subtropical high pressure. Through temporal contribution analysis, our work offers a new perspective on the evolution of O3 pollution and can aid in developing effective and timely control policies under unfavorable weather conditions.
Sepehr Fathi, Paul Makar, Wanmin Gong, Junhua Zhang, Katherine Hayden, and Mark Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1655, https://doi.org/10.5194/egusphere-2024-1655, 2024
Short summary
Short summary
Our study explores the influence of water phase changes in plumes from industrial sources on atmospheric dispersion of emitted pollutants and air quality. Employing PRISM (Plume-Rise-Iterative-Stratified-Moist), a new method, we found that considering these effects significantly improves predictions of pollutant dispersion. This insight enhances our understanding of environmental impacts, enabling more accurate air quality modeling, and fostering more effective pollution management strategies.
Maria K. Tenkanen, Aki Tsuruta, Hugo Denier van der Gon, Lena Höglund-Isaksson, Antti Leppänen, Tiina Markkanen, Ana Maria Roxana Petrescu, Maarit Raivonen, and Tuula Aalto
EGUsphere, https://doi.org/10.5194/egusphere-2024-1953, https://doi.org/10.5194/egusphere-2024-1953, 2024
Short summary
Short summary
Accurate national methane (CH4) emission estimates are essential for tracking progress towards climate goals. This study compares estimates from Finland, which use different methods and scales, and shows how well a global model estimates emissions within a country. The bottom-up estimates vary a lot but constraining them with atmospheric CH4 measurements brought the estimates closer together. We also highlight the importance of quantifying natural emissions alongside anthropogenic emissions.
Fabian Maier, Christian Rödenbeck, Ingeborg Levin, Christoph Gerbig, Maksym Gachkivskyi, and Samuel Hammer
Atmos. Chem. Phys., 24, 8183–8203, https://doi.org/10.5194/acp-24-8183-2024, https://doi.org/10.5194/acp-24-8183-2024, 2024
Short summary
Short summary
We investigate the usage of discrete radiocarbon (14C)-based fossil fuel carbon dioxide (ffCO2) concentration estimates vs. continuous carbon monoxide (CO)-based ffCO2 estimates to evaluate the seasonal cycle of ffCO2 emissions in an urban region with an inverse modeling framework. We find that the CO-based ffCO2 estimates allow us to reconstruct robust seasonal cycles, which show the distinct COVID-19 drawdown in 2020 and can be used to validate emission inventories.
Kevin Oliveira, Marc Guevara, Oriol Jorba, Hervé Petetin, Dene Bowdalo, Carles Tena, Gilbert Montané Pinto, Franco López, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7137–7177, https://doi.org/10.5194/acp-24-7137-2024, https://doi.org/10.5194/acp-24-7137-2024, 2024
Short summary
Short summary
In this work, we assess and evaluate benzene, toluene, and xylene primary emissions and air quality levels in Spain by combining observations, emission inventories, and air quality modelling techniques. The comparison between modelled and observed levels allows identifying uncertainty sources within the emission input. This contributes to improving air quality models' performance when simulating these compounds, leading to better support for the design of effective pollution control strategies.
Yuehan Luo, Tianliang Zhao, Kai Meng, Jun Hu, Qingjian Yang, Yongqing Bai, Kai Yang, Weikang Fu, Chenghao Tan, Yifan Zhang, Yanzhe Zhang, and Zhikuan Li
Atmos. Chem. Phys., 24, 7013–7026, https://doi.org/10.5194/acp-24-7013-2024, https://doi.org/10.5194/acp-24-7013-2024, 2024
Short summary
Short summary
We reveal a significant mechanism of stratospheric O3 intrusion (SI) into the atmospheric environment induced by an extratropical cyclone system. This system facilitates the downward transport of stratospheric O3 to the near-surface layer by vertical coupling, involving the upper westerly trough, the middle northeast cold vortex, and the lower extratropical cyclone in the troposphere. On average, stratospheric O3 contributed 26.77 % to near-surface O3 levels over the North China Plain.
Cheng Zheng, Yutian Wu, Mingfang Ting, and Clara Orbe
Atmos. Chem. Phys., 24, 6965–6985, https://doi.org/10.5194/acp-24-6965-2024, https://doi.org/10.5194/acp-24-6965-2024, 2024
Short summary
Short summary
Trace gases and aerosols in the Arctic, which typically originate from midlatitude and tropical emission regions, modulate the Arctic climate via their radiative and chemistry impacts. Thus, long-range transport of these substances is important for understanding the current and the future change of Arctic climate. By employing chemistry–climate models, we explore how year-to-year variations in the atmospheric circulation modulate atmospheric long-range transport into the Arctic.
Xingyu Wang, Fei Jiang, Hengmao Wang, Zhengqi Zhang, Mousong Wu, Jun Wang, Wei He, Weimin Ju, and Jingming Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1568, https://doi.org/10.5194/egusphere-2024-1568, 2024
Short summary
Short summary
The role of Orbital Carbon Observatory 3 (OCO-3) satellites in estimating the global terrestrial near-Earth environment is unclear. So we study it by assimilating OCO-3 XCO2 alone and with OCO-2 XCO2 inversion. We found that assimilation OCO-3 XCO2 underestimated land sinks at high latitudes by retrieval alone. Joint assimilation of OCO-2 and OCO-3 XCO2 needs to be retrieved to better estimate global terrestrial NEEs.
Sophie Wittig, Antoine Berchet, Isabelle Pison, Marielle Saunois, and Jean-Daniel Paris
Atmos. Chem. Phys., 24, 6359–6373, https://doi.org/10.5194/acp-24-6359-2024, https://doi.org/10.5194/acp-24-6359-2024, 2024
Short summary
Short summary
The aim of this work is to analyse how accurately a methane bomb event could be detected with the current and a hypothetically extended stationary observation network in the Arctic. For this, we incorporate synthetically modelled possible future CH4 concentrations based on plausible emission scenarios into an inverse modelling framework. We analyse how well the increase is detected in different Arctic regions and evaluate the impact of additional observation sites in this respect.
Vishnu Thilakan, Dhanyalekshmi Pillai, Jithin Sukumaran, Christoph Gerbig, Haseeb Hakkim, Vinayak Sinha, Yukio Terao, Manish Naja, and Monish Vijay Deshpande
Atmos. Chem. Phys., 24, 5315–5335, https://doi.org/10.5194/acp-24-5315-2024, https://doi.org/10.5194/acp-24-5315-2024, 2024
Short summary
Short summary
This study investigates the usability of CO2 mixing ratio observations over India to infer regional carbon sources and sinks. We demonstrate that a high-resolution modelling system can represent the observed CO2 variations reasonably well by improving the transport and flux variations at a fine scale. Future carbon data assimilation systems can thus benefit from these recently available CO2 observations when fine-scale variations are adequately represented in the models.
Rostislav Kouznetsov, Risto Hänninen, Andreas Uppstu, Evgeny Kadantsev, Yalda Fatahi, Marje Prank, Dmitrii Kouznetsov, Steffen Manfred Noe, Heikki Junninen, and Mikhail Sofiev
Atmos. Chem. Phys., 24, 4675–4691, https://doi.org/10.5194/acp-24-4675-2024, https://doi.org/10.5194/acp-24-4675-2024, 2024
Short summary
Short summary
By relying solely on publicly available media reports, we were able to infer the temporal evolution and the injection height for the Nord Stream gas leaks in September 2022. The inventory specifies locations, vertical distributions, and temporal evolution of the methane sources. The inventory can be used to simulate the event with atmospheric transport models. The inventory is supplemented with a set of observational data tailored to evaluate the results of the simulated atmospheric dispersion.
Michael Steiner, Wouter Peters, Ingrid Luijkx, Stephan Henne, Huilin Chen, Samuel Hammer, and Dominik Brunner
Atmos. Chem. Phys., 24, 2759–2782, https://doi.org/10.5194/acp-24-2759-2024, https://doi.org/10.5194/acp-24-2759-2024, 2024
Short summary
Short summary
The Paris Agreement increased interest in estimating greenhouse gas (GHG) emissions of individual countries, but top-down emission estimation is not yet considered policy-relevant. It is therefore paramount to reduce large errors and to build systems that are based on the newest atmospheric transport models. In this study, we present the first application of ICON-ART in the inverse modeling of GHG fluxes with an ensemble Kalman filter and present our results for European CH4 emissions.
Nan Wang, Hongyue Wang, Xin Huang, Xi Chen, Yu Zou, Tao Deng, Tingyuan Li, Xiaopu Lyu, and Fumo Yang
Atmos. Chem. Phys., 24, 1559–1570, https://doi.org/10.5194/acp-24-1559-2024, https://doi.org/10.5194/acp-24-1559-2024, 2024
Short summary
Short summary
This study explores the influence of extreme-weather-induced natural processes on ozone pollution, which is often overlooked. By analyzing meteorological factors, natural emissions, chemistry pathways and atmospheric transport, we discovered that these natural processes could substantially exacerbate ozone pollution. The findings contribute to a deeper understanding of ozone pollution and offer valuable insights for controlling ozone pollution in the context of global warming.
Jia Mao, Amos P. K. Tai, David H. Y. Yung, Tiangang Yuan, Kong T. Chau, and Zhaozhong Feng
Atmos. Chem. Phys., 24, 345–366, https://doi.org/10.5194/acp-24-345-2024, https://doi.org/10.5194/acp-24-345-2024, 2024
Short summary
Short summary
Surface ozone (O3) is well-known for posing great threats to both human health and agriculture worldwide. However, a multidecadal assessment of the impacts of O3 on public health and agriculture in China is lacking without sufficient O3 observations. We used a hybrid approach combining a chemical transport model and machine learning to provide a robust dataset of O3 concentrations over the past 4 decades in China, thereby filling the gap in the long-term O3 trend and impact assessment in China.
Leon Kuhn, Steffen Beirle, Vinod Kumar, Sergey Osipov, Andrea Pozzer, Tim Bösch, Rajesh Kumar, and Thomas Wagner
Atmos. Chem. Phys., 24, 185–217, https://doi.org/10.5194/acp-24-185-2024, https://doi.org/10.5194/acp-24-185-2024, 2024
Short summary
Short summary
NO₂ is an important air pollutant. It was observed that the WRF-Chem model shows significant deviations in NO₂ abundance when compared to measurements. We use a 1-month simulation over central Europe to show that these deviations can be mostly resolved by reparameterization of the vertical mixing routine. In order to validate our results, they are compared to in situ, satellite, and MAX-DOAS measurements.
Ondřej Tichý, Sabine Eckhardt, Yves Balkanski, Didier Hauglustaine, and Nikolaos Evangeliou
Atmos. Chem. Phys., 23, 15235–15252, https://doi.org/10.5194/acp-23-15235-2023, https://doi.org/10.5194/acp-23-15235-2023, 2023
Short summary
Short summary
We show declining trends in NH3 emissions over Europe for 2013–2020 using advanced dispersion and inverse modelling and satellite measurements from CrIS. Emissions decreased by −26% since 2013, showing that the abatement strategies adopted by the European Union have been very efficient. Ammonia emissions are low in winter and peak in summer due to temperature-dependent soil volatilization. The largest decreases were observed in central and western Europe in countries with high emissions.
Yusuf A. Bhatti, Laura E. Revell, Alex J. Schuddeboom, Adrian J. McDonald, Alex T. Archibald, Jonny Williams, Abhijith U. Venugopal, Catherine Hardacre, and Erik Behrens
Atmos. Chem. Phys., 23, 15181–15196, https://doi.org/10.5194/acp-23-15181-2023, https://doi.org/10.5194/acp-23-15181-2023, 2023
Short summary
Short summary
Aerosols are a large source of uncertainty over the Southern Ocean. A dominant source of sulfate aerosol in this region is dimethyl sulfide (DMS), which is poorly simulated by climate models. We show the sensitivity of simulated atmospheric DMS to the choice of oceanic DMS data set and emission scheme. We show that oceanic DMS has twice the influence on atmospheric DMS than the emission scheme. Simulating DMS more accurately in climate models will help to constrain aerosol uncertainty.
Maryam Golbazi and Cristina Archer
Atmos. Chem. Phys., 23, 15057–15075, https://doi.org/10.5194/acp-23-15057-2023, https://doi.org/10.5194/acp-23-15057-2023, 2023
Short summary
Short summary
We use scientific models to study the impact of ship emissions on air quality along the US East Coast. We find an increase in three major pollutants (PM2.5, NO2, and SO2) in coastal regions. However, we detect a reduction in ozone (O3) levels in major coastal cities. This reduction is linked to the significant emissions of nitrogen oxides (NOx) from ships, which scavenged O3, especially in highly polluted urban areas experiencing an NOx-limited regime.
Xinxu Zhao, Jia Chen, Julia Marshall, Michal Gałkowski, Stephan Hachinger, Florian Dietrich, Ankit Shekhar, Johannes Gensheimer, Adrian Wenzel, and Christoph Gerbig
Atmos. Chem. Phys., 23, 14325–14347, https://doi.org/10.5194/acp-23-14325-2023, https://doi.org/10.5194/acp-23-14325-2023, 2023
Short summary
Short summary
We develop a modeling framework using the Weather Research and Forecasting model at a high spatial resolution (up to 400 m) to simulate atmospheric transport of greenhouse gases and interpret column observations. Output is validated against weather stations and column measurements in August 2018. The differential column method is applied, aided by air-mass transport tracing with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, also for an exploratory measurement interpretation.
Ioannis Katharopoulos, Dominique Rust, Martin K. Vollmer, Dominik Brunner, Stefan Reimann, Simon J. O'Doherty, Dickon Young, Kieran M. Stanley, Tanja Schuck, Jgor Arduini, Lukas Emmenegger, and Stephan Henne
Atmos. Chem. Phys., 23, 14159–14186, https://doi.org/10.5194/acp-23-14159-2023, https://doi.org/10.5194/acp-23-14159-2023, 2023
Short summary
Short summary
The effectiveness of climate change mitigation needs to be scrutinized by monitoring greenhouse gas (GHG) emissions. Countries report their emissions to the UN in a bottom-up manner. By combining atmospheric observations and transport models someone can independently validate emission estimates in a top-down fashion. We report Swiss emissions of synthetic GHGs based on kilometer-scale transport and inverse modeling, highlighting the role of appropriate resolution in complex terrain.
Tianfeng Chai, Xinrong Ren, Fong Ngan, Mark Cohen, and Alice Crawford
Atmos. Chem. Phys., 23, 12907–12933, https://doi.org/10.5194/acp-23-12907-2023, https://doi.org/10.5194/acp-23-12907-2023, 2023
Short summary
Short summary
The SO2 emissions of three power plants are estimated using aircraft observations and an ensemble of HYSPLIT dispersion simulations with different plume rise parameters. The emission estimates using the runs with the lowest root mean square errors (RMSEs) and the runs with the best correlation coefficients between the predicted and observed mixing ratios both agree well with the Continuous Emissions Monitoring Systems (CEMS) data. The RMSE-based plume rise appears to be more reasonable.
Jinghui Lian, Thomas Lauvaux, Hervé Utard, François-Marie Bréon, Grégoire Broquet, Michel Ramonet, Olivier Laurent, Ivonne Albarus, Mali Chariot, Simone Kotthaus, Martial Haeffelin, Olivier Sanchez, Olivier Perrussel, Hugo Anne Denier van der Gon, Stijn Nicolaas Camiel Dellaert, and Philippe Ciais
Atmos. Chem. Phys., 23, 8823–8835, https://doi.org/10.5194/acp-23-8823-2023, https://doi.org/10.5194/acp-23-8823-2023, 2023
Short summary
Short summary
This study quantifies urban CO2 emissions via an atmospheric inversion for the Paris metropolitan area over a 6-year period from 2016 to 2021. Results show a long-term decreasing trend of about 2 % ± 0.6 % per year in the annual CO2 emissions over Paris. We conclude that our current capacity can deliver near-real-time CO2 emission estimates at the city scale in under a month, and the results agree within 10 % with independent estimates from multiple city-scale inventories.
Fu-Jie Zhu, Peng-Tuan Hu, and Wan-Li Ma
Atmos. Chem. Phys., 23, 8583–8590, https://doi.org/10.5194/acp-23-8583-2023, https://doi.org/10.5194/acp-23-8583-2023, 2023
Short summary
Short summary
A new steady-state gas–particle partitioning model of polycyclic aromatic hydrocarbons was established based on the level-III multimedia fugacity model, which proved that the particulate proportion of PAHs in emissions was a crucial factor for G–P partitioning of PAHs. In addition, gaseous and particulate interference was also derived in the new steady-state model determined by the particulate proportion in emission that could derivate the G–P partitioning quotients from the equilibrium state.
Christian Hogrefe, Jesse O. Bash, Jonathan E. Pleim, Donna B. Schwede, Robert C. Gilliam, Kristen M. Foley, K. Wyat Appel, and Rohit Mathur
Atmos. Chem. Phys., 23, 8119–8147, https://doi.org/10.5194/acp-23-8119-2023, https://doi.org/10.5194/acp-23-8119-2023, 2023
Short summary
Short summary
Under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in the widely used CMAQ model. The results illustrate how these tools can provide insights into similarities and differences between the two CMAQ dry deposition options that affect simulated pollutant budgets and ecosystem impacts from atmospheric pollution.
Kun Qu, Xuesong Wang, Xuhui Cai, Yu Yan, Xipeng Jin, Mihalis Vrekoussis, Maria Kanakidou, Guy P. Brasseur, Jin Shen, Teng Xiao, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 7653–7671, https://doi.org/10.5194/acp-23-7653-2023, https://doi.org/10.5194/acp-23-7653-2023, 2023
Short summary
Short summary
Basic understandings of ozone processes, especially transport and chemistry, are essential to support ozone pollution control, but studies often have different views on their relative importance. We developed a method to quantify their contributions in the ozone mass and concentration budgets based on the WRF-CMAQ model. Results in a polluted region highlight the differences between two budgets. For future studies, two budgets are both needed to fully understand the effects of ozone processes.
Emily Dowd, Chris Wilson, Martyn P. Chipperfield, Emanuel Gloor, Alistair Manning, and Ruth Doherty
Atmos. Chem. Phys., 23, 7363–7382, https://doi.org/10.5194/acp-23-7363-2023, https://doi.org/10.5194/acp-23-7363-2023, 2023
Short summary
Short summary
Surface observations of methane show that the seasonal cycle amplitude (SCA) of methane is decreasing in the northern high latitudes (NHLs) but increased globally (1995–2020). The NHL decrease is counterintuitive, as we expect the SCA to increase with increasing concentrations. We use a chemical transport model to investigate changes in SCA in the NHLs. We find well-mixed methane and changes in emissions from Canada, the Middle East, and Europe are the largest contributors to the SCA in NHLs.
Danyang Ma, Tijian Wang, Hao Wu, Yawei Qu, Jian Liu, Jane Liu, Shu Li, Bingliang Zhuang, Mengmeng Li, and Min Xie
Atmos. Chem. Phys., 23, 6525–6544, https://doi.org/10.5194/acp-23-6525-2023, https://doi.org/10.5194/acp-23-6525-2023, 2023
Short summary
Short summary
Increasing surface ozone (O3) concentrations have long been a significant environmental issue in China, despite the Clean Air Action Plan launched in 2013. Most previous research ignores the contributions of CO2 variations. Our study comprehensively analyzed O3 variation across China from various perspectives and highlighted the importance of considering CO2 variations when designing long-term O3 control policies, especially in high-vegetation-coverage areas.
Jackson Hian-Wui Chang, Stephen M. Griffith, Steven Soon-Kai Kong, Ming-Tung Chuang, and Neng-Huei Lin
Atmos. Chem. Phys., 23, 6357–6382, https://doi.org/10.5194/acp-23-6357-2023, https://doi.org/10.5194/acp-23-6357-2023, 2023
Short summary
Short summary
A novel CMAQ–PMF-based composite index is developed to identify the key VOC source species for an effective ozone abatement strategy. The index provides information as to which VOC species are key to ozone formation and where to reduce sources of these VOC species. Using the composite index, we recommended the VOC control measures in southern Taiwan should prioritize solvent usage, vehicle emissions, and the petrochemical industry.
Lei Duan and Ken Caldeira
Atmos. Chem. Phys., 23, 6011–6020, https://doi.org/10.5194/acp-23-6011-2023, https://doi.org/10.5194/acp-23-6011-2023, 2023
Short summary
Short summary
Ocko and Hamburg (2022) emphasize the short-term climate impact of hydrogen, and we present an analysis that places greater focus on long-term outcomes. We have derived equations that describe the time-evolving impact of hydrogen and show that higher methane leakage is primarily responsible for the warming potential of blue hydrogen, while hydrogen leakage plays a less critical role. Fossil fuels show more prominent longer-term climate impacts than clean hydrogen under all emission scenarios.
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
Atmos. Chem. Phys., 23, 5969–5991, https://doi.org/10.5194/acp-23-5969-2023, https://doi.org/10.5194/acp-23-5969-2023, 2023
Short summary
Short summary
Air quality in the USA has been improving since 1970 due to anthropogenic emission reduction. Those gains have been partly offset by increased wildfire pollution in the western USA in the past 20 years. Still, we do not understand wildfire emissions well due to limited measurements. Here, we used a global transport model to evaluate and constrain current knowledge of wildfire emissions with recent observational constraints, showing the underestimation of wildfire emissions in the western USA.
Zichong Chen, Daniel J. Jacob, Ritesh Gautam, Mark Omara, Robert N. Stavins, Robert C. Stowe, Hannah Nesser, Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Drew C. Pendergrass, and Sarah Hancock
Atmos. Chem. Phys., 23, 5945–5967, https://doi.org/10.5194/acp-23-5945-2023, https://doi.org/10.5194/acp-23-5945-2023, 2023
Short summary
Short summary
We quantify methane emissions from individual countries in the Middle East and North Africa by inverse analysis of 2019 TROPOMI satellite observations of atmospheric methane. We show that the ability to simply relate oil/gas emissions to activity metrics is compromised by stochastic nature of local infrastructure and management practices. We find that the industry target for oil/gas methane intensity is achievable through associated gas capture, modern infrastructure, and centralized operations.
Yuting Wang, Yong-Feng Ma, Domingo Muñoz-Esparza, Jianing Dai, Cathy Wing Yi Li, Pablo Lichtig, Roy Chun-Wang Tsang, Chun-Ho Liu, Tao Wang, and Guy Pierre Brasseur
Atmos. Chem. Phys., 23, 5905–5927, https://doi.org/10.5194/acp-23-5905-2023, https://doi.org/10.5194/acp-23-5905-2023, 2023
Short summary
Short summary
Air quality in urban areas is difficult to simulate in coarse-resolution models. This work exploits the WRF (Weather Research and Forecasting) model coupled with a large-eddy simulation (LES) component and online chemistry to perform high-resolution (33.3 m) simulations of air quality in a large city. The evaluation of the simulations with observations shows that increased model resolution improves the representation of the chemical species near the pollution sources.
Shuqi Yan, Bin Zhu, Shuangshuang Shi, Wen Lu, Jinhui Gao, Hanqing Kang, and Duanyang Liu
Atmos. Chem. Phys., 23, 5177–5190, https://doi.org/10.5194/acp-23-5177-2023, https://doi.org/10.5194/acp-23-5177-2023, 2023
Short summary
Short summary
We analyze ozone response to aerosol mixing states in the vertical direction by WRF-Chem simulations. Aerosols generally lead to turbulent suppression, precursor accumulation, low-level photolysis reduction, and upper-level photolysis enhancement under different underlying surface and pollution conditions. Thus, ozone decreases within the entire boundary layer during the daytime, and the decrease is the least in aerosol external mixing states compared to internal and core shell mixing states.
Ida Storm, Ute Karstens, Claudio D'Onofrio, Alex Vermeulen, and Wouter Peters
Atmos. Chem. Phys., 23, 4993–5008, https://doi.org/10.5194/acp-23-4993-2023, https://doi.org/10.5194/acp-23-4993-2023, 2023
Short summary
Short summary
In this study, we evaluate what is in the influence regions of the ICOS atmospheric measurement stations to gain insight into what land cover types and land-cover-associated fluxes the network represents. Subsequently, insights about strengths, weaknesses, and potential gaps can assist in future network expansion decisions. The network is concentrated in central Europe, which leads to a general overrepresentation of coniferous forest and cropland and underrepresentation of grass and shrubland.
Anna Agustí-Panareda, Jérôme Barré, Sébastien Massart, Antje Inness, Ilse Aben, Melanie Ades, Bianca C. Baier, Gianpaolo Balsamo, Tobias Borsdorff, Nicolas Bousserez, Souhail Boussetta, Michael Buchwitz, Luca Cantarello, Cyril Crevoisier, Richard Engelen, Henk Eskes, Johannes Flemming, Sébastien Garrigues, Otto Hasekamp, Vincent Huijnen, Luke Jones, Zak Kipling, Bavo Langerock, Joe McNorton, Nicolas Meilhac, Stefan Noël, Mark Parrington, Vincent-Henri Peuch, Michel Ramonet, Miha Razinger, Maximilian Reuter, Roberto Ribas, Martin Suttie, Colm Sweeney, Jérôme Tarniewicz, and Lianghai Wu
Atmos. Chem. Phys., 23, 3829–3859, https://doi.org/10.5194/acp-23-3829-2023, https://doi.org/10.5194/acp-23-3829-2023, 2023
Short summary
Short summary
We present a global dataset of atmospheric CO2 and CH4, the two most important human-made greenhouse gases, which covers almost 2 decades (2003–2020). It is produced by combining satellite data of CO2 and CH4 with a weather and air composition prediction model, and it has been carefully evaluated against independent observations to ensure validity and point out deficiencies to the user. This dataset can be used for scientific studies in the field of climate change and the global carbon cycle.
Dominik Brunner, Gerrit Kuhlmann, Stephan Henne, Erik Koene, Bastian Kern, Sebastian Wolff, Christiane Voigt, Patrick Jöckel, Christoph Kiemle, Anke Roiger, Alina Fiehn, Sven Krautwurst, Konstantin Gerilowski, Heinrich Bovensmann, Jakob Borchardt, Michal Galkowski, Christoph Gerbig, Julia Marshall, Andrzej Klonecki, Pascal Prunet, Robert Hanfland, Margit Pattantyús-Ábrahám, Andrzej Wyszogrodzki, and Andreas Fix
Atmos. Chem. Phys., 23, 2699–2728, https://doi.org/10.5194/acp-23-2699-2023, https://doi.org/10.5194/acp-23-2699-2023, 2023
Short summary
Short summary
We evaluated six atmospheric transport models for their capability to simulate the CO2 plumes from two of the largest power plants in Europe by comparing the models against aircraft observations collected during the CoMet (Carbon Dioxide and Methane Mission) campaign in 2018. The study analyzed how realistically such plumes can be simulated at different model resolutions and how well the planned European satellite mission CO2M will be able to quantify emissions from power plants.
Chenchao Zhan, Min Xie, Hua Lu, Bojun Liu, Zheng Wu, Tijian Wang, Bingliang Zhuang, Mengmeng Li, and Shu Li
Atmos. Chem. Phys., 23, 771–788, https://doi.org/10.5194/acp-23-771-2023, https://doi.org/10.5194/acp-23-771-2023, 2023
Short summary
Short summary
With the development of urbanization, urban land use and anthropogenic
emissions increase, affecting urban air quality and, in turn, the health risks associated with air pollutants. In this study, we systematically evaluate the impacts of urbanization on air quality and the corresponding health risks in a highly urbanized city with severe air pollution and complex terrain. This work focuses on the health risks caused by urbanization and can provide valuable insight for air pollution strategies.
Hélène Peiro, Sean Crowell, and Berrien Moore III
Atmos. Chem. Phys., 22, 15817–15849, https://doi.org/10.5194/acp-22-15817-2022, https://doi.org/10.5194/acp-22-15817-2022, 2022
Short summary
Short summary
CO data can provide a powerful constraint on fire fluxes, supporting more accurate estimation of biospheric CO2 fluxes. We converted CO fire flux into CO2 fire prior, which is then used to adjust CO2 respiration. We applied this to two other fire flux products. CO2 inversions constrained by satellites or in situ data are then performed. Results show larger variations among the data assimilated than across the priors, but tropical flux from in situ inversions is sensitive to priors.
Zhaofeng Lv, Zhenyu Luo, Fanyuan Deng, Xiaotong Wang, Junchao Zhao, Lucheng Xu, Tingkun He, Yingzhi Zhang, Huan Liu, and Kebin He
Atmos. Chem. Phys., 22, 15685–15702, https://doi.org/10.5194/acp-22-15685-2022, https://doi.org/10.5194/acp-22-15685-2022, 2022
Short summary
Short summary
This study developed a hybrid model, CMAQ-RLINE_URBAN, to predict the urban NO2 concentrations at a high spatial resolution. To estimate the influence of various street canyons on the dispersion of air pollutants, a new parameterization scheme was established based on computational fluid dynamics and machine learning methods. This work created a new method to identify the characteristics of vehicle-related air pollution at both city and street scales simultaneously and accurately.
Vishnu Thilakan, Dhanyalekshmi Pillai, Christoph Gerbig, Michal Galkowski, Aparnna Ravi, and Thara Anna Mathew
Atmos. Chem. Phys., 22, 15287–15312, https://doi.org/10.5194/acp-22-15287-2022, https://doi.org/10.5194/acp-22-15287-2022, 2022
Short summary
Short summary
This paper demonstrates how we can use atmospheric observations to improve the CO2 flux estimates in India. This is achieved by improving the representation of terrain, mesoscale transport, and flux variations. We quantify the impact of the unresolved variations in the current models on optimally estimated fluxes via inverse modelling and quantify the associated flux uncertainty. We illustrate how a parameterization scheme captures this variability in the coarse models.
Zichong Chen, Daniel J. Jacob, Hannah Nesser, Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Elise Penn, and Xueying Yu
Atmos. Chem. Phys., 22, 10809–10826, https://doi.org/10.5194/acp-22-10809-2022, https://doi.org/10.5194/acp-22-10809-2022, 2022
Short summary
Short summary
We quantify methane emissions in China and contributions from different sectors by inverse analysis of 2019 TROPOMI satellite observations of atmospheric methane. We find that anthropogenic methane emissions for China are underestimated in the national inventory. Our estimate of emissions indicates a small life-cycle loss rate, implying net climate benefits from the current
coal-to-gasenergy transition in China. However, this small loss rate can be misleading given China's high gas imports.
Naveen Chandra, Prabir K. Patra, Yousuke Niwa, Akihiko Ito, Yosuke Iida, Daisuke Goto, Shinji Morimoto, Masayuki Kondo, Masayuki Takigawa, Tomohiro Hajima, and Michio Watanabe
Atmos. Chem. Phys., 22, 9215–9243, https://doi.org/10.5194/acp-22-9215-2022, https://doi.org/10.5194/acp-22-9215-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: (1) quantify mean and uncertainty in non-fossil-fuel CO2 fluxes estimated by inverse modeling and (2) provide in-depth analyses of regional CO2 fluxes in support of emission mitigation policymaking. CO2 flux variability and trends are discussed concerning natural climate variability and human disturbances using multiple lines of evidence.
Ruben B. Schulte, Margreet C. van Zanten, Bart J. H. van Stratum, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 22, 8241–8257, https://doi.org/10.5194/acp-22-8241-2022, https://doi.org/10.5194/acp-22-8241-2022, 2022
Short summary
Short summary
We present a fine-scale simulation framework, utilizing large-eddy simulations, to assess NH3 measurements influenced by boundary-layer dynamics and turbulent dispersion of a nearby emission source. The minimum required distance from an emission source differs for concentration and flux measurements, from 0.5–3.0 km and 0.75–4.5 km, respectively. The simulation framework presented here proves to be a powerful and versatile tool for future NH3 research at high spatio-temporal resolutions.
Sieglinde Callewaert, Jérôme Brioude, Bavo Langerock, Valentin Duflot, Dominique Fonteyn, Jean-François Müller, Jean-Marc Metzger, Christian Hermans, Nicolas Kumps, Michel Ramonet, Morgan Lopez, Emmanuel Mahieu, and Martine De Mazière
Atmos. Chem. Phys., 22, 7763–7792, https://doi.org/10.5194/acp-22-7763-2022, https://doi.org/10.5194/acp-22-7763-2022, 2022
Short summary
Short summary
A regional atmospheric transport model is used to analyze the factors contributing to CO2, CH4, and CO observations at Réunion Island. We show that the surface observations are dominated by local fluxes and dynamical processes, while the column data are influenced by larger-scale mechanisms such as biomass burning plumes. The model is able to capture the measured time series well; however, the results are highly dependent on accurate boundary conditions and high-resolution emission inventories.
Anja Ražnjević, Chiel van Heerwaarden, Bart van Stratum, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, and Maarten Krol
Atmos. Chem. Phys., 22, 6489–6505, https://doi.org/10.5194/acp-22-6489-2022, https://doi.org/10.5194/acp-22-6489-2022, 2022
Short summary
Short summary
Mobile measurement techniques (e.g., instruments placed in cars) are often employed to identify and quantify individual sources of greenhouse gases. Due to road restrictions, those observations are often sparse (temporally and spatially). We performed high-resolution simulations of plume dispersion, with realistic weather conditions encountered in the field, to reproduce the measurement process of a methane plume emitted from an oil well and provide additional information about the plume.
Cited articles
Bariteau, L., Helmig, D., Fairall, C. W., Hare, J. E., Hueber, J., and Lang, E. K.: Determination of oceanic ozone deposition by ship-borne eddy covariance flux measurements, Atmos. Meas. Tech., 3, 441–455, https://doi.org/10.5194/amt-3-441-2010, 2010. a
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095,
https://doi.org/10.1029/2001JD000807, 2001. a
Carpenter, L., MacDonald, S., Shaw, M., Kumar, R., Saunders, R., Parthipan, R.,
Wilson, J., and Plane, J.: Atmospheric iodine levels influenced by sea
surface emissions of inorganic iodine, Nat. Geosci., 6, 108–111,
https://doi.org/10.1038/ngeo1687, 2013. a
Chance, R., Tinel, L., Sherwen, T., Baker, A., Bell, T., Brindle, J., Campos,
M., Croot, P., Ducklow, H., He, P., Hoogakker, B., Hopkins, F., Hughes, C.,
Jickells, T., Loades, D., Macaya, D., Mahajan, A., Malin, G., Phillips, D.,
Sinha, A., Sarkar, A., Roberts, I., Roy, R., Song, X., Winklebauer, H.,
Wuttig, K., Yang, M., Zhou, P., and Carpenter, L.: Global sea-surface iodide
observations, 1967–2018, Sci. Data, 6, 286, https://doi.org/10.1038/s41597-019-0288-y, 2019. a
Chang, W., Heikes, B., and Lee, M.: Ozone deposition to the sea
surface:chemical enhancement and wind speed dependence, Atmos. Environ., 38,
1053–1059, https://doi.org/10.1016/j.atmosenv.2003.10.050, 2004. a
Fairall, C. W., Helmig, D., Ganzeveld, L., and Hare, J.: Water-side turbulence enhancement of ozone deposition to the ocean, Atmos. Chem. Phys., 7, 443–451, https://doi.org/10.5194/acp-7-443-2007, 2007. a, b, c
Fowler, D., Amann, M., Anderson, R., Ashmore, M., Cox, P., Depledge, M., Derwent, D., Grennfelt, P., Hewitt, N., Hov, O., Jenkin, M., Kelly, F., Liss, P., Pilling, M., Pyle, J., Slingo,
J., and Stevenson, D.: Ground-level ozone in the 21st century: future trends,
impacts and policy implications, RS1276 ed., The Royal Society, London, 132 p., Royal Society Policy Document 15/08, 2008. a
Ganzeveld, L., Helmig, D., Fairall, C., Hare, J., and Pozzer, A.:
Atmosphere-ocean ozone exchange: A global modeling study of biogeochemical,
atmospheric, and waterside turbulence dependencies, Global. Biogeochem. Cy., 23, 4, https://doi.org/10.1029/2008GB003301, 2009. a, b
Garland, J. A. and Curtis, H.: Emission of iodine from the sea surface in the
presence of ozone, J. Geophys. Res.-Oceans, 86, 3183–3186,
https://doi.org/10.1029/JC086iC04p03183, 1981. a
Garland, J. A., Elzerman, A. W., and Penkett, S. A.: The mechanism for dry
deposition of ozone to seawater surfaces, J. Geophys. Res.-Oceans, 85,
7488–7492, https://doi.org/10.1029/JC085iC12p07488, 1980. a, b, c
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Hardacre, C., Wild, O., and Emberson, L.: An evaluation of ozone dry deposition in global scale chemistry climate models, Atmos. Chem. Phys., 15, 6419–6436, https://doi.org/10.5194/acp-15-6419-2015, 2015. a, b, c
Hayase, S., Yabushita, A., Kawasaki, M., Enami, S., Hoffmann, M. R., and
Colussi, A. J.: Heterogeneous Reaction of Gaseous Ozone with Aqueous Iodide
in the Presence of Aqueous Organic Species, J. Phys. Chem. A, 114, 6016–6021,
https://doi.org/10.1021/jp101985f, 2010. a
Helmig, D., Lang, E. K., Bariteau, L., Boylan, P., Fairall, C. W., Ganzeveld,
L., Hare, J. E., Hueber, J., and Pallandt, M.: Atmosphere-ocean ozone fluxes
during the TexAQS 2006, STRATUS 2006, GOMECC 2007, GasEx 2008, and AMMA 2008
cruises, J. Geophys. Res.-Atmos., 117, D4, https://doi.org/10.1029/2011JD015955, 2012. a, b, c, d, e, f
Hu, J. H., Shi, Q., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb,
C. E.: Reactive Uptake of Cl2(g) and Br2(g) by Aqueous Surfaces as a Function
of Br- and I- Ion Concentration: The Effect of Chemical Reaction at the
Interface, J. Phys. Chem., 99, 8768–8776, https://doi.org/10.1021/j100021a050, 1995. a, b
IPCC: Climate Change 2013: The
Physical Science Basis, Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P., 2013. a
Johnson, P. N. and Davis, R. A.: Diffusivity of Ozone in Water, J. Chem. Eng. Data, 41, 1485–1487, https://doi.org/10.1021/je9602125, 1996. a
Liu, Q., Schurter, L. M., Muller, C. E., Aloisio, S., Francisco, J. S., and
Margerum, D. W.: Kinetics and Mechanisms of Aqueous Ozone Reactions with
Bromide, Sulfite, Hydrogen Sulfite, Iodide, and Nitrite Ions, Inorg. Chem., 40,
4436–4442, https://doi.org/10.1021/ic000919j, 2001. a, b
Luhar, A. K., Galbally, I. E., Woodhouse, M. T., and Thatcher, M.: An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate–chemistry model, Atmos. Chem. Phys., 17, 3749–3767, https://doi.org/10.5194/acp-17-3749-2017, 2017. a, b
Luhar, A. K., Woodhouse, M. T., and Galbally, I. E.: A revised global ozone dry deposition estimate based on a new two-layer parameterisation for air–sea exchange and the multi-year MACC composition reanalysis, Atmos. Chem. Phys., 18, 4329–4348, https://doi.org/10.5194/acp-18-4329-2018, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n
MacDonald, S. M., Gómez Martín, J. C., Chance, R., Warriner, S., Saiz-Lopez, A., Carpenter, L. J., and Plane, J. M. C.: A laboratory characterisation of inorganic iodine emissions from the sea surface: dependence on oceanic variables and parameterisation for global modelling, Atmos. Chem. Phys., 14, 5841–5852, https://doi.org/10.5194/acp-14-5841-2014, 2014. a, b, c
Malley, C. S., Henze, D. K., Kuylenstierna, J. C., Vallack, H. W., Davila, Y.,
Anenberg, S. C., Turner, M. C., and Ashmore, M. R.: Updated Global Estimates
of Respiratory Mortality in Adults ≥ 30 Years of Age Attributable to
Long-Term Ozone Exposure, Environ. Health Persp., 125, 087021,
https://doi.org/10.1289/EHP1390, 2017. a
Martino, M., Lézé, B., Baker, A., and Liss, P.: Chemical controls on ozone
deposition to water, Geophys. Res. Lett., 39, L05809,
https://doi.org/10.1029/2011GL050282, 2012. a, b
Morris, J.: The aqueous solubility of ozone – A review, Ozone news, 1, 14–16,
1988. a
Sakamoto, Y., Yabushita, A., Kawasaki, M., and Enami, S.: Direct Emission of I2
Molecule and IO Radical from the Heterogeneous Reactions of Gaseous Ozone
with Aqueous Potassium Iodide Solution, J. Phys. Chem. A, 113, 7707–7713,
https://doi.org/10.1021/jp903486u, 2009. a
Sarwar, G., Kang, D., Foley, K., Schwede, D., and Gantt, B.: Technical note:
Examining ozone deposition over seawater, Atmos. Environ., 141, 255–262,
https://doi.org/10.1016/j.atmosenv.2016.06.072, 2016. a
Schmidt, J. A., Jacob, D. J., Horowitz, H. M., Hu, L., Sherwen, T., Evans,
M. J., Liang, Q., Suleiman, R. M., Oram, D. E., Le Breton, M., Percival,
C. J., Wang, S., Dix, B., and Volkamer, R.: Modeling the observed
tropospheric BrO background: Importance of multiphase chemistry and
implications for ozone, OH, and mercury, J. Geophys. Res.-Atmos., 121,
11819–11835, https://doi.org/10.1002/2015JD024229, 2016. a
Shaw, M. D. and Carpenter, L. J.: Modification of Ozone Deposition and I2
Emissions at the Air-Aqueous Interface by Dissolved Organic Carbon of Marine
Origin, Environ. Sci. Technol., 47, 10947–10954, https://doi.org/10.1021/es4011459,
2013. a, b
Sherwen, T., Evans, M. J., Carpenter, L. J., Andrews, S. J., Lidster, R. T., Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A., Prados-Roman, C., Mahajan, A. S., and Ordóñez, C.: Iodine's impact on tropospheric oxidants: a global model study in GEOS-Chem, Atmos. Chem. Phys., 16, 1161–1186, https://doi.org/10.5194/acp-16-1161-2016, 2016a. a
Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D., Jacob, D. J., Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A., Prados-Roman, C., Mahajan, A. S., and Ordóñez, C.: Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem, Atmos. Chem. Phys., 16, 12239–12271, https://doi.org/10.5194/acp-16-12239-2016, 2016b. a, b
Silva, S. J. and Heald, C. L.: Investigating Dry Deposition of Ozone to
Vegetation, J. Geophys. Res.-Atmos., 123, 559–573, https://doi.org/10.1002/2017JD027278,
2018. a
The International GEOS-Chem User Community: geoschem/geos-chem:
GEOS-Chem 12.1.1 (Version 12.1.1), Zenodo, https://doi.org/10.5281/zenodo.2249246, 13 December 2018. a
Wang, Y., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric
O3−NOx-hydrocarbon chemistry: 1. Model formulation, J. Geophys. Res.-Atmos.,
103, 10713–10725, https://doi.org/10.1029/98JD00158, 1998. a
Wesely, M. and Hicks, B.: Some Factors that Affect the Deposition Rates of
Sulfur Dioxide and Similar Gases on Vegetation, JAPCA J. Air Waste Ma., 27, 1110–1116, https://doi.org/10.1080/00022470.1977.10470534,
1977.
a
Young, P., Naik, V., Fiore, A., Gaudel, A., Guo, J., Lin, M., Neu, J., Parrish,
D., Rieder, H., Schnell, J., Tilmes, S., Wild, O., Zhang, L., Ziemke, J.,
Brandt, J., Delcloo, A., Doherty, R., Geels, C., Hegglin, M., Hu, L., Im, U.,
Kumar, R., Luhar, A., Murray, L., Plummer, D., Rodriguez, J., Saiz-Lopez, A.,
Schultz, M., Woodhouse, M., and Zeng, G.: Tropospheric Ozone Assessment
Report: Assessment of global-scale model performance for global and regional
ozone distributions, variability, and trends, Elem. Sci. Anth., 6, p. 10,
https://doi.org/10.1525/elementa.265, 2018. a
Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, 2013. a
Zweng, M., Reagan, J., Antonov, J., Locarnini, R., Mishonov, A., Boyer, T.,
Garcia, H., Baranova, O., Johnson, D., Seidov, D., and Biddle, M.: World Ocean
Atlas 2013 Volume 2: Salinity, NOAA Atlas NESDIS, 74, 39, Silver Spring, Maryland, 2013. a
Short summary
Ozone is an important pollutant with impacts on health and the environment. Ozone is lost to plants, land and the oceans. Loss to the ocean is slow compared to all other types of land cover and has not received as much attention. We build on previous work to more accurately model ozone loss to the ocean. We find changes in the concentration of ozone over the oceans, notably the Southern Ocean, which improves model performance.
Ozone is an important pollutant with impacts on health and the environment. Ozone is lost to...
Altmetrics
Final-revised paper
Preprint