Articles | Volume 20, issue 24
https://doi.org/10.5194/acp-20-15585-2020
https://doi.org/10.5194/acp-20-15585-2020
Research article
 | 
15 Dec 2020
Research article |  | 15 Dec 2020

Reappraising the appropriate calculation of a common meteorological quantity: potential temperature

Manuel Baumgartner, Ralf Weigel, Allan H. Harvey, Felix Plöger, Ulrich Achatz, and Peter Spichtinger

Related authors

Design study of a rocket-borne free-flow aerosol collector for supersonic speed deployment by means of numerical efficiency analyzes
Birte Klug, Ralf Weigel, Konrad Kandler, Markus Rapp, Manuel Baumgartner, Thomas Böttger, Klaus Dieter Wilhelm, Harald Rott, Thomas Kenntner, Oliver Drescher, and Anna Hundertmark
EGUsphere, https://doi.org/10.5194/egusphere-2025-510,https://doi.org/10.5194/egusphere-2025-510, 2025
Short summary
Impact of formulations of the homogeneous nucleation rate on ice nucleation events in cirrus
Peter Spichtinger, Patrik Marschalik, and Manuel Baumgartner
Atmos. Chem. Phys., 23, 2035–2060, https://doi.org/10.5194/acp-23-2035-2023,https://doi.org/10.5194/acp-23-2035-2023, 2023
Short summary
On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899, https://doi.org/10.5194/gmd-15-3879-2022,https://doi.org/10.5194/gmd-15-3879-2022, 2022
Short summary
New investigations on homogeneous ice nucleation: the effects of water activity and water saturation formulations
Manuel Baumgartner, Christian Rolf, Jens-Uwe Grooß, Julia Schneider, Tobias Schorr, Ottmar Möhler, Peter Spichtinger, and Martina Krämer
Atmos. Chem. Phys., 22, 65–91, https://doi.org/10.5194/acp-22-65-2022,https://doi.org/10.5194/acp-22-65-2022, 2022
Short summary
High homogeneous freezing onsets of sulfuric acid aerosol at cirrus temperatures
Julia Schneider, Kristina Höhler, Robert Wagner, Harald Saathoff, Martin Schnaiter, Tobias Schorr, Isabelle Steinke, Stefan Benz, Manuel Baumgartner, Christian Rolf, Martina Krämer, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14403–14425, https://doi.org/10.5194/acp-21-14403-2021,https://doi.org/10.5194/acp-21-14403-2021, 2021
Short summary

Cited articles

Ambaum, M. H. P.: Thermal Physics of the Atmosphere, John Wiley & Sons, Ltd., Chichester, UK, https://doi.org/10.1002/9780470710364, 2010. a, b, c
Awano, S.: JS-Diagrams for Air, Report of Aeronautical Research Institute, Tokyo Imperial University, 11, available at: https://jaxa.repo.nii.ac.jp/?action=repository_uri&item_id=35290&file_id=31&file_no=1 (last access: 11 December 2020), 1936. a, b, c
Bauer, L. A.: The relation between “potential temperature” and “entropy”, Phys. Rev., 26, 177–183, 1908. a
Bohren, C., Albrecht, B., and Albrecht, P.: Atmospheric Thermodynamics, Oxford University Press, New York, USA, Oxford, UK, 1998. a
Bolton, D.: The Computation of Equivalent Potential Temperature, Mon. Weather Rev., 108, 1046–1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2, 1980. a
Download
Short summary
The potential temperature is routinely used in atmospheric science. We review its derivation and suggest a new potential temperature, based on a temperature-dependent parameterization of the dry air's specific heat capacity. Moreover, we compare the new potential temperature to the common one and discuss the differences which become more important at higher altitudes. Finally, we indicate some consequences of using the new potential temperature in typical applications.
Share
Altmetrics
Final-revised paper
Preprint