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Abstract. The potential temperature is a widely used quan-
tity in atmospheric science since it is conserved for dry air’s
adiabatic changes of state. Its definition involves the specific
heat capacity of dry air, which is traditionally assumed as
constant. However, the literature provides different values of
this allegedly constant parameter, which are reviewed and
discussed in this study. Furthermore, we derive the poten-
tial temperature for a temperature-dependent parameterisa-
tion of the specific heat capacity of dry air, thus providing
a new reference potential temperature with a more rigorous
basis. This new reference shows different values and vertical
gradients, in particular in the stratosphere and above, com-
pared to the potential temperature that assumes constant heat
capacity. The application of the new reference potential tem-
perature is discussed for computations of the Brunt–Väisälä
frequency, Ertel’s potential vorticity, diabatic heating rates,
and for the vertical sorting of observational data.

1 Introduction

According to the book Thermodynamics of the Atmosphere
by Alfred Wegener (1911), the first published use of the ex-
pression potential temperature in meteorology is credited to
Wladimir Köppen (1888)1 and Wilhelm von Bezold (1888),
both following the conclusions of Hermann von Helmholtz

1Wegener mentioned a talk given by Köppen in a footnote on
p. 111. In the publication year (1911) of Wegener’s book, Köp-

(1888) (see also Kutzbach, 2016). Even prior to the intro-
duction of the entropy, Poisson (1833) and Thomson (1862)
used the “adiabatic equation”, the basis of what is under-
stood today as “potential temperature”2, to describe adia-
batic processes, e.g. the coincident variation of temperature
and pressure on the movement of air, which is “indepen-
dent of the effects produced by the radiation or conduc-
tion of heat” (Thomson, 1862)3. Approximately 26 years
later, von Helmholtz perceived that within the atmosphere
the heat exchange between air masses of different tempera-
tures, which are relatively moved, is insufficiently explained
by heat transfer due only to radiation and convection. He
argued that wind phenomena (e.g. the trade winds), storm
events, and the atmospheric circulation were more intense, of
larger extent, and more persistent than observed if the air’s
heat exchange within the discontinuity region (the friction
surface of the different air masses) was not mainly due to
eddy-driven mixing. On his way to analytically describe the
heat exchange of different air masses within the atmosphere,
in May 1880, von Helmholtz introduced the air’s immanent
heat while its absolute temperature changes with changing
pressure (von Helmholtz, 1888). In essence, von Helmholtz

pen’s daughter Else got engaged to Alfred Wegener (Reinke-Kunze,
2013) and they married in the year 1913 (Hallam, 1975).

2Cf. Bauer (1908), where, for the first time, the potential tem-
perature and the entropy are set in a relationship.

3These early applications of entropy in meteorology are also
documented in Marquet (2019).
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concluded that the temperature gained by a volume of dry
air due to its adiabatic descent from a certain initial pressure
level (p) to ground pressure (p0) corresponds to the air’s im-
manent heat. In November of the same year, in agreement
with von Helmholtz and probably inspired by a presentation
that was given in June by Köppen (1888), this property was
renamed and reintroduced as the air’s potential temperature
(θ in the following) by von Bezold (1888) with the following
definition for strictly adiabatic changes of state:

θ = T

(
p0

p

) γ−1
γ

, (1)

where T and p are the absolute temperature and pressure,
respectively, of an air parcel at a certain initial (pressure) al-
titude level. The quantities θ and p0 are corresponding val-
ues of the same air parcel’s absolute temperature and pres-
sure if the air was exposed to conditions at ground level. The
dimensionless coefficient γ , nowadays called the isentropic
exponent, was specified as 1.41 (von Bezold, 1888).

Moreover, in the same publication, von Bezold concluded
that for moist air’s adiabatic changes of state, its potential
temperature remains unchanged as long as the change of
state occurs within dry-adiabatic limits; and further, if there
is condensation and precipitation, the potential temperature
changes by a magnitude that is determined by the amount
of water that falls out of the air parcel. From a modern per-
spective, it is clear that the air parcel is an isolated thermo-
dynamic system, and adiabatic processes correspond to pro-
cesses with conserved entropy (i.e. isentropic processes). The
description of the immanent heat is then equivalent to the
thermodynamic state function entropy, which corresponds to
potential temperature of dry air in a one-to-one relationship.

In general, the potential temperature has the benefit of
providing a practicable vertical coordinate (equivalent to the
pressure level or the altitude above, e.g. sea level) to visualise
and analyse the vertical distribution and variability of (mea-
sured) data related to any type of atmospheric parameter. Ad-
mittedly, the use of the potential temperature as a vertical
coordinate is initially less intuitive than applying altitude or
pressure coordinates. Indeed, the potential temperature bears
a certain abstractness to describe an air parcel’s state at a cer-
tain altitude level by its imaginary dry-adiabatic descent to
ground conditions. However, one major advantage of using
the potential temperature as a vertical coordinate is that the
(measured) data are sortable with respect to the entropy state
at which the atmospheric samples were taken. Thus, compar-
ing repeated measurements of an atmospheric parameter on
an isentropic surface or layer excludes any diabatic change
in the probed air mass.

Apart from characterising the isentropes, the vertical pro-
files of the potential temperature (θ as a function of height
z) are used as the reference for evaluating the atmosphere’s
actual vertical temperature gradient, which allows character-
ising its static stability. Notably, von Bezold (1888) already

proposed the potential temperature as an atmospheric stabil-
ity criterion. In its basic formulation, the potential temper-
ature exclusively refers to the state of dry air, and thus the
potential temperature characterises the atmosphere’s static
stability with respect to vertical displacements of a dry air
parcel. In meteorology, the static stability parameter is ex-
pressed in terms of the (squared) Brunt–Väisälä frequency
N , often written in the form

N2
=
g

θ

∂θ

∂z
, (2)

where g = 9.81ms−2 is the gravitational acceleration. The
potential temperature twice enters the formulation of the sta-
bility parameter, as the denominator (θ−1) and as the ver-
tical gradient ∂θ

∂z
. In the research field of dynamical meteo-

rology, the potential vorticity (PV) is often used (Ertel, 1942;
Hoskins et al., 1985; Schubert et al., 2004). The PV is propor-
tional to the scalar product of the atmosphere’s vorticity (the
air’s local spinning motion) and its stratification (the air’s
tendency to spread in layers of diminished exchange). More
concretely, the PV is the scalar product of the absolute vor-
ticity vector and the three-dimensional gradient of θ , i.e. not
only the potential temperature’s vertical gradient but also its
partial derivatives on the horizontal plane add to the resulting
PV, although, particularly at stratospheric altitudes, the ver-
tical gradient constitutes the dominant contribution. For the
analytical description of a fluid’s motion within a rotational
system, as is the atmosphere, the PV provides a quantity that
varies exclusively due to diabatic processes. Frequently, the
PV is used to define the tropopause height (usually at 2 PV
units; see e.g. Gettelman et al., 2011) or the edge of a large-
scale cyclone such as the polar winter vortex on specific θ
levels (cf. Curtius et al., 2005).

While for a dry atmosphere (i.e. with little or no water
vapour) the potential temperature is the correct conserved
quantity (corresponding to entropy) for reversible processes,
for an atmosphere containing water in two or more phases
(vapour, liquid, and/or solid phases) energy transfers due to
phase changes play a major role. Thus, the formulation of
the potential temperature has to be extended since entropy
is still the right quantity for reversible processes, including
phase changes. Starting from the equation for the moist spe-
cific entropy, as derived from the first law of thermodynamics
and the Gibbs equation, further extensions of the dry-air po-
tential temperature have been developed (Hauf and Höller,
1987; Emanuel, 1994; Marquet, 2011; Marquet and Geleyn,
2015) to account for phase changes and deviations from ther-
modynamic equilibrium, e.g. by irreversible processes. By
assuming only reversible processes (i.e. conserved entropy),
approximate formulas can be derived (e.g. Emanuel, 1994).
However, in the case of large hydrometeors, liquid or solid
particles are removed due to gravitational acceleration, lead-
ing to an irreversible process; hence the formulas based on
the assumption of a reversible process are no longer applica-
ble. Sometimes for this situation a so-called pseudo-adiabatic

Atmos. Chem. Phys., 20, 15585–15616, 2020 https://doi.org/10.5194/acp-20-15585-2020



M. Baumgartner et al.: Reappraising the appropriate calculation of the potential temperature 15587

potential temperature is defined, assuming instantaneous re-
moval of hydrometeors from the air parcel; usually, meaning-
ful approximations to this quantity are given, since generally
it cannot be derived from first principles. Equivalent poten-
tial temperature including phase changes for vapour and liq-
uid water is often used for the determination of convective
instabilities. The general formulation can be easily adapted
for an ice equivalent potential temperature, i.e. for reversible
processes in pure ice clouds (see e.g. Spichtinger, 2014). Al-
though the latent heat of sublimation is larger than the la-
tent heat of vaporisation, the absolute mass content of water
vapour decreases exponentially with decreasing temperature,
leading to only small corrections due to phase changes in
pure ice clouds.

At altitudes above the clouds’ top, within the upper tropo-
sphere and across the tropopause, the air is substantially dried
out compared to tropospheric in-cloud conditions. Therefore,
above clouds and further aloft, e.g. within the stratosphere,
the conventional dry-air potential temperature may suffice
to provide a meaningful vertical coordinate. Moreover, the
potential temperature or the virtual potential temperature,
which includes water vapour, are commonly used as prog-
nostic variables in numerical models for the formulations of
the energy equation (e.g. Skamarock et al., 2005; Skamarock
and Klemp, 2008; Zängl et al., 2015; Borchert et al., 2019).
Thereby, very often both variants, the potential temperature
as well as the equivalent potential temperature, are involved
to account for dry-air situations and cloud conditions.

In any case, the use of the potential temperature requires
the following preconditions to be fulfilled:

1. θ should be based on a rigorous derivation to ensure its
validity as a function of atmospheric altitude in order
not to corrupt its character as a vertical coordinate that
allows for appropriately comparing (measured) atmo-
spheric parameters, and

2. θ should approximate to the greatest possible extent
the true entropy state of a probed air mass and should
preferably account for the implied dependencies on at-
mospheric variables, even under the assumption that air
behaves as an ideal gas,

with the aim that the potential temperature behaves as a ra-
tional physical variable. Thus, still abiding by the ideal-gas
assumption, a re-assessment of the fundamental atmospheric
quantity θ is suggested, which is based on the state of knowl-
edge of air’s thermodynamic properties, and this re-assessed
θ is comprehensively examined concerning its ability to hold
also for atmospheric conditions above the troposphere.

In principle, the concept of the potential temperature is
transferable to all systems of thermally stratified fluids such
as a planetary gas atmosphere or an ocean, to investigate heat
fluxes (advection or diffusion) or the static stability of the
fluid. In astrophysics, the potential temperature is used al-
most identically as in atmospheric sciences to describe dy-

namic processes and thermodynamic properties (e.g. static
stability or vorticity) in the atmosphere of planets other than
the Earth. Here, the same value p0 = 1000 hPa, as applied
to the Earth’s atmosphere, is frequently used as a reference
pressure for the atmosphere of other planets (Catling, 2015,
Table 4), whereby the formulations of the specific heat ca-
pacity require adaptations to account for the individual gas
composition of the respective planetary atmosphere. In order
to simulate the weather in the atmosphere of other planets,
the Weather Research and Forecasting Model (WRF) was ex-
tended to planetWRF (Richardson et al., 2007), and the gov-
erning equations considered within the WRF model include
a prognostic equation for the potential temperature (Ska-
marock et al., 2005; Skamarock and Klemp, 2008). How-
ever, the temperature dependency of the isobaric heat ca-
pacity cp is not generally negligible, especially when tak-
ing “deep atmospheres, such as on Venus” (Catling, 2015,
p. 436) into account or the temperature lapse rates on other
planets (Li et al., 2018). The atmosphere of Saturn’s moon
Titan, the only known moon with a substantial atmosphere,
was comprehensively studied with frequent application of the
potential temperature based on profile measurement of tem-
perature and pressure in Titan’s atmosphere by the Huygens
probe (Müller-Wodarg et al., 2014).

Moreover, the potential temperature is a frequently used
quantity in oceanography (e.g. McDougall et al., 2003; Feis-
tel, 2008), while here the consideration of seawater’s salinity
and its impact on the specific heat capacity of seawater im-
plies additional complexity. In particular, McDougall et al.
(2003) suggests a re-assessment of the potential tempera-
ture as applied in oceanography to approximate the adiabatic
lapse rate; thus this study bears certain parallels to the present
investigation aiming at the reappraisal of the potential tem-
perature for atmosphere-related purposes. These studies from
other disciplines motivate the need for a re-assessment of the
potential temperature for the atmospheric sciences. Thus, the
approach provided herein proposes a modified calculation of
the widely used quantity of the potential temperature by ad-
ditionally accounting for the current state of knowledge con-
cerning air’s properties.

The study is organised as follows. The derivation of the
potential temperature for an ideal gas with constant specific
heat capacity cp is recalled in Sect. 2. In Sect. 3 the assump-
tion of a constant cp is discussed together with a synopsis of
various cp values as provided in the literature. The tempera-
ture dependency of cp is examined in Sect. 4, and a parame-
terisation is given. Section 5 is devoted to the definition and
computation of a new reference potential temperature θref
based on the temperature-dependent specific heat capacity,
while Sect. 6 focuses on the influence of real-gas effects on
the resulting potential temperature. Section 7 presents some
implications of the use of θref, and concluding remarks are
given in Sect. 8.
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2 Derivation of the potential temperature for an ideal
gas

The Gibbs equation (see e.g. Kondepudi and Prigogine,
1998) is a general thermodynamic relation to describe the
state of a system with m components and reads as

T dS = dH −V dp−
m∑
k=1

µk dMk, (3)

where T denotes the absolute temperature in kelvin (K), S the
entropy in joules per kelvin (JK−1),H the enthalpy in joules
(J), V the volume in cubic metres (m3), µk the chemical po-
tential of component k in joules per kilogram (Jkg−1), Mk

the mass of component k in kilograms (kg), and p the static
pressure in pascals (Pa). Assuming no phase conversion or
chemical reaction within the system, the mass of each com-
ponent does not change; hence dMk = 0 for each component
k.

In the following, dry air is assumed to be the single com-
ponent in the system. Expressing the Gibbs equation in its
specific form (i.e. division by the total mass Ma of dry air;
note that lowercase letters indicate specific variables – e.g.
h=H/Ma) leads to

T ds = dh−
V

Ma
dp ⇔ ds =

1
T

dh−
V

MaT
dp. (4)

Furthermore, approximating dry air as an ideal gas leads to
the following simplifications.

– The ideal-gas law

pV =MaRaT (5)

can be applied with the specific gas constant Ra of dry
air, which is

Ra =
R

Mmol,a

=
8.31446261815324Jmol−1K−1

0.0289586kgmol−1
± 0.0000002kgmol−1

∈

[
287.11350Jkg−1K−1, 287.11748Jkg−1K−1

]
, (6)

with the molar gas constant R in Jmol−1K−1 (Tiesinga
et al., 2020; Newell et al., 2018) and Mmol,a the molar
mass of dry air (Lemmon et al., 2000), composed of ni-
trogen N2, oxygen O2, and argon Ar.

– The specific enthalpy is given by

dh= cp dT , (7)

with cp the specific heat capacity of dry air.

Based on these assumptions, the change in the specific en-
tropy (within the fluid dry air) is given by

ds =
cp

T
dT −Ra

dp
p
. (8)

For isentropic changes of state, i.e. ds = 0, Eq. (8) reduces to

cp

T
dT = Ra

dp
p
. (9)

Note that the assumption of dry air being an ideal gas
does not imply that in Eq. (9) the specific heat capacity cp
is constant. While statistical mechanics excludes any pres-
sure dependence in the ideal-gas heat capacity, the gen-
eral derivation (cf. Appendix A) permits a temperature de-
pendence of cp. However, usually the temperature depen-
dence is neglected in atmospheric physics, and, instead, cp
is assumed as constant (see e.g. Ambaum, 2010, p. 48/49,
where vibrational modes of the air molecules are neglected).
Immediately below and in Sect. 3, the treatment of cp as
a temperature-independent constant is discussed. The in-
troduction of the temperature dependence then follows in
Sect. 4.

Treating cp as a constant, rearrangement of Eq. (9) leads
to

dT
T
=
Ra

cp

dp
p
. (10)

Integration of Eq. (10) over the range from ground-level pres-
sure and temperature (p0, T0) to the pressure and tempera-
ture at a specific height (p, T ) yields

ln
(
T

T0

)
=

T∫
T0

dT ′

T ′
=
Ra

cp

p∫
p0

dp′

p′
=
Ra

cp
ln
(
p

p0

)
, (11)

and, after another straightforward conversion, one arrives at

ln
(
T0

T

)
=
Ra

cp
ln
(
p0

p

)
. (12)

With the definition θcp = T0, Eq. (12) is transformed into
the commonly used expression for determining the potential
temperature

θcp = T

(
p0

p

)Ra
cp

, (13)

for which the ground-level pressure p0 is arbitrary but usu-
ally set to p0 = 1000 hPa. This choice coincides with the
definition of the World Meteorological Organisation (WMO,
1966) and the standard-state pressure (Tiesinga et al., 2020)
but should not be confused with the standard atmosphere
101 325 Pa (Tiesinga et al., 2020). In the following, θcp de-
notes the potential temperature based on a constant cp, and,
when a specific value of cp is applied, the subscript cp in
the potential temperature’s notation is replaced by the corre-
sponding cp value.
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3 Examining the assumption of constant cp for dry air

The general theory of thermodynamics, assuming dry air as
an ideal gas, gives the expression

cp =

(
1+

f

2

)
Ra (14)

for the constant specific heat capacity, which is based on
the results of statistical mechanics and the equipartition the-
orem (e.g. Huang, 1987). In Eq. (14), the parameter f =
ftrans+ frot+ fvib is equal to the total number of degrees of
freedom of the gas molecules of which dry air consists. The
individual contributions to f comprise the degrees of free-
dom of translation ftrans, rotation frot, and vibration fvib. As-
suming further that dry air exclusively consists of the linear
molecules N2 and O2 (implying ftrans = 3 and frot = 2, while
the contribution of Ar remains disregarded) and additionally
neglecting the vibrational degrees of freedom (fvib = 0), the
general relation Eq. (14) reduces to

cp =

(
1+

3+ 2
2

)
Ra =

7
2
Ra. (15)

Although the neglect of vibrational excitation, particularly
at very low temperatures, seems plausible and appropriate,
errors are already introduced by this assumption for the tem-
perature range relevant in the atmosphere.

In atmospheric sciences, for the majority of computa-
tions that require the specific heat capacity of dry air, a
constant value of cp may be appropriate. According to the
WMO (1966), the recommended value for cp of dry air
is 1005 Jkg−1K−1, and, furthermore (ibid.), it is defined
that γ = cp

cv
=

7
5 = 1.4 (cf. Eq. 1). This definition is consis-

tent with the general thermodynamic theory together with
all aforementioned additional assumptions and results in
Eq. (15) as well.

Even assuming a universally valid constant cp, a sin-
gle consistently used value of cp was not found. Instead,
the specified values of cp vary among different textbooks
and other sources. In Table 1, some of the available val-
ues of constant specific heat capacity for dry air are com-
piled, indicating a variability of cp that ranges from 994 to
1011 Jkg−1K−1. However, the extremes in Table 1 are from
old references of historical interest only; to reflect recently
stated values the narrower range 1000 to 1010 Jkg−1K−1 is
considered.

These different values of constant cp scatter within a
small range (below ±1.1%) around the WMO’s recommen-
dation 1005 Jkg−1K−1, which may seem negligible if cp
contributes only as a linear coefficient within an equation
(e.g. in the expression of a correction factor; cf. Weigel et al.,
2016). However, in the formulation of the potential temper-
ature θcp , cf. Eq. (13), the specific heat capacity cp does not
contribute linearly but rather as the denominator in the expo-
nent. Thus, the variety of different cp values, although scat-

Figure 1. Vertical profiles of (a) atmospheric pressure and (b) tem-
perature as functions of height, corresponding to the US Standard
Atmosphere.

Figure 2. Computed vertical course of the potential temperature
θcp based on the two extremes of constant values for the specific
heat capacity cp provided in the literature including the historical
extreme values (a; cf. Table 1), and (b) the absolute differences
1θcp = θ994–θ1011 and 1θcp = θ1000–θ1010 between the two re-
sulting curves of θcp . The absolute difference 1θcp = θ1003.5–
θ1006.5 is also shown (green curve), corresponding to a more re-
alistic interval of cp values.

tering within a small range, impacts the resulting θcp signifi-
cantly. To illustrate this impact, a computation of θcp by us-
ing Eq. (13) was based on the values of static pressure (p;
cf. Fig. 1a) and absolute temperature (T ; cf. Fig. 1b) cor-
responding to the US Standard Atmosphere (United States

https://doi.org/10.5194/acp-20-15585-2020 Atmos. Chem. Phys., 20, 15585–15616, 2020
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Table 1. Synopsis of temperature-independent constant values given mainly in textbooks for the specific heat capacity cp of dry air from
various sources (non-exhaustive). Note that the WMO (1966) indicates a minimum and maximum “range of actual values” together with
their recommended value cp = 1005 Jkg−1K−1.

Constant dry air’s
specific heat capacity
cp in Jkg−1K−1

Literature source

994 Wegener and Wegener (1935, converted from units other than SI)

1000 Roedel and Wagner (2011, p. 66)

1003 “minimum of range of actual values” (WMO, 1966)
Tripoli and Cotton (1981, the Appendix therein)

1004 Holton (2004, p. 491)
Wallace and Hobbs (2006, p. 75)
Schumann (2012)
Wendisch and Brenguier (2013, p. 24)
Liou (2002, Appendix F)
Ambaum (2010, table “Useful Data”)

1004.8 Pruppacher and Klett (2010, converted from units other than SI; p. 489)

1004.86 Curry and Webster (1998, p. 62)

1005 recommended by WMO (1966)
Bohren et al. (1998, p. 384)
Houghton (2002, p. 275)
Zdunkowski and Bott (2003, p. 705)
Brasseur and Solomon (2005, p. 426)
Seinfeld and Pandis (2006, p. 1178)
Cotton et al. (2011, Table 2.1)

1005.7± 2.5 Bolton (1980)
Emanuel (1994, Appendix 2)

1006 Wendisch and Brenguier (2013, p. 69)
Stamnes et al. (2017, p. 14)

1010 Chang et al. (2006)
Tiwary and Williams (2019, beneath Eq. 8.8; possibly a typo, as indicated by
inconsistencies on reproducing their conclusions based on this value)
Brusseau et al. (2019, p. 59)

1011 “maximum of range of actual values” (WMO, 1966)

Committee on Extension to the Standard Atmosphere, 1976).
From the list of the different cp in Table 1, the extreme val-
ues were selected in order to initially illustrate the sensitiv-
ity of the resulting θcp to variations in cp in the range of
∼ 1 %, as seen in the literature. In Fig. 2a, the individual
profiles of θcp are shown for the extremes of the historic cp
values (Table 1), while Fig. 2b illustrates the absolute dif-
ferences 1θcp = θ994–θ1011 (red curve), 1θcp = θ1000–θ1010
(blue curve), and 1θcp = θ1003.5–θ1006.5 (green curve). The
absolute error exhibited with the blue curve in Fig. 2b is
based on the extremes of most recently referred cp values
in the literature (Table 1). At an altitude of 8.5km, the dif-
ference 1θcp already exceeds 1K (blue curve). The values
of 1θcp reach approximately 1.2K at 10km and rise further,

above 4K, with increasing altitude up to 20km. At 50km,
approximately where the stratopause is located, which is the
chosen upper height limit for this investigation, the com-
puted1θcp reaches 43K. The green curve corresponds to the
more realistic cp interval 1005Jkg−1K−1

±1.5 Jkg−1K−1 as
recommended by the WMO; the difference reaches approxi-
mately 13K at the stratopause.

Figure 2 illustrates the possible spread of θcp based on a
range of cp values from different literature references; hence,
if one uses a different value for cp from the literature than
that defined by WMO (1966), the difference θ1005−θcp might
be significant. Since the cp values provided by some litera-
ture references are close to the value cp = 1005 Jkg−1K−1

recommended by the WMO (1966), the subsequent compar-
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isons will be made to θ1005. The θcp values based on cp val-
ues other than 1005 Jkg−1K−1 are only used to illustrate re-
spective deviations. Although the curves in Fig. 2b depict ex-
tremes in the deviation of potential temperatures, as they are
based on the extremes of cp values (cf. Table 1), they never-
theless illustrate the sensitive response of θcp to even small
variations in cp, on the order of 1%. Further proof of this
sensitivity from the mathematical perspective is provided in
Appendix B. The impact of this sensitivity becomes impor-
tant at altitudes of ∼ 10km and above, thus where the use of
the potential temperature becomes increasingly meaningful.
Here, and in particular above the cloud tops, the small-scale
and comparatively fast tropospheric dynamics (causing ver-
tical transport and implying diabatic processes) become di-
minished, while further above, towards the stratosphere, an
increasingly layered vertical structure of the atmosphere is
taking over.

As indicated above, the reason for this sensitivity to small
variations of air’s specific heat capacity is that it affects the
exponent of the equation for θcp . The studies of Ooyama
(1990, 2001) document an interesting attempt to formulate
for example the energy balance equations for the moist atmo-
sphere, wherein entropy replaces the more common formula-
tion using the potential temperature. This substitution avoids
the use of the potential temperature, which “is merely an ex-
ponential transform of the entropy expressed in units of tem-
perature” (Ooyama, 2001); thus, within this equation, air’s
specific heat capacity is implied exclusively as a linear coef-
ficient. Consequently, a parameterisation for the temperature
dependence of the specific heat capacity (cp(T ); cf. Sect. 4)
may be easily adopted. However, the crucial drawback of the
entropy-based equations is that to gain a numerical model for
weather forecast purposes, the parameterisations of most of
the physical processes within the atmosphere would require
a reformulation.

It should be noted that not only do literature values of air’s
specific heat capacity cp vary, but also the values of the gas
constant Ra vary slightly due to different historical approxi-
mations for the molar gas constant4 R and for the composi-
tion of dry air. The variation of values for Ra is typically only
on the order of 0.1 Jkg−1K−1, whereas the variability in cp
is on the order of a few Jkg−1K−1 (cf. Table 1). Therefore,
within the exponent of the expression (13) for θcp , the vari-
ability of cp has by far a stronger impact on the resulting θcp
value than the variability of Ra.

However, accepting for a moment the WMO’s defini-
tion (15) of cp (WMO, 1966), the variability of air’s cp
should naturally be constrained to certain limits. With the
specific gas constant Ra = 287.05 Jkg−1K−1 (WMO, 1966),
the WMO’s definition leads to cp = 1004.675 Jkg−1K−1. In
contrast, taking into account the uncertainty introduced in Ra
by the molar mass of dry air, cf. Eq. (6), the resulting range

4The value of R is now defined exactly, cf. Tiesinga et al. (2020)
and Newell et al. (2018), and is used in Eq. (6).

for air’s specific heat capacity is 1004.897Jkg−1K−1
≤ cp ≤

1004.912 Jkg−1K−1. It may be surmised that the rounded
value cp = 1005 Jkg−1K−1 as recommended by the WMO
(1966) had the main goal to simplify certain calculations,
which at the time may have been mostly done by hand.

4 Accounting for the temperature dependence of air’s
specific heat capacity

Next, while retaining the ideal-gas assumption, we consider
the dependence of air’s cp on temperature, mainly over the
atmospherically relevant range (180 to 300K). The tempera-
ture dependence of cp is, of course, not a new finding. Exper-
imental approaches for determining the calorimetric proper-
ties of air and the temperature dependence of a fluid’s spe-
cific heat capacity are described by Witkowski (1896), who
investigated the change in the mean cp as a function of tem-
perature intervals between room temperature (as a fixed ref-
erence) and various warmer and colder temperatures, for at-
mospheric pressures and slightly beyond. Despite the po-
tentially high uncertainty of the experimental results from
these times, Witkowski (1896) already indicated that with de-
creasing temperature the experimentally determined cp val-
ues initially decline, then pass a minimum, and subsequently
increase again at lower temperatures (T < 170 K). The de-
scription of refined experiments and ascertainable data of
air’s cp(T ) for temperatures below 293K is summarised
by Scheel and Heuse (1912), Jakob (1923), and Roebuck
(1925, 1930), illustrating in comprehensive detail the experi-
mental effort and providing the resulting data. The review by
Awano (1936) compiled and compared the data of cp(T ) of
dry air (“air containing neither carbon-dioxide nor steam”,
Awano, 1936), and he attested – at that time – the previ-
ously mentioned studies to constitute “the most reliable ex-
periments”. During the decades following these experiments,
further insights were gained and landmarks were reached,
which are summarised in the comprehensive survey by Lem-
mon et al. (2000) of the progress of modern formulations for
the thermodynamic properties of air and about the experi-
ments the previous formulations were based on.

Figure 3 illustrates the range of suggested constant values
for the specific heat capacity as indicated in Table 1 (dashed
curves) together with the measurements that were made to
obtain air’s behaviour as a function of temperature and pres-
sure. Note that Fig. 3 includes data at other atmospheric pres-
sures, indicated by squares, diamonds, and triangles. In the
same figure, calculated values of cp(T ) of dry air are dis-
played, resulting from the equation of state which was de-
rived from experimental p, V , and T data by Vasserman et al.
(1966), who provided an extensive review of previous exper-
imental and theoretical works and of the state of knowledge
at that time. In addition, Fig. 3 exhibits two different parame-
terisations, by Lemmon et al. (2000) and by Dixon (2007, see
p. 376 in his book – the accuracy is “within 0.1% from 200
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Figure 3. Variety of suggested values for the specific heat capacity of air. Ranges of constant values for cp (including the historical) together
with the recommended value by the WMO (1966) are displayed as given in Table 1 (dashed lines). The parameterisations of air’s c0

p(T ),
assuming dry air as an ideal gas, accounting for its temperature dependence by Lemmon et al. (2000, solid magenta curve) and by Dixon
(2007, solid cyan curve) are displayed. Discrete measurement and literature data at about 1000hPa (i.e. as often specified, at “about one
atmosphere”) are indicated by dots. In addition, the studies by Awano (1936) and Vasserman et al. (1966) provide data at other atmospheric
pressures, as indicated by squares, diamonds, and triangles.

to 450K”), which account for the temperature dependence
of the specific heat capacity cp(T ). The parameterisation by
Lemmon et al. (2000), to be discussed in detail in Sect. 4.2,
is valid for dry air assumed as an ideal gas, whereas this dis-
tinction is not explicitly made in Dixon (2007). Moreover,
Fig. 3 contains discrete values of dry air’s cp(T ) extracted
from the database REFPROP (Reference Fluid Thermody-
namic and Transport Properties Database by NIST, the Na-
tional Institute of Standards and Technology, Lemmon et al.,
2018), which is based on parameterisations resulting from
thermodynamic considerations discussed later.

The measurement data, as well as the parameterisations,
clearly indicate a dependence of air’s specific heat capacity
on the temperature. At temperatures above 300K, the data
points by Jakob (1923) are surprisingly well captured by the
parameterisations, while below 270K the course of the pa-
rameterised and measured cp(T ) diverges significantly. Pos-
sible reasons for this include the following:

– the measurements of cp(T ) have a precision likely no
better than 1 % (in particular the historical measure-
ments), and there could be systematic errors, especially
at low temperatures;

– the measured data reflect the true thermodynamic be-
haviour of the real gas rather than that of an ideal gas.

However, it is immediately obvious from Fig. 3 that a good
agreement among (i) the experimentally determined cp(T )
data, (ii) a constant cp (e.g. 1005 Jkg−1K−1; WMO, 1966),
and (iii) the parameterised cp(T ) is found only for a tempera-
ture interval ranging from 270 to 300K. For air temperatures
below 270K, the constant value cp = 1005 Jkg−1K−1 is only
comparable with the values from Vasserman et al. (1966) but
fails to coincide with other parameterised or experimentally
determined values of cp(T ).

4.1 The temperature dependence of the ideal-gas
specific heat capacity

As already indicated by the data depicted in Fig. 3, the spe-
cific heat capacity cp depends on the gas temperature. With
regard to measured values, the lack of constancy may be due
to real-gas effects or to a dependence of the ideal-gas heat ca-
pacity on temperature. In this section, we focus on the latter
effect, denoting the ideal-gas isobaric specific heat capacity
by c0

p(T ), where the superscript 0 indicates the underlying
ideal-gas assumption. For an individual gas, there is always a
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contribution from the three translational degrees of freedom,
c0
p,trans =

5
2Ri , where Ri is the specific gas constant of the

gas. If the molecule is assumed to be a rigid rotor, there is
also a rotational contribution given by

c0
p,rot =

{
Ri, for linear (e.g. diatomic) molecules,
3
2Ri, for nonlinear molecules.

(16)

As mentioned previously, at finite temperatures molecules
also have contributions to c0

p(T ) from intramolecular vibra-
tions (and, at high temperatures, excited electronic states). To
arrive at a temperature-dependent parameterisation for the
ideal-gas specific heat capacity of dry air, the compounds’
individual contributions, considering all degrees of freedom,
need to be parameterised and then combined according to
each compound’s proportion in the mixture. For the fol-
lowing, dry air is considered a three-component mixture:
the diatomic gases nitrogen (N2) and oxygen (O2) and the
monatomic gas argon (Ar).

To determine the contribution of N2 to c0
p(T ), both Bücker

et al. (2002) and Lemmon et al. (2000) use the ideal-gas heat
capacity from the reference equation of state of Span et al.
(2000) that compares well with the findings from other stud-
ies within an uncertainty 1c0

p of less than 0.02%.
For the contribution of O2, Lemmon et al. (2000) use the

formulation given by Schmidt and Wagner (1985). Alterna-
tively, Bücker et al. (2002) provide a slightly different for-
mulation from the International Union of Pure and Applied
Chemistry (IUPAC, Wagner and de Reuck, 1987), after re-
fitting it to more recently obtained data, thereby achieving
an overall uncertainty 1c0

p of less than ±0.015% for O2
(Bücker et al., 2002). However, the difference in the result-
ing specific heat capacity contribution by O2 between the two
approaches (Lemmon et al., 2000, or Bücker et al., 2002) is
comparatively small. The recent work of Furtenbacher et al.
(2019) leads to values of c0

p for O2 with even smaller un-
certainties, but the differences from the values used here are
negligible in our context.

For a monatomic gas such as Ar, vibrational and rotational
contributions to the heat capacity do not exist, and Bücker
et al. (2002) consider that argon’s excited electronic states
are relevant only at temperatures above 3500K. Hence, the
contribution of Ar to the specific heat capacity of air reduces
to c0

p =
5
2RAr.

The approach by Bücker et al. (2002) additionally con-
siders the contribution of further constituents of air, such as
water, carbon monoxide, carbon dioxide, and sulfur dioxide.
These authors provide an analytical expression for specific
heat capacity, accounting for this more complex but propor-
tionally invariant air composition which is specified to devi-
ate from the used reference by 1c0

p ≤±0.015% in the tem-
perature range of 200K≤ T ≤ 3300K. At atmospheric alti-
tudes above the clouds’ top, i.e. on average above ∼ 11km,
the air is assumed to have lost most of its water and is deemed
as dry. Furthermore, for the following, trace gases that con-

tribute to air’s composition by molar fractions of less than
that of Ar are neglected.

4.2 NIST’s parameterisation of c0
p(T )

Besides a comprehensive survey of the available experi-
mental data for the specific heat capacity of air, Lemmon
et al. (2000) also provide state-of-the-art knowledge for other
thermodynamic properties (isochoric heat capacity, speed of
sound, vapour–liquid equilibrium, etc.). Additionally, they
give two approaches to derive air’s thermodynamic proper-
ties, including the vapour–liquid equilibrium:

1. an empirical model-based equation of state for standard
(dry) air considered as a pseudo-pure fluid and

2. assembly of a mixture model from equations of state for
each pure fluid.

Each approach allows calculating the thermodynamic
properties, e.g. cp, of gas mixtures such as dry air, and both
are real-gas models with the ideal-gas behaviour as a bound-
ary condition. The major difference between the models is
that the first approach considers air as a pseudo-pure fluid
while the second, more rigorous approach treats air as a
mixture composed of N2, O2, and Ar, in molar fractions of
0.7812, 0.2096, and 0.0092, respectively, following Lemmon
et al. (2000, their Table 3). This fractional composition of
dry air is assumed to be constant from ground level up to
80km height (United States Committee on Extension to the
Standard Atmosphere, 1976), and its fractional composition
would have to be shifted significantly to cause a serious de-
viation of the resulting potential temperature. The contribu-
tion to the composition by carbon dioxide (CO2) and of any
other trace species was assumed to be negligible. The valid-
ity of both approaches is specified for various states of dry
air, from its solidification point (59.75K) up to temperatures
of 1000K, and for pressures up to 100MPa and even much
further beyond the pressure range that is relevant for atmo-
spheric investigations. Both the pseudo-pure fluid model and
the mixture model are implemented in NIST’s REFPROP
database (cf. https://www.nist.gov/srd/refprop, last access:
2 November 2020) for various physical properties of fluids
over a wide range of temperatures and pressures.

Both the pseudo-pure fluid model and the mixture model
of Lemmon et al. (2000) use the same expression for the
ideal-gas heat capacity, which is rigorously given as a sum
of the pure-component contributions:

C0
p(T )

R
= xN2

(
C0
p(T )

R

)
N2

+ xAr

(
C0
p(T )

R

)
Ar

+ xO2

(
C0
p(T )

R

)
O2

, (17)

where xi denotes the molar fraction of species i, and C0
p and

the molar gas constant R are given in units of Jmol−1K−1.
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Like Bücker et al. (2002), Lemmon et al. (2000) use the
expression of Span et al. (2000) for the contribution of N2
to the heat capacity and adopt C0

p =
5
2R for Ar. Together

with the contribution by O2 according to the formulation
by Schmidt and Wagner (1985), the expression provided by
Lemmon et al. (2000, Eq. 18 therein) for the ideal-gas heat
capacity of dry air is

C0
p(T )

R
=N1+N2T +N3T

2
+N4T

3
+N5T

−
3
2

+N6

N2
9
T 2 exp

(
N9
T

)
(

exp
(
N9
T

)
− 1

)2 +N7

N2
10
T 2 exp

(
N10
T

)
(

exp
(
N10
T

)
− 1

)2

+
2N8

3

N2
11
T 2 exp

(
−
N11
T

)
(

2
3 exp

(
−
N11
T

)
+ 1

)2 , (18)

with the scalar coefficients Ni for dry air (ibid.),

N1 = 3.490888032, N2 = 2.395525583× 10−6,

N3 = 7.172111248× 10−9, N4 =−3.115413101× 10−13,
N5 = 0.223806688, N6 = 0.791309509,
N7 = 0.212236768, N8 = 0.197938904,
N9 = 3364.011, N10 = 2242.45,
N11 = 11580.4,

(19)

which is specified as valid for temperatures from 60 to
2000K. Because the underlying calculations are based on
rigorous statistical mechanics and accurate spectroscopic

data,
C0
p(T )

R
should be accurate to within 0.01% throughout

this range, as discussed by Span et al. (2000).
The parameterisation (18) provides the isobaric specific

heat capacity of dry air, considered as a mixture of ideal
gases. This represents a more rigorous and accurate be-
haviour than assuming it to be a constant.

4.3 The parameterisation of c0
p(T ) from an engineer’s

perspective

The parameterisation from Dixon (2007)

cp(T )= 1002.5+ 275× 10−6
· (T − 200)2 (20)

for 200K≤ T ≤ 450K is not explicitly described to be based
on particular assumptions or data sets. The author indicates
his suggested parameterisation to hold within 0.1% for tem-
peratures between 200 and 450K. For elevated air tempera-
tures, the deviation between the ideal-gas limit c0

p(T ) (Lem-
mon et al., 2000) and Dixon’s parameterisation substantially
increases. This is most likely due to the chosen type of poly-
nomial approximation (Dixon, 2007), which increasingly de-
parts from the reference c0

p(T ) for gas temperatures exceed-
ing 450K.

Concerning the thermophysical properties of humid air,
the study by Tsilingiris (2008) provides further insight. Its
purpose was to evaluate the transport properties as a func-
tion of different levels of the relative humidity and as a func-
tion of temperature (from 273 to 373K) for the gas mixture

of air with water vapour at a constant pressure (1013hPa).
The atmospherically relevant pressure range below 1013hPa
and temperatures smaller than 273K were not considered.
Although this study focused on providing a comprehensive
account of moisture within air, mainly for technical pur-
poses and engineering calculations, the possible usefulness
of these findings to atmospheric investigations is also appar-
ent. However, the impact of water vapour on the resulting gas
mixture’s cp(T ) is significantly larger (cf. Tsilingiris, 2008)
than the uncertainty of dry air’s cp(T ) that is discussed in
the present work. Furthermore, the consideration of water
vapour as a component of air requires very individual and
case-specific computations of cp(T ) of moist air, as water
vapour is among the most variable constituents of the atmo-
sphere.

The effort required to produce an analytical formulation
for gas properties which best reflects the true gas behaviour
may indicate that for engineering purposes (pneumatic shock
absorbers, engines’ combustion efficiency, improvements of
turbofan/turboprop propulsion, aerodynamics, material sci-
ences, etc.), especially where pressures exceed atmospheric,
the assumption of ideal-gas behaviour introduces excessive
uncertainty.

5 The θcp(T ) from the temperature-dependent specific
heat capacity of air

Previously introduced approaches for computing the specific
heat capacity of dry air call for a brief discussion on how to
use the obtained cp(T ) to derive the potential temperature. In
the following, θcp(T ) denotes the derived potential tempera-
ture that accounts for the temperature dependence of dry air’s
specific heat capacity. Furthermore, it should be noted that
simply substituting any cp(T ) value into the conventionally
used equation and defining Eq. (13) for θcp (WMO, 1966)
may appear tempting but definitely leads to results inconsis-
tent with θcp(T ), which is based on the reference parameteri-
sation of dry air’s cp(T ). Therefore, the thermodynamically
consistent use of cp(T ) in the derivation of θ is described in
the following.

5.1 Derivation of θcp(T ) based on the
temperature-dependent specific heat capacity of
dry air

In the derivation of the potential temperature (cf. Sect. 2),
we note that, until reaching the expression for isentropic
changes of state (9), no assumption was made about the spe-
cific heat capacity. As soon as the temperature dependence of
the specific heat capacity comes into play, the re-assessment
of Eq. (9) leads to

cp(T )

T
dT = Ra

dp
p
. (21)
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Integration of Eq. (21) from the basic state (p0, θcp(T )) to
any other state (p, T ) yields

Ra ln
(
p

p0

)
= Ra

p∫
p0

dp′

p′
=

T∫
θcp(T )

cp(T
′)

T ′
dT ′, (22)

where θcp(T ) is the desired potential temperature.
The rearrangement of Eq. (22) makes evident that the de-

sired potential temperature is a zero of the function F(x),
given by

F(x)=

T∫
x

cp(T
′)

T ′
dT ′−Ra ln

(
p

p0

)
. (23)

To arrive at the desired potential temperature θcp(T ) for any
given temperature and pressure, the equation 0= F(x) must
be solved for the variable x, which is the desired θcp(T ).
Equation (23) has at most only one real zero, since its inte-
grand is strictly positive, which means F(x) is strictly mono-
tonic.

In the following, the ideal-gas reference potential tempera-
ture θref is introduced, based on the formulation of the ideal-
gas limit of dry air’s specific heat capacity c0

p(T ) in accor-
dance with Eq. (18) as formulated by Lemmon et al. (2000).
This reference potential temperature θref represents the zero
of F(x) in Eq. (23), wherein cp(T ′) is to be replaced by
c0
p(T
′); i.e. for given p, T the reference potential tempera-

ture θref solves the equation

0= F(θref)=

T∫
θref

c0
p(T
′)

T ′
dT ′−Ra ln

(
p

p0

)
. (24)

The parameterisation of c0
p(T
′) is stated to give accurate

values for temperatures from 60 to 2000K (cf. Sect. 4.2);
thus values of θref should not exceed 2000K, since otherwise
c0
p(T
′) within the integrand in Eq. (24) is evaluated outside

of its range of validity. However, due to the division by T ′,

the value of the integrand
c0
p(T
′)

T ′
may be expected to give

nevertheless a good approximation even if the accuracy of
c0
p(T
′) is decreased; hence values θref > 2000K should not

be discarded.
It may be noted that further variants of a reference poten-

tial temperature are derivable by replacing cp(T ′) in Eq. (23)
by any other expression of the specific heat capacity of air
which may appear sufficiently accurate. The steps to com-
pute or approximate the zero of the function (23), described
in this study, are independent of the chosen heat capacity for-
mulation.

Unfortunately, for a straightforward solution of the inte-
gral (23), the suggested parameterisation of cp is too com-
plex and an analytically insolvable nonlinear equation 0=
F(x) could result. Thus, an approximation of the equation’s

desired zero is required. Newton’s method (cf. e.g. Deufl-
hard, 2011) provides a standard approach to numerically ap-
proximate the zero of a nonlinear equation. Proceeding from
an initial guess x0, Newton’s method constructs a sequence
{xk}k∈N defined by the recursion

xk+1 = xk −
F(xk)

F ′(xk)
= xk −

F(xk)

−
cp(xk)

xk

=
xk

cp(xk)

[
cp(xk)+F(xk)

]
=

xk

cp(xk)

cp(xk)−Ra ln
(
p

p0

)
+

T∫
xk

cp(T
′)

T ′
dT ′

 . (25)

The constructed sequence {xk}k∈N converges to the equa-
tion’s desired zero. For the computations described here,
the iteration is stopped as soon as the absolute difference
|xk+1− xk| of two consecutive iterations falls below 10−8 K.

For the reference of air’s specific heat capacity, c0
p(T ),

the integral (23) turns out not to be explicitly solvable.
Therefore, with each iteration, the solution of the integral
T∫
xk

c0
p(T
′)

T ′
dT ′ is approximated by subdividing the entire in-

tegration range, [xk, T ], into intermediate intervals with re-
spective size of at most 0.1K and by applying Simpson’s rule
on each subinterval.

As a first guess x0 for the Newton iteration, the conven-
tional definition of θcp based on a constant specific heat ca-
pacity (WMO, 1966) is inserted:

x0 = T

(
p0

p

) Ra
1005 J kg−1K−1

= θ1005. (26)

In the course of Newton’s method, the sequence {xk}k∈N will
converge to the unique zero for any initial guess x0 due to
the monotonicity of F(x). However, the right choice of the
initial guess x0 substantially decreases the error of the first
iteration x1, speeding up convergence to the desired zero of
the function F(x). Therefore, it seems wise to use the con-
ventional definition of θcp as the first guess for the Newton
iteration (25).

Solving the previously described root-finding problem by
Newton’s method over the comprehensive range of iteration
steps (until the set requirement, i.e. |xk+1− xk|< 10−8 K, is
fulfilled) finally leads to the reference potential temperature
θref. This θref is based on the ideal-gas limit of dry air’s
specific heat capacity c0

p(T ), which refers to the current
thermodynamic state of knowledge, and, thus, we use
θref as our reference for the potential temperature in the
following. For evaluating the results, the air temperature
and pressure from the US Standard Atmosphere are used
once more to set up the vertical profiles of the potential
temperature. Figure 4a exhibits the resulting reference
profile, i.e. θref (red curve). Additionally, for comparison
with the reference, further potential temperature profiles
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Figure 4. (a) Reference potential temperature θref together with the potential temperatures θ994, θ1000, θ1010 and θ1011 relying on constant
cp values (the dashed lines depict the historical extremes for cp; cf. Table 1). (b) Relative differences

(
θcp − θref

)
/θref for the same choices

cp ∈
{

994Jkg−1K−1,1000Jkg−1K−1,1010Jkg−1K−1,1011Jkg−1K−1
}

as in panel (a) between the reference potential temperature and
the potential temperatures relying on constant cp values. For comparison, the relative difference (θ1005− θref)/θref is displayed, for which
cp = 1005 Jkg−1K−1 corresponds to the WMO recommendation. In addition, also comparisons with θ1003.5, θ1004, θ1006.5 are included.
All profiles are based on the values for temperature and pressure according to the US Standard Atmosphere. Note the linear axis scaling
inside and the logarithmic scaling outside of the grey-shaded area in panel (b).

θcp are shown based on the two (historical) extremes
cp = 994 Jkg−1K−1 and cp = 1011 Jkg−1K−1 (dashed
curves) and based on the range limits of more recent values
cp = 1000 Jkg−1K−1 and cp = 1010 Jkg−1K−1 (solid
green and magenta curves) of given constant values of air’s
specific heat capacity (cf. Table 1). Clearly, in particular at
elevated altitudes, the courses of θ1000 and θ1010 significantly
deviate from the reference. To quantitatively evaluate the
match between the different profiles, the relative difference
of the profiles based on a constant cp, with respect to the
reference, i.e. 1θ/θref =

(
θcp − θref

)
/θref, is depicted in

Fig. 4b. The comparison demonstrates that the θcp profiles
significantly depart from the reference by about 300K at
50km altitude, corresponding to a relative difference of
about 16%. With both extremes of the recent constant
values cp ∈

{
1000 J kg−1K−1,1010Jkg−1K−1}, the relative

error level of 0.1 % is exceeded at altitudes about 5km.
While θ1000 continues to increasingly deviate from the
reference, θ1010 re-enters and crosses the 0.1% relative
error interval (grey-shaded area) at altitudes between ∼ 19
and 21km, before it reaches similar errors to the other
θcp profiles that are based on a constant cp. Although the
extreme values cp ∈

{
1000Jkg−1K−1,1010Jkg−1K−1}

appear in recent literature, these values may be
considered unrealistic. For this reason, Fig. 4b
also shows the relative deviations for the values
cp ∈

{
1003.5Jkg−1K−1,1004Jkg−1K−1,1005Jkg−1K−1 ,

1006.5Jkg−1K−1}, which include the recommended
value of the WMO (1966) and a more realistic range;
i.e. cp = 1005Jkg−1K−1

± 1.5 Jkg−1K−1. Notably, up to

an altitude of 15km, the reference potential temperature
is comparably well matched by both the recommended
θ1005 and θ1004 (based on the frequently used alternative
cp = 1004 Jkg−1K−1; cf. Table 1). Until 15km altitude,
both constant cp values lead to errors of calculated θcp which
remain comparatively small within the 0.1% relative error
interval. However, above ∼ 17.5km, both θ1004 and θ1005
exceed the 0.1% relative error interval, and further aloft
their relative error with respect to the reference θref increases
rapidly.

In the context of numerical models of the atmosphere, the
energy balance equation is occasionally formulated based on
the potential temperature θ ; thus θ constitutes a prognostic
model variable. In such a case, the temperature T needs to be
calculated from a given pair of values of pressure p and po-
tential temperature θ . Using once more the defining Eq. (22),
for given θ a zero of the function

0=−

θ∫
T

cp(T
′)

T ′
dT ′−Ra ln

(
p

p0

)
(27)

is to be computed. Since Eq. (27) corresponds to the func-
tion F defined in Eq. (23) with the exception of a nega-
tive sign, the identical approximation procedure as outlined
above in this section for the calculation of (T , p) 7−→ θ may
be applied mutatis mutandis to calculate the transformation
(θ, p) 7−→ T .

In any case, a certain effort is required to implement the
new formulation of the potential temperature in an atmo-
spheric model, as this equation should be based on the im-
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plicit definition Eq. (22), and such a goal may be the subject
of future endeavours.

5.2 Approximations of the reference potential
temperature

Of course, the previously described procedure to compute the
potential temperature may appear to be anything but practi-
cal. Indeed, due to the complications inherent with

– the requirement to numerically solve the integral in the
function F(x) and

– the need to use Newton’s method for an iteration se-
quence to approach the zero of F(x),

a convenient approach to re-assess the conventional defini-
tion of the potential temperature is not provided at all. This
motivates the development of a more practical approximation
of the reference potential temperature. To arrive at a prac-
ticable approximation procedure, the two principal steps in
the suggested procedure are briefly outlined in the following,
whereas the comprehensive details and intermediate deriva-
tion steps are found in Appendix C.

Proceeding from the definition (23) of the function F(x),

the computation of the integral
T∫
x

c0
p(T
′)

T ′
dT ′ becomes the first

obstacle to a practical approximation. Therefore, a plausi-
ble initial step is to replace the integral by an expression
that is easier to treat. This expression may be proposed as
f (T )− f (x), where the function f is defined as f (x)=
b0+b1 ln(x− b2)+b3x+b4x

2 and which is recognisable as

an approximated primitive of
c0
p(T
′)

T ′
; see Appendix C1. The

choice of the functional form of f is motivated by the exact
primitive of the integral in the case of a constant cp.

As previously discussed (cf. Sect. 5.1), the formulation of
a new expression for the potential temperature based on the
temperature-dependent specific heat capacity cp(T ) requires
finding the zero of the equation 0= F(x), where the function
F(x) is defined in Eq. (23). Replacing the exact integral in
Eq. (23) by the difference f (T )− f (x) means that F(x) is
substituted by the function

F̂ (x)= f (T )− f (x)−Ra ln
(
p

p0

)
. (28)

Consequently, the resulting approximated reference potential
temperature, i.e. the respective zero of the function F̂ (x), is
denoted as θapprox

ref .
The difference between the approximation result and the

reference, i.e.

θref− θ
approx
ref , (29)

is then referred to as the basic error of the approximation.
Note that the replacement of the function F by F̂ only
circumvents the integration in F ; the root-finding problem
0= F̂ (x) for the approximated reference potential tempera-
ture θapprox

ref remains analytically not solvable.

Therefore, the second move towards a practical approxi-
mation procedure is to construct approximations θ (k) to the
zero of F̂ (x) by using Newton’s method; see Appendix C2.
Newton’s method is an iterative procedure; the notation θ (k)

refers to the kth computed iterate. Hence, θ (k) constitutes an
approximation to θapprox

ref , and, in the limit k→∞, the ap-
proximation error

θ
approx
ref − θ (k) (30)

vanishes. Two formulations of Newton’s method are distin-
guished in Appendix C2, i.e. the principal application of
Newton’s method, and its further derivative, called House-
holder’s method. Both formulations require the stipulation
of one of the iterates θ (k) as sufficient to obtain a result of
appropriate accuracy. The higher the number of iterations,
of course, the smaller is the error (30), whereas the basic
error (29) remains unaffected by the number of iterations.
Hence, in any case, the basic error (29) is to be accepted as at
least implied in the final approximation, even though a well-
chosen θ (k) could result in an approximation error θref− θ

(k)

that is smaller than the basic error.
The various errors implied in the proposed approximation

procedure combining for the approximation’s total error, as
well as accompanying details, are discussed in Appendix D.
In brief, Fig. 5a illustrates the basic error (29) based on the
pressure and temperature profiles of the US Standard Atmo-
sphere, as these provide atmospherically meaningful aver-
ages of realistic temperature–pressure data pairs. Based on
the parameters of the US Standard Atmosphere, the basic er-
ror inherent with the approximation remains below 1.25K
up to altitudes of 50km. Thus, regarding the subsequent it-
eration process, a substantial improvement of the error com-
pared to ∼ 1.5K is not to be expected for the total error of
approximating the reference potential temperature.

An error analysis exclusively based on the US Standard
Atmosphere is constrained to specific combinations of the
air’s pressure and temperature, potentially suppressing latent
errors that may emerge if certain fluctuations of the real at-
mosphere’s temperature and pressure profiles are considered.
Thus, the error analysis is extended to an atmospheric pres-
sure (p) and temperature (T ) range, from 1000 to 0.5hPa and
from 180 to 300K, such that the conditions within the entire
troposphere and stratosphere, including the stratopause, are
covered. Figure 5b illustrates the absolute basic error (29)
for the extended ranges of pressure and temperature while
Fig. 5c illustrates the relative basic error

∣∣θref− θ
approx
ref

∣∣/θref.
The contours in Fig. 5b and c mainly highlight two regions:
at ∼ 100hPa where 1θ never rises above 0.75K, which cor-
responds to a maximum relative basic error of 0.15%, and in
a pressure range from ∼ 5 to 1hPa where a 1θ of 1.25K is
never exceeded, corresponding to relative errors of at most
0.1%. Note that the entire 1θ scale ranges up to 3K, which
may only be reached at pressures below 0.8hPa combined
with temperatures above 280K.
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Figure 5. Absolute basic error 1θ = θref− θ
approx
ref , cf. Eq. (29),

from approximating the reference potential temperature along the
US Standard Atmosphere (a) and for the extended pressure range
1000 to 0.5hPa and temperature range 180 to 300K (b). For orien-
tation, the white solid line indicates the p–T profile from the US
Standard Atmosphere. The relative basic error |1θ |/θref is shown
in panel (c) for the extended pressure and temperature range.

As previously discussed, the basic error is unavoidable
and is to be accepted when applying the suggested substi-
tution for the integral in the definition of the function F(x)
in Eq. (23). However, as outlined in Appendix C2, the sec-
ond iterate θ (2) of Newton’s method (principal application)
may thoroughly suffice for the final approximation to the ref-
erence potential temperature θref, as this iteration level al-
ready features an approximation error (30) which is negli-

Figure 6. (a) Relative error 1θ/θref =
∣∣∣θ (2)− θref

∣∣∣/θref of the sec-

ond iterate θ (2), obtained with Newton’s method for the ranges
of pressure and temperature from 1000 to 0.5hPa and from 180
to 300K, respectively. Panels (b) and (c) exhibit the difference
1θ = |θ1005− θref| and relative difference 1θ/θref, respectively,
on a logarithmic scale between the reference potential tempera-
ture θref and the potential temperature θ1005 based on a constant
specific heat capacity (cp = 1005 Jkg−1K−1). For orientation, the
white solid line indicates the p–T profile from the US Standard At-
mosphere.

gibly small. Figure 6a illustrates the total relative error of
the suggested approximation θ (2) with respect to the ultimate
reference θref for the extended ranges of pressure and tem-
perature. Indeed, the contour pattern in Fig. 6a and the basic
relative approximation error shown in Fig. 5c are remarkably
similar. Thus, the iteration process itself imparts only a minor
contribution to the total error compared to the basic approxi-
mation error.
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The total approximation error, which is

θref− θ
(2)
=
(
θref− θ

approx
ref

)
+

(
θ

approx
ref − θ (2)

)
, (31)

is dominated by the unavoidable basic error (first bracket)
and augmented by a negligible error inherent to the iteration
(second bracket), also supporting the conclusion that the sec-
ond iterate of Newton’s method is an appropriate approxima-
tion procedure. Figure 7 presents stepwise instructions for
the computation of the second iterate approximation to the
reference potential temperature and may serve as a guide to
follow the numerous equations and intermediate analytical
steps described throughout the derivations in Appendix C.

For completeness, Fig. 6b and c exhibit a final com-
parison by means of the logarithmic difference and the
logarithmic relative difference between the reference po-
tential temperature θref and the conventional definition θcp
(WMO, 1966) based on a constant specific heat capacity
cp = 1005 Jkg−1K−1. Notably, over a wide altitude range
within the troposphere (i.e. for atmospheric pressures greater
than ∼ 100hPa), the absolute error 1θ = |θ1005− θref| re-
mains below 1K, cf. Fig. 6b, corresponding to a relative error
1θ/θref of at most 0.1%. However, in the pressure range be-
low ∼ 100hPa, deviations of the real atmospheric conditions
from those of the US Standard Atmosphere could increase
the absolute error 1θ from a few K to up to 10K, corre-
sponding to an increase in the relative error to 1%. Further
critical pressure levels are at ∼ 20 and ∼ 5hPa, where the
error’s magnitude increases to several tens and several hun-
dreds of K, respectively. At a pressure of 0.5hPa, an absolute
error 1θ of up to 500K is reached, which corresponds to a
relative error of 10 % or even more.

5.3 Implementation aspects

The use of the new reference potential temperature θref in a
numerical model requires additional computational effort to
perform corresponding calculations. Hereafter, two aspects
are briefly discussed: (i) the formulation of the model equa-
tions, which include θref, and (ii) the calculation of θref.

Although it is beyond the scope of the present study to pro-
vide a general derivation of an appropriate energy equation
based on θref for atmospheric models, a formulation of the
total derivative of θref is given by

cp(θref)
dθref

θref
= cp(T )

dT
T
−Ra

dp
p
, (32)

where the details of its derivation are given in Appendix E.
The total derivative of θref may be useful, since the govern-
ing equations are commonly formulated as differential equa-
tions.

The calculation of both the reference potential temperature
θref and its approximation θapprox

ref on the basis of given values
of pressure p and temperature T requires an iterative proce-
dure. The additional computational effort inherent with these

Figure 7. Flowchart guiding through the process of computing the
approximation θ (2) by using Newton’s formulation (C5) until its
second iteration, wherein T (in K) and p (in hPa) are the atmo-
spheric air conditions in terms of temperature and pressure, respec-
tively, and p0 is set to 1000hPa (WMO, 1966). Table C1 collects
values of θref and the approximation θ (2) together with intermedi-
ate results for selected pairs of temperature and pressure to verify a
computation according to this instruction.

calculations depends on the number of iterations. If, how-
ever, the second iteration θ (2) already represents an appropri-
ate approximation of θref (cf. Sect. 5.2), then the flowchart
in Fig. 7 immediately conveys the additional computational
effort to be expected. The calculation of the starting value x0
is identical to computing θ1005. An additional effort results
from the evaluation of the functions f (three times) and f ′

(two times), respectively, and the combination (two times) of
obtained values to determine x1 and x2. Since each of these
evaluations causes additional numerical steps, the computa-
tional effort to obtain θ (2) is in total about 7 times more than
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the calculation of the conventional θ1005, while the algorith-
mic complexity is constant.

6 The potential temperature for air as a real gas

To account for real-gas effects (that cause a behaviour other
than that of an ideal gas; cf. Sect. 4) on the potential tem-
perature, we use the model embedded in REFPROP (Lem-
mon et al., 2018), a standard reference database from NIST.
This model treats air as a mixture and employs state-of-
the-art reference equations of state for pure nitrogen (Span
et al., 2000), oxygen (Schmidt and Wagner, 1985), and argon
(Tegeler et al., 1999). The mixing rule and binary interaction
parameters are taken from the GERG-2008 model (Kunz and
Wagner, 2012). From its definition in terms of an isentropic
process, the potential temperature θreal(T , p) is defined im-
plicitly by

s(θreal, p0)= s(T , p), (33)

where s is the specific entropy. Calculating θreal(T , p) is a
two-step process. First, the specific entropy s is computed
at temperature T and pressure p. Then, the temperature θreal
that gives the same entropy s at the ground pressure p0 is
found. This is an iterative calculation, but it is accomplished
automatically within the REFPROP software (Lemmon et al.,
2018).

One caveat should be mentioned regarding the computed
potential temperatures. The range of validity of the equations
of state for the air components (Span et al., 2000; Schmidt
and Wagner, 1985; Tegeler et al., 1999) extends only up to
2000K. At very high altitudes, computed values of θreal ex-
ceed this limit. While all the equations extrapolate in a phys-
ically realistic way, their quantitative accuracy is less certain
above 2000K. This caveat also applies to the ideal-gas calcu-
lations; the correlations for c0

p(T ) for N2 and O2 are extrap-
olations beyond 2000K. However, since the same ideal-gas
values are used in the real-gas calculations, any inaccuracy
in c0

p(T ) will cancel when evaluating the difference between
ideal-gas and real-gas values of θ .

Figure 8 illustrates the comparison between the real-gas
potential temperature θreal and the ideal-gas reference poten-
tial temperature θref. Figure 8a shows the difference θreal−θref
along the p–T profile of the US Standard Atmosphere and
Fig. 8b accounts for any p–T combination of extended range
but shows the relative difference instead. The difference be-
tween θreal and θref never exceeds 0.1K for the absolute dif-
ference or 30×10−5

= 0.03% for the relative difference. As
may be anticipated from the deviation of c0

p shown in Fig. 3
at low temperatures both from the experimentally determined
values (which may be inaccurate) and from the REFPROP
data, the real-gas effect on the specific heat capacity of dry
air tends to increase towards the coldest gas temperatures.
However, the difference between the real- and ideal-gas ap-
proaches results in essentially no substantial difference be-

Figure 8. Difference θreal− θref reflecting the deviation of the po-
tential temperature θreal, based on the properties of air behaving as
a real gas under variable temperature and pressure, from the herein
derived potential temperature expression θref for the ideal-gas limit
of the air’s specific heat capacity c0

p(T ). (a) Difference along the
profile of the US Standard Atmosphere. (b) Relative difference in
p–T coordinates covering any combination of atmospherically rel-
evant temperatures and pressures.

tween the resulting θ ’s, neither at ground conditions (for
any temperature at ∼ 1000hPa) nor at very high altitudes
(at pressures below∼ 1hPa). While the negligible difference
between θreal and θref near ground levels is less surprising,
the diminished difference at higher altitudes reflects that in
this region the potential temperature reaches such high val-
ues that the difference between the real-gas and the ideal-gas
specific heat capacity becomes insignificant. Within the in-
termediate (stratospheric) region, the low pressures (and thus
the low air densities) cause the ideal-gas assumption to be an
accurate approximation even at low temperatures. In general,
the degree to which a gas can be treated as ideal is primarily
a function of the (molar) density. For an ideal gas, the density
is proportional to the quotient p

T
; this is almost true also for

real air. Hence, declining pressures together with rising tem-
peratures both make the air’s behaviour increasingly close to
ideal.

7 Implications on the use of the potential temperature

As previously shown, the newly defined reference potential
temperature θref deviates most from the WMO-defined po-
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tential temperature θ1005 at stratospheric altitudes and above
(cf. Fig. 6). More particularly, not only do the values from
both θ definitions differ, but also their vertical derivatives, i.e.
∂θref
∂z

and ∂θ1005
∂z

. Whether such deviations have a significant
effect on an application is very case dependent and requires
detailed examination and specific appraisal. Below, four typ-
ical applications of the potential temperature were selected
and are examined regarding the quantitative effect on the
results due to deviations of the introduced reference poten-
tial temperature compared to the conventional and commonly
used θ1005. The purpose of this examination is to document
the magnitude of errors to allow a well-founded, individual
decision for each application of the potential temperature as
to whether it is worth applying the more rigorous calculation
in the particular context.

7.1 The Brunt–Väisälä frequency

The formula for the (squared) Brunt–Väisälä frequencyN2 is
often given in the form of Eq. (2), i.e. a formula involving the
potential temperature θ . The substitution of θ in Eq. (2) by
the new reference potential temperature θref may be tempt-
ing, but it is erroneous, and the resulting quantity is denoted
as N2

false. The Brunt–Väisälä frequency is not defined by
Eq. (2), since this formula results from various simplifica-
tions in its derivation, e.g. by assuming hydrostatic condi-
tions and a constant specific heat capacity. Consequently, the
substitution of θref in Eq. (2) leads to a wrong formula for the
Brunt–Väisälä frequency that does not correctly consider the
temperature dependence of dry air’s specific heat capacity.

The Brunt–Väisälä frequency is the oscillation frequency
of an air parcel due to a local density perturbation (see
e.g. Durran and Klemp, 1982; Marquet and Geleyn, 2013;
Wallace and Hobbs, 2006; Ambaum, 2010). Retaining the
assumption of hydrostatic conditions, the defining formula
yields

N2
=
g

T

(
∂T

∂z
+

g

cp(T )

)
, (34)

where the temperature-dependent specific heat capacity
cp(T ) was implied, and which quantifies the balance be-
tween the actual temperature stratification ∂T

∂z
and the dry-

adiabatic lapse rate − g
cp(T )

(e.g. Holton, 2004).

To illustrate the deviation of N2
false from N2, vertical pro-

files of both variables were calculated based on the tempera-
ture profiles shown in Fig. 9a. The temperature data are taken
from the Upper Atmosphere Research Satellite Reference
Atmosphere Project (URAP; see Swinbank and Ortland,
2003) data and are assumed as typical at mid-latitudes during
June and December. The temperature profiles extend up to
altitudes of 85km and thus cover the entire stratosphere and
most of the mesosphere. The hydrostatic assumption allowed
for computing pressure profiles along the URAP values for
the vertical temperature distribution. Subsequently, the ref-
erence potential temperature θref and its vertical derivative

were calculable. The resulting vertical profiles for N2
false and

the true Brunt–Väisälä frequency N2 are shown in Fig. 9b.
Evidently, the values of N2

false (dashed lines) deviate signif-
icantly from N2 (solid lines) and increasingly so towards
higher altitudes above 15km. However, the absolute devia-
tion |N2

−N2
1005|, using N2

1005 as calculated with θ1005 in
accordance with Eq. (2), does not exceed 1.6×10−6 s−2 (not
shown), indicating that N2

1005 is a good representation of N2

along these temperature profiles.
For equations involving the potential temperature, how-

ever, it should be emphasised that the substitution of θ by
θref rarely succeeds and that instead the entire derivation of
the equations requires careful consideration of the assump-
tions, such as the constancy of cp, to avoid aberrations and
erroneous conclusions.

7.2 The potential vorticity

Ertel’s potential vorticity (e.g. Ertel, 1942; Hoskins et al.,
1985; Schubert et al., 2004; Holton, 2004) may be defined
as the potential vorticity of the dry-air potential temperature
by

PV(θ)=
1
ρ
(2�+∇ ×u) · ∇θ. (35)

In this definition, 2�+∇×u is the absolute vorticity, � de-
notes Earth’s angular velocity, u the three-dimensional wind
vector, and ρ the air density (see e.g. Hoskins et al., 1985;
Cotton et al., 2011; Marquet, 2014). Since Eq. (35) repre-
sents the defining equation for Ertel’s potential vorticity, the
two potential vorticities

PVref = PV(θref),

PV1005 = PV(θ1005) (36)

based on the new reference potential temperature θref and
θ1005, respectively, are considered. To provide a first com-
parison of these potential vorticities, u= 0 is assumed, i.e.
an atmosphere at rest. Additionally, the potential temperature
is assumed as horizontally constant. Consequently, Eq. (35)
reduces to

PV(θ)=
2sin(φ)
ρ

2π
tE

∂θ

∂z
(37)

for a position on Earth with geographical latitude φ and tE =
24h, the duration of one rotation of the Earth.

Using the temperature profiles from Fig. 9a together with
the values of the potential temperatures θref and θ1005, the
evaluation of the two potential vorticities (36) by (37) yields
the potential vorticity profiles shown in Fig. 10a while their
relative deviations are shown in Fig. 10b. Since the temper-
ature profiles are representative for the northern-hemispheric
mid-latitudes, the geographical latitude φ in Eq. (37) was set
to 52◦ N. At tropospheric altitudes, the relative deviation be-
tween θref and θ1005 is small and never exceeds ∼ 1%, while
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Figure 9. Vertical profiles of (a) the temperature up to 85km altitude as typical for mid-latitudes in June (red curve) and December (blue
curve). (b) Resulting wrong Brunt–Väisälä frequency N2

false (dashed lines) and the true Brunt–Väisälä frequency N2 (solid lines) for the two
temperature profiles from panel (a).

Figure 10. (a) Vertical profiles of the potential vorticity PVref computed with θref (solid lines), and PV1005 computed with θ1005 (dashed
lines), for an atmosphere at rest along the temperature profiles from Fig. 9a for June (red lines) and December (blue lines). Since the
temperature profiles are representative for mid-latitudes on the Northern Hemisphere, the geographical latitude in Eq. (37) was set to 52◦ N.
(b) Relative deviation |PVref−PV1005|/PVref of the potential vorticity profiles from panel (a).

it continuously increases towards higher altitudes. According
to these profiles, the relative deviation exceeds 10% at 30km
and reaches 100% at the highest altitudes.

It is noteworthy, however, that the computations of both
N2 (cf. Sect. 7.1 and Fig. 9b) and PV (Fig. 10b) are based on
the specific temperature profiles from URAP (cf. Sect. 7.1
and Fig. 9a) and thus are not of general validity. The selec-
tion of these temperature profiles was entirely arbitrary and
exclusively aimed at illustrating possible implications of the
use of the developed reference potential temperature. The re-
sulting and indicated deviations are ultimately subject to in-
dividual assessment on applying θref.

7.3 Vertical sorting of data

For atmospheric investigations, e.g. in the region of the upper
troposphere and lower stratosphere (UT/LS), it is common
practice to set vertical profiles of atmospheric parameters in
relation to the potential temperature as a vertical coordinate.
This way, the increasingly isentropic stratification of the at-
mosphere above the UT is taken into account. The transport
of an air mass along isentropic surfaces, i.e. surfaces of con-
stant potential temperature and entropy, is to be regarded as
adiabatic. Hence, the air’s composition and properties within
the same isentrope interval, regardless of the observation lo-
cation, are better comparable than they would be if based on
other isopleths (i.e. height or pressure coordinates). Investi-
gations of air mass compositions over time and from differ-
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ent regions at the same θ level largely exclude that, during its
transport history, the air had experienced vertical displace-
ment and/or diabatic processes (radiative heating, condensa-
tion/evaporation) which would result in energy conversion.
The tropopause height is often used as a reference height
in the θ coordinate system in connection with the vertical
sorting of observational data, whereby the assignment of tro-
pospheric and stratospheric processes is made or exchanges
across the tropopause are investigated (Holton et al., 1995;
Stohl et al., 2003). Consequently, the tropopause height is
also determined by the potential vorticity (e.g. Gettelman
et al., 2011, and cf. Sect. 7.2) if the conventional tropopause
definitions (cold point or lapse rate, WMO, 1957) do not al-
low for clearly determining the tropopause height, e.g. in the
Asian monsoon anticyclone (cf. Höpfner et al., 2019) or in
the polar winter vortex (Wilson et al., 1989; Weigel et al.,
2014). The conventional definition of θ implies a system-
atic error in the vertical sorting of observational data in the
θ coordinate system, independent of the measurement plat-
form. Investigations with high-altitude research aircraft such
as the G-550 HALO (e.g. Wendisch et al., 2016; Voigt et al.,
2017), the NASA WB-57 or ER-2 (e.g. Murphy et al., 2007;
Dessler, 2002), the M-55 Geophysica (Curtius et al., 2005;
Borrmann et al., 2010; Frey, 2011), balloon-borne platforms
(Lary et al., 1995; Vernier et al., 2018), or satellite-based ver-
tical profiles (e.g. Davies et al., 2006; Spang et al., 2005) re-
quire consideration of the systematic error in θ if calculated
as θcp in compliance with the definition by the WMO (1966).
The possibly inconsistent use of a constant cp value of 1004
or 1005 Jkg−1K−1 (or any other) in different and compared
data sets, which could be due to different literature references
for this value (cf. Table 1), will not be explored here. At alti-
tudes between 15 and 20km (ceiling of high-altitude research
aircraft), an overestimation by about 0.1 %–0.5 % is to be ex-
pected for the potential temperature according to the conven-
tional definition (cf. Fig. 4b). At altitudes of 30–35 km, an
overestimation by up to 2 %–5 % results. Whether this error
is significant or small compared to the uncertainty of am-
bient temperature and pressure measurement aboard the re-
spective aircraft is left to individual judgement in the course
of data processing. In the case of spacecraft-bound vertical
soundings (e.g. from ASTRO-SPAS, SCIAMACHY, or EN-
VISAT), the error in the potential temperature determined
by θcp exceeds 10 % at altitudes above 40km, as shown in
Fig. 4b. Finally, we note that the specified errors apply ex-
clusively along the vertical profile of the US standard atmo-
sphere and that deviations of the actual temperature profile
from the US standard atmosphere, e.g. warmer temperatures,
could lead to larger errors (cf. Fig. 6).

7.4 Diabatic heating rates

Diabatic heating rates refer to the rate of energy dq
dt supplied

to a given air parcel, e.g. by radiative heating, and are given in
units of Jkg−1s−1. This energy supply causes a temperature

change in an air parcel at a rate which hereafter is referred to
as the absolute heating rate,

AHRref

(
dq
dt

)
=

dT
dt
=

1
c0
p(T )

dq
dt
,

AHR1005

(
dq
dt

)
=

dT
dt
=

1

1005Jkg−1K−1

dq
dt
. (38)

Again, the distinction was made between the temperature-
dependent c0

p(T ) and the constant cp = 1005 Jkg−1K−1 spe-
cific heat capacity. From the defining Eq. (38), the relative
difference between these absolute heating rates, where x des-
ignates an arbitrary diabatic heating rate, is

AHR1005(x)−AHRref(x)

AHRref(x)
=

c0
p(T )

1005Jkg−1K−1
− 1. (39)

Apart from the absolute heating rates for the change in
absolute temperature, the change in potential temperature
due to a diabatic heating rate dq

dt is of interest. For exam-
ple, it is the change in potential temperature that modifies
the altitude of modelled trajectories in Lagrangian chemi-
cal transport models based on isentropic coordinates rather
than the change in absolute temperature (e.g. the SLIM-
CAT model, Chipperfield, 2006; or CLaMS model, Pomm-
rich et al., 2014).

Taking the relation T ds = dq for the specific entropy into
account, Gibbs’ Eq. (8) may be rewritten as

dq
T
=
cp(T )

T
dT −Ra

dp
p
. (40)

Comparing the right-hand side of this equation to the total
derivative of the new reference potential temperature θref (see
Appendix E for the detailed computation and Eq. E6 for the
result) Eq. (40) amounts to

dq
T
= cp(θref)

dθref

θref
. (41)

Consequently, the following two diabatic heating rates,

dθref

dt
=

θref

c0
p(θref)T

dq
dt
= HRref

(
dq
dt

)
,

dθ1005

dt
=

θ1005

(1005Jkg−1K−1) · T

dq
dt
= HR1005

(
dq
dt

)
, (42)

for the potential temperatures θref and θ1005 may be defined.
Denoting again by x an arbitrary diabatic heating rate, the
relative difference between the heating rates (Eq. 42) is

HR1005(x)−HRref(x)

HRref(x)
=
θ1005

θref

c0
p(θref)

1005Jkg−1K−1
− 1. (43)

In order to judge the magnitudes of the relative differ-
ences (Eqs. 39 and 43), the monthly averaged temperature
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Figure 11. (a) Monthly averaged temperatures profiles for 52◦N. (b) The relative differences between the absolute heating rates, defined
in Eq. (39). (c) The relative differences between the heating rates (Eq. 43) for the potential temperatures θ1005 and θref. (d) The resulting
relative deviation of the potential temperatures θ∗1005, θ

∗
ref after 24h of heating with constant diabatic heating dq

dt and the resulting heating
rates HRref, HR1005 at constant pressure.

profiles from ERA-Interim (Dee et al., 2011) data for 52◦ N
geographical latitude are used; see Fig. 11a. The relative dif-
ferences of the absolute heating rates (Eq. 39) are shown in
Fig. 11b, and the difference appears to be small. However, the
relative differences of the heating rates (Eq. 43) in Fig. 11c
are much larger, as relative deviations exceeding 50% are
reached in the upper stratosphere and lower mesosphere (at
pressures below 1 hPa). Additionally, the temperatures that
resulted after 24h of heating with a constant heating rate dq

dt
as given in the (averaged) data set were computed, where a
constant pressure is assumed for simplicity. As may be antici-
pated from the small deviations in Fig. 11b, the differences in
the final absolute temperatures by using the absolute heating
rates AHR1005 or AHRref are smaller than 0.044K. However,
the differences in the potential temperatures θ∗1005, θ

∗

ref, com-
puted with the heating rates HRref, HR1005, are much larger
(Fig. 11d) and amount to about 3% at 10hPa and about 15%

at 1hPa. For transport calculations done in isentropic coordi-
nates, these differences are of the same order of magnitude
as the deviations resulting from the use of the temperature-
dependent instead of the constant cp. It remains to be decided
on individual application whether this additional effect in the
calculation is significant.

A standard diagnostic for the speed of the stratospheric cir-
culation is the time lag of the upward-propagating seasonal
signal in tropical stratospheric water vapour (the so-called
tape recorder, Mote et al., 1996). Here, differences between
calculations (done in isentropic coordinates) based on dif-
ferent current meteorological reanalysis data sets amount to
about 10 %–30 % for the signal’s upward propagation below
about 10hPa (Tao et al., 2019), such that the additional devia-
tion from using the temperature-dependent cp is comparably
small. However, in cases of smaller inter-model differences
the additional cp-related uncertainty needs to be assessed.
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Note that the determination of absolute temperatures
T ∗1005, T

∗

ref which correspond to the resulting potential tem-
peratures θ∗1005, θ

∗

ref after 24h differs by less than 0.014K
(not shown).

8 Summary and conclusions

Under the assumption that dry air is an ideal gas, a re-
assessment of computing the potential temperature was in-
troduced that accounts for the hitherto unconsidered temper-
ature dependence of air’s specific heat capacity. The new ref-
erence potential temperature θref was introduced, which is
thermodynamically consistent and based on a state-of-the-
art parameterisation of the ideal-gas specific heat capacity of
dry air from the National Institute of Standards and Technol-
ogy (NIST). This reference potential temperature was com-
pared to a potential temperature θreal wherein the real-gas
behaviour of dry air is considered. In the range of tempera-
tures from 180 to 300K and the range of pressures from 1000
to 0.5hPa, covering the atmospheric conditions of roughly
the entire troposphere and stratosphere, the relative differ-
ences between θref and θreal are smaller than 0.03% and may
be considered negligible. Consequently, θref even provides a
reasonable approximation to the potential temperature of the
real gas.

The difference between the newly derived reference poten-
tial temperature θref and the conventionally determined po-
tential temperature θcp (with constant cp = 1005 Jkg−1K−1,
as recommended by the World Meteorological Organisation,
WMO, 1966) increases with altitude, e.g. 1θ ≥ 1K at pres-
sures p ≤ 60hPa.

Derivation of a potential temperature that is consistent
with thermodynamics and that accounts for the ideal-gas
properties of dry air requires the integration of Gibbs’ equa-
tion and the subsequent solution of the resulting nonlin-
ear equation. With a constant cp, both analytical steps are
straightforward, resulting in the conventional expression (13)
as suggested by WMO (1966). However, if instead the tem-
perature dependence of air’s specific heat capacity cp(T ) is
considered, the integrals as well as the equations are not an-
alytically solvable, and, thus, the solution must be approxi-
mated. Both approximations were performed and described
in detail. The integral was treated with the basic approxima-
tion and the solution of the nonlinear equation was approxi-
mated by the second iterate of Newton’s method. As an alter-
native to Newton’s classical method, a modified formulation
of Householder’s iteration method is provided, featuring ac-
celerated convergence properties.

The suggested approximation steps to obtain a reference
potential temperature have two main sources of error: the er-
ror θref−θ

approx
ref inherent in the integral’s basic approximation

and the error θapprox
ref −θ (k) of the kth Newton iterate. The lat-

ter error approaches zero as k→∞, whereas the error result-
ing from the basic approximation remains well below 0.1%

(along the US Standard Atmosphere) for values of θref of up
to ∼ 2000K, hence up to stratopause altitudes. To keep this
low error level also for θref > 2000K, the approximation may
require an extension by means of a higher-order polynomial.

One of the foremost implications of the re-assessed poten-
tial temperature’s definition concerns the use of θ as a verti-
cal coordinate for the sorting, grouping, and comparison of
(measured) data, e.g. along or across isentropes. Thereby, the
re-assessed potential temperature constitutes a more accurate
consideration of the air’s actual properties. This particularly
concerns for example the specific heat capacity which is con-
ventionally assumed as constant and for which various val-
ues are given depending on the textbook consulted (offering
a range from 1000 to 1010 Jkg−1K−1; see Table 1).

Significant errors and biases may arise if, for instance, the
conventional derivation of θ (WMO, 1966) is used together
with values for air’s specific gas constant (Ra) or air’s spe-
cific heat capacity (cp), which better comply with the most
recent state of knowledge. Moreover, the use of the standard
pressure 1013.25 instead of 1000hPa as defined by WMO
(1966) and consistently used herein as ground level pressure
(p0) may cause an additional deviation of the resulting θ .
Thus, the re-assessment of θ ’s definition could largely di-
minish such errors and biases and improve the comparability
of data.

In addition to the vertical sorting of data, implications of
the new reference potential temperature were discussed for
several other applications in which the potential temperature
is used. On the one hand, results may appear mostly unaf-
fected by using θref instead of the conventional θ1005, such as
the values of the Brunt–Väisälä frequency or the temperature
change in air parcels due to diabatic heating. On the other
hand, it was illustrated that any formula which involves the
potential temperature needs to be carefully reviewed to see
if its derivation relies on the assumed constancy of the spe-
cific heat capacity. If this is the case, substituting θref for all
occurrences of θ within the particular formula may lead to a
wrong computation.

In contrast, examples were shown where the computation
of Ertel’s potential vorticity and the rate of change of poten-
tial temperature in response to diabatic heating yields differ-
ent results by the use of θref instead of θ1005. The differences
increased with altitude; hence they become more important
for applications within the stratosphere and above.

It should be emphasised that all these examples were based
on assuming particular profiles of temperature and pressure
together with other assumptions. Moreover, only a limited
number of examples could be investigated, while the applica-
tions of potential temperature are numerous. Consequently, a
well-founded, individual decision is required for each appli-
cation of the potential temperature as to whether it is worth
applying the more rigorous calculation in the particular con-
text.

On the one hand, such a re-assessment could take into ac-
count the current state of knowledge regarding the accuracy
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of thermodynamic variables and substance-related proper-
ties. On the other hand, this way, the conceptional abstract-
ness already inherent in θ is not further complicated by a mis-
leading selection of parameters or reputed constants. There is
no doubt that the conventional method is suitable for the de-
scription of most processes occurring within the troposphere.
However, at stratospheric or even mesospheric altitudes, the
neglect of the temperature dependence of the ideal-gas heat
capacity in the conventional definition increasingly distorts
the resulting absolute values as well as the vertical course
of the potential temperature. Ultimately, it seems obvious
to profit from the computing capacities available today and
from the known higher accuracy of physical variables and at-
mospheric parameters to carry out a reappraisal of the poten-
tial temperature, a useful (but not always consistently used)
meteorological quantity.
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Appendix A: Derivation of the specific heat capacity
from thermodynamics

In the following, the derivation of the air’s specific heat
capacities CV , Cp (capital letters indicate molar units) at
constant volume and pressure, respectively, is summarised,
mainly following the textbook exposition by Kondepudi and
Prigogine (1998). We start with the ideal-gas law

pV =NRT, (A1)

with p the pressure, V the volume of the system, N the
amount of gas within the volume, T the temperature, and
R the universal gas constant. Additionally, the first law of
thermodynamics is

dU = dQ−p dV, (A2)

with U the internal energy of the system and dQ specify-
ing the change in heat. Insertion of the total derivative of the
internal energy U in Eq. (A2), and assuming the system as
thermodynamically closed, i.e. the molar amount N remains
conserved (dN = 0), leads to

dQ−p dV =
∂U

∂T

∣∣∣∣
V,N

dT +
∂U

∂V

∣∣∣∣
T ,N

dV (A3)

and subsequently

dQ=
∂U

∂T

∣∣∣∣
V,N

dT +

(
p+

∂U

∂V

∣∣∣∣
T ,N

)
dV. (A4)

If the system’s volume is held constant, Eq. (A4) repre-
sents the definition of the constant-volume heat capacity CV
in molar units, i.e.

dQ=
∂U

∂T

∣∣∣∣
V,N

dT = CV (p,T )dT . (A5)

Alternatively, assuming the system’s pressure as constant,
its volume is variable with total derivative

dV =
∂V

∂T

∣∣∣∣
p,N

dT +
∂V

∂p

∣∣∣∣
T ,N

dp︸︷︷︸
= 0

=
∂V

∂T

∣∣∣∣
p,N

dT (A6)

and therefore

dQ=
∂U

∂T

∣∣∣∣
V,N

dT +

(
p+

∂U

∂V

∣∣∣∣
T ,N

)
dV

=
∂U

∂T

∣∣∣∣
V,N

dT +

(
p+

∂U

∂V

∣∣∣∣
T ,N

)(
∂V

∂T

∣∣∣∣
p,N

dT

)

=

[
∂U

∂T

∣∣∣∣
V,N

+

(
p+

∂U

∂V

∣∣∣∣
T ,N

)
∂V

∂T

∣∣∣∣
p,N

]
dT

= Cp(p,T )dT , (A7)

defining the isobaric molar heat capacity Cp. In general,
this quantity depends on pressure as well as on temperature.
However, if the gas is assumed as ideal, an important con-
clusion from the statistical description of an ideal gas is the
fact that the internal energy U must be independent of the
pressure (see e.g. Fay, 1965).

Using this result, together with Eq. (A7) and the ideal-gas
law (A1), it follows

Cp =
∂U

∂T

∣∣∣∣
V,N

+

(
p+

∂U

∂V

∣∣∣∣
T ,N

)
∂V

∂T

∣∣∣∣
p,N

=
∂U

∂T

∣∣∣∣
V,N

+p
∂V

∂T

∣∣∣∣
p,N

=
∂U

∂T

∣∣∣∣
V,N

+
∂

∂T
(pV )

∣∣∣∣
p,N

=
∂U

∂T

∣∣∣∣
V,N

+
∂

∂T
(NRT )

∣∣∣∣
p,N

=
∂U

∂T

∣∣∣∣
V,N

+NR. (A8)

In the previous computations, there is no restriction on the
temperature dependence of the internal energy U(T ). There-
fore, even by assuming ideal-gas behaviour, the specific heat
capacity Cp in Eq. (A8) is in general a function of tempera-
ture.

Appendix B: Sensitivity of the conventional definition of
θ to perturbations of cp

This section explores, from a mathematical perspective, the
sensitivity of the potential temperature formulation (13)
based on a constant specific heat capacity. Considering the
specific heat capacity cp as a variable, the sensitivity of θcp
(Eq. 13) to a small perturbation δ of cp is described by its
Taylor expansion

θcp+δ = θcp +
∂θcp

∂cp
δ+O

(
δ2
)

= θcp − θcp
Ra

c2
p

ln
(
p0

p

)
δ+O

(
δ2
)
. (B1)

For any constant value of the specific heat capacity cp and
for a minor perturbation δ, the second summand within the
expansion (B1) remains small for small values of ln

(
p0
p

)
. If

the interval between the two pressure levels is very narrow,
i.e. p ≈ p0, the expression ln

(
p0
p

)
approximately equals

ln(1)= 0. Contrarily, if the pressure approaches very low
values, i.e. p→ 0Pa, the logarithmic expression diverges to
negative infinity, i.e. ln

(
p0
p

)
→−∞, implying that the im-

pact of the second summand intensifies with decreasing pres-
sure, i.e. for increasing altitudes. Moreover, this may explain
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why the deviation between θ1000 and θ1010, as illustrated in
Fig. 2b, remains comparatively small within the troposphere
and systematically increases with rising altitude, i.e. decreas-
ing pressure levels.

Appendix C: Approximate computation of the reference
potential temperature

This section summarises the detailed steps of approximat-
ing the function F(x), defined in Eq. (23), by F̂ (x), defined
in Eq. (28) (Sect. C1), as well as the approximations of the
solutions of the resulting nonlinear equations by Newton’s
method (Sect. C2).

C1 Reformulating the function F(x)

Proceeding from the definition of a function h(x),

h(x)=

x∫
T1

cp(T
′)

T ′
dT ′, (C1)

with T1 = 180K, the function F(x) may be rearranged as

F(x)=

T∫
x

cp(T
′)

T ′
dT ′−Ra ln

(
p

p0

)

= h(T )−h(x)−Ra ln
(
p

p0

)
. (C2)

The advantage of this reformulation of F(x) is the inclusion
of h(x), consisting of an integral with fixed lower bound and
a sole variable upper bound. This way, the function h(x) is
numerically solvable, and subsequently h(x) can be substi-
tuted by an approximation f (x) that is defined as

f (x)= b0+ b1 ln(x− b2)+ b3x+ b4x
2. (C3)

Notably, if cp is constant, this function reduces to an exact
primitive of the integrand cp

T ′
with b3 = b4 = 0. Moreover,

in this case, the resulting root-finding problem 0= F(x) is
exactly solvable and finally leads to the known conventional
definition (13) of the potential temperature.

As a further step, the function h(x) is numerically approx-
imated, while cp(T ) in Eq. (C1) is replaced by the ideal-gas
limit of air’s specific heat capacity c0

p(T ). The integration in-
terval [T1, x] with T1 ≤ x ≤ 2000K is traversed in steps of
at most 0.001K, while each step of the integration process is
carefully approximated by using Simpson’s rule.

By solving a least-squares problem, the coefficients in
Eq. (C3) for the approximation of h(x) by the function f (x)

Figure C1. (a) Numerically evaluated function h(x) together with
its approximation f (x); (b) the absolute approximation error h(x)−
f (x).

are estimated as

b0 =−4072.2121328563667,

b1 = 797.09247926609601,
b2 = 29.587047521428016,
b3 = 0.41981158226925142,

b4 =−5.1008025097060311× 10−5. (C4)

In Fig. C1a the function h(x) is graphed together with the
approximation f (x), as well as the respective deviations
h(x)− f (x) in Fig. C1b. Evidently, the absolute error in-
herent to the approximations is comparatively small as, over
the entire temperature range above 190K, the approxima-
tion error never exceeds ±1 Jkg−1K−1. Exclusively at tem-
peratures below 190K, the approximation error rapidly rises
above 1 Jkg−1K−1, bearing in mind that such absolute tem-
peratures are only occasionally found in the atmosphere
within a relatively narrow altitude interval at the cold point
tropopause. Moreover, the difference between f (x) and h(x)
appears negligible as the profiles almost ideally coincide (cf.
Fig. C1a).

C2 Finalised approximation of the reference potential
temperature

As discussed in Sect. 5.1, the new formulation of the po-
tential temperature based on the temperature-dependent spe-
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Table C1. Values of the new reference potential temperature θref, together with the first two iterates θ (1), θ (2) using Newton’s method and
the first iterate θ (1)Householder using Householder’s method for five pairs of temperature and pressure along the US Standard Atmosphere. The
computed values are rounded to three digits.

z in m T in K p in Pa θref in K θ (1) in K θ (2) in K θ
(1)
Householder in K

5500 252.4 50506.8 306.837 307.016 307.016 307.016
11 000 216.65 22632.1 331.337 331.510 331.510 331.510
20 000 216.65 5474.89 494.940 495.376 495.378 495.378
32 000 228.65 868.019 855.324 855.172 855.656 855.660
47 000 270.65 110.906 1637.052 1620.463 1637.726 1638.974

cific heat capacity cp(T ) requires solving the root-finding
problem 0= F(x), where the function F(x) is defined in
Eq. (23). However, since F(x) contains an integral that com-
plicates the root-finding process, this integral is substituted
by the difference f (T )−f (x), where f is given in Sect. C1.
Therefore, F(x) is replaced by the function F̂ (x) as defined
in Eq. (28), and the zero of the equation 0= F̂ (x) is denoted
as θapprox

ref .
The equation 0= F̂ (x) is still not analytically solvable, so

Newton’s method is once more required. Using again x0 =

θ1005 as the initial guess, cf. Eq. (26), the iteration sequence
for Newton’s method is given by the recursion

xk+1 = xk −
F̂ (xk)

F̂ ′(xk)

= xk −
f (T )− f (xk)−Ra ln

(
p
p0

)
−f ′(xk)

= xk −
Ra ln

(
p
p0

)
− f (T )+ f (xk)

f ′(xk)
. (C5)

Instead of this standard formulation of Newton’s
method (C5), Householder’s formulation

xk+1 = xk −
F̂ (xk)

F̂ ′(xk)
−
F̂ ′′(xk)

2F̂ ′(xk)

[
F̂ (xk)

F̂ ′(xk)

]2

= xk −
Ra ln

(
p
p0

)
− f (T )+ f (xk)

f ′(xk)

−
f ′′(xk)

2f ′(xk)

Ra ln
(
p
p0

)
− f (T )+ f (xk)

f ′(xk)

2

(C6)

may be used, which allows for reducing the computation time
due to its accelerated convergence speed. For completeness,
the required derivatives f ′ and f ′′ in the recursion formu-
las (C5) and (C6) are

f ′(x)=
b1

x− b2
+ b3+ 2b4x,

f ′′(x)= 2b4−
b1

(x− b2)
2 . (C7)

The final step on the way to formulate a new expression for
the potential temperature requires defining one of the iterates
xk as appropriate enough for the approximations that result
from applying the different methods:

– the standard of Newton’s method (C5), simply referred
to as Newton’s method in the sequel, or

– Householder’s method (C6).

While the mathematical expressions in Eqs. (C5) and (C6)
are of increasing complexity, the convergence rate of the
approximating sequence increases with rising mathematical
complication. The preferred method is determined by the
accuracy required; i.e. better accuracy is necessarily asso-
ciated with elevated computational effort for the approxi-
mation method. A discussion of the approximation errors is
found in Appendix D.

Table C1 collects values of the new reference potential
temperature θref, together with the first two iterates θ (1), θ (2)

using Newton’s method (C5) and the first iterate θ (1)Householder
using Householder’s method (C6) for five pairs of tem-
perature and pressure along the US Standard Atmosphere,
cf. Fig. 1, which allows verification of computations. The
first height is chosen midway along the linearly decreasing
temperature profile within the troposphere, while the other
heights correspond to the kinks of the temperature profile.

Appendix D: Approximation error for the reference
potential temperature

The following aims at a comprehensive investigation of the
errors inherent with approximating the ultimate reference po-
tential temperature θref. As discussed in Sect. 5.2, the total
error is a combination of the basic error θref−θ

approx
ref and the

approximation error that results from the approximation se-
quence θapprox

ref −θ (k), where θ (k) denotes the kth iterate of the
approximation sequence which is computed in accordance
with either Newton’s or Householder’s method. The formu-
lations of Newton’s (Eq. C5) and Householder’s (Eq. C6)
method require replacing the function F(x) by F̂ (x), and
the approximation sequences θ (k) converge to θ

approx
ref for
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Figure D1. Total relative error along the US Standard Atmosphere
arising from the iteration process by declaring (a) the first iterate
θ (1) or (b) the second iterate θ (2) as the final approximation to the
reference potential temperature θref. Red curves: iterates computed
using Newton’s method (C5); blue curves: iterates computed using
Householder’s method (C6). Note the different range of the abscis-
sae.

k→∞. Consequently, the approximation error θapprox
ref −θ (k)

tends to zero for k→∞.
The analysis of the approximation error is initially based

on the pressure and temperature profiles of the US Stan-
dard Atmosphere. Figure D1 shows the total relative er-
rors

(
θref− θ

(1))/θref of the first iterate (Fig. D1a) and(
θref− θ

(2))/θref of the second iterate (Fig. D1b), computed
with Newton’s or Householder’s method. The first iterate still
causes the approximation to have significant errors, espe-
cially at altitudes above 35km. However, the second iterate
with either Newton’s or Householder’s method yields results
with negligible approximation error. Hence, the total error of
the approximation procedure is dominated by the unavoid-
able basic error and may be deduced from the provided fig-
ures whenever the total error profile nearly congruently fol-
lows the profile of the basic error (cf. Figs. D1b and 5a).

It may be noted that Householder’s method achieves a sig-
nificantly lower error level than Newton’s method due to its
accelerated rate of convergence. Compared to the first it-
erate approximations, computation up to the second iterate
(cf. Fig. D1b) achieves, in general, a considerable improve-
ment for both methods, and both second iterate approxima-
tions approach the basic error quite closely (cf. Fig. D1b).
As is also evident from Fig. D1b, compared to House-

Figure D2. Relative error of the second iterates θ (2) with (a) New-
ton’s method and (b) Householder’s method for the ranges of pres-
sure and temperature from 1000 to 0.5hPa and from 180 to 300K,
respectively. (c) The absolute error arising from the first iterate θ (1)

with Householder’s method. The white solid line indicates the p–T
profile from the US Standard Atmosphere. Note the different ranges
of the 1θ scales.

holder’s method, the second iterate with Newton’s method
results in a smaller total relative error

(
θref− θ

(2))/θref rel-
ative to the ultimate reference potential temperature (indi-
cated by a smaller distance to the dashed zero-line above
45km altitude). Nevertheless, the relative approximation er-
ror,

(
θ

approx
ref − θ (2)

)
/θref, is larger compared to the second

iterate with Householder’s method. So, luckily, the second it-
erate with Newton’s method provides a better approach to the
reference potential temperature than that with Householder’s
method.
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As with the discussion of the basic error in Sect. 5.2, the
analysis of the total error should include all possible com-
binations of pressure and temperature in order to take into
account fluctuations in the real atmosphere that deviate from
the profile of the US Standard Atmosphere. Therefore, the
extended analysis of the approximation error is summarised
in Fig. D2. The upper panels illustrate the total relative er-
ror of the second iterate for Newton’s (Fig. D2a) and House-
holder’s method (Fig. D2b). As previously shown, further
iteration with either method does not improve the approxi-
mation quality. The contour patterns in these panels show a
remarkable similarity to the contours for the relative error of
the basic approximation in Fig. 5c. Also here (upper panels
of Fig. D2), two regions are highlighted by the contours, i.e.
at ∼ 100hPa and in a pressure range from ∼ 5 to 1hPa, fea-
turing the same impact on1θ/θref of identical strength as the
basic error. This result may not be surprising, since the sec-
ond iteration step with both methods, Newton’s and House-
holder’s, was already proven to approach the approximation
comparatively well, without worsening the total error level
(cf. Fig. D1b).

Consequently, concerning the required number of itera-
tions and the method to use, the second iteration of Newton’s
method can be recommended to deliver appropriate results,
with a relative error of less than 0.3%, up to the stratopause
level (∼ 50 km). Householder’s method features an acceler-
ated convergence rate, and its use up to its first iterate θ (1)

may be already appropriate for certain applications. Accord-
ing to the total error of Householder’s method up to its first
iterate θ (1) (Fig. D2c), the resulting relative error remains be-
low 7% to a pressure level of ∼ 50hPa and 1θ stays below
0.3% to pressures of ∼ 2hPa. Thus, Fig. D2 may serve as
guidance to decide how many iterations with one or the other
method best meet the individual accuracy requirements.

Appendix E: The derivative of the reference potential
temperature

As discussed in Sect. 5.1, the new reference potential tem-
perature is defined as the zero of the function

F(x, p, T )=

T∫
x

cp(T
′)

T ′
dT ′−Ra ln

(
p

p0

)
(E1)

for given values of pressure p and temperature T ; see
Eq. (23). More precisely, for varying p, T , a function
(p, T ) 7−→ θref(p, T ) is implicitly defined by the equation

F(θref(p, T ), p, T )= 0. (E2)

According to the implicit function theorem (e.g. Protter and
Morrey, 1985, chap. 7), Eq. (E2) is uniquely solvable for
θref(p, T ); i.e. the function (p, T ) 7−→ θref(p, T ) actually
exists as a differentiable function of (p, T ), if the condition

∂F
∂θ
6= 0 holds. According to Eq. (E1), this partial derivative

equals

∂F

∂θ
(θref, p, T )=−

cp(θref)

θref
, (E3)

being strictly negative, since the specific heat capacity is al-
ways positive. Moreover, the implicit function theorem states
that the derivatives of the implicit function θref(p, T ) are
given by[
∂θref

∂p
(p, T ),

∂θref

∂T
(p, T )

]
=−

(
∂F

∂θ
(θref, p, T )

)−1

·

[
∂F

∂p
(θref, p, T ),

∂F

∂T
(θref, p, T )

]
=

θref

cp(θref)

[
−
Ra

p
,
cp(T )

T

]
=

[
−

Ra

cp(θref)

θref

p
,
θref

T

cp(T )

cp(θref)

]
. (E4)

Note that these partial derivatives coincide with the partial
derivatives of θcp in the case of a constant specific heat ca-
pacity. Using the partial derivatives (Eq. E4), the total differ-
ential of θref may be written as

dθref =
∂θref

∂p
dp+

∂θref

∂T
dT

=−
Ra

cp(θref)

θref

p
dp+

θref

T

cp(T )

cp(θref)
dT (E5)

or

cp(θref)
dθref

θref
= cp(T )

dT
T
−Ra

dp
p
. (E6)
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