Articles | Volume 20, issue 7
Atmos. Chem. Phys., 20, 4227–4239, 2020
https://doi.org/10.5194/acp-20-4227-2020
Atmos. Chem. Phys., 20, 4227–4239, 2020
https://doi.org/10.5194/acp-20-4227-2020

Research article 09 Apr 2020

Research article | 09 Apr 2020

Influences of oceanic ozone deposition on tropospheric photochemistry

Ryan J. Pound et al.

Related authors

Ozone deposition to a coastal sea: comparison of eddy covariance observations with reactive air–sea exchange models
David C. Loades, Mingxi Yang, Thomas G. Bell, Adam R. Vaughan, Ryan J. Pound, Stefan Metzger, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020,https://doi.org/10.5194/amt-13-6915-2020, 2020
Short summary
Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring
Leigh R. Crilley, Marvin Shaw, Ryan Pound, Louisa J. Kramer, Robin Price, Stuart Young, Alastair C. Lewis, and Francis D. Pope
Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018,https://doi.org/10.5194/amt-11-709-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Estimating Upper Silesian coal mine methane emissions from airborne in situ observations and dispersion modeling
Julian Kostinek, Anke Roiger, Maximilian Eckl, Alina Fiehn, Andreas Luther, Norman Wildmann, Theresa Klausner, Andreas Fix, Christoph Knote, Andreas Stohl, and André Butz
Atmos. Chem. Phys., 21, 8791–8807, https://doi.org/10.5194/acp-21-8791-2021,https://doi.org/10.5194/acp-21-8791-2021, 2021
Short summary
Analysis of CO2 spatio-temporal variations in China using a weather–biosphere online coupled model
Xinyi Dong, Man Yue, Yujun Jiang, Xiao-Ming Hu, Qianli Ma, Jingjiao Pu, and Guangqiang Zhou
Atmos. Chem. Phys., 21, 7217–7233, https://doi.org/10.5194/acp-21-7217-2021,https://doi.org/10.5194/acp-21-7217-2021, 2021
Short summary
Mobile monitoring of urban air quality at high spatial resolution by low-cost sensors: impacts of COVID-19 pandemic lockdown
Shibao Wang, Yun Ma, Zhongrui Wang, Lei Wang, Xuguang Chi, Aijun Ding, Mingzhi Yao, Yunpeng Li, Qilin Li, Mengxian Wu, Ling Zhang, Yongle Xiao, and Yanxu Zhang
Atmos. Chem. Phys., 21, 7199–7215, https://doi.org/10.5194/acp-21-7199-2021,https://doi.org/10.5194/acp-21-7199-2021, 2021
Short summary
Linking global terrestrial CO2 fluxes and environmental drivers: inferences from the Orbiting Carbon Observatory 2 satellite and terrestrial biospheric models
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021,https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases
Efisio Solazzo, Monica Crippa, Diego Guizzardi, Marilena Muntean, Margarita Choulga, and Greet Janssens-Maenhout
Atmos. Chem. Phys., 21, 5655–5683, https://doi.org/10.5194/acp-21-5655-2021,https://doi.org/10.5194/acp-21-5655-2021, 2021
Short summary

Cited articles

Bariteau, L., Helmig, D., Fairall, C. W., Hare, J. E., Hueber, J., and Lang, E. K.: Determination of oceanic ozone deposition by ship-borne eddy covariance flux measurements, Atmos. Meas. Tech., 3, 441–455, https://doi.org/10.5194/amt-3-441-2010, 2010. a
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. a
Carpenter, L., MacDonald, S., Shaw, M., Kumar, R., Saunders, R., Parthipan, R., Wilson, J., and Plane, J.: Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine, Nat. Geosci., 6, 108–111, https://doi.org/10.1038/ngeo1687, 2013. a
Chance, R., Tinel, L., Sherwen, T., Baker, A., Bell, T., Brindle, J., Campos, M., Croot, P., Ducklow, H., He, P., Hoogakker, B., Hopkins, F., Hughes, C., Jickells, T., Loades, D., Macaya, D., Mahajan, A., Malin, G., Phillips, D., Sinha, A., Sarkar, A., Roberts, I., Roy, R., Song, X., Winklebauer, H., Wuttig, K., Yang, M., Zhou, P., and Carpenter, L.: Global sea-surface iodide observations, 1967–2018, Sci. Data, 6, 286, https://doi.org/10.1038/s41597-019-0288-y, 2019. a
Chang, W., Heikes, B., and Lee, M.: Ozone deposition to the sea surface:chemical enhancement and wind speed dependence, Atmos. Environ., 38, 1053–1059, https://doi.org/10.1016/j.atmosenv.2003.10.050, 2004. a
Download
Short summary
Ozone is an important pollutant with impacts on health and the environment. Ozone is lost to plants, land and the oceans. Loss to the ocean is slow compared to all other types of land cover and has not received as much attention. We build on previous work to more accurately model ozone loss to the ocean. We find changes in the concentration of ozone over the oceans, notably the Southern Ocean, which improves model performance.
Altmetrics
Final-revised paper
Preprint