Articles | Volume 20, issue 20
Atmos. Chem. Phys., 20, 11855–11868, 2020
https://doi.org/10.5194/acp-20-11855-2020
Atmos. Chem. Phys., 20, 11855–11868, 2020
https://doi.org/10.5194/acp-20-11855-2020
Research article
22 Oct 2020
Research article | 22 Oct 2020

Errors in top-down estimates of emissions using a known source

Wayne M. Angevine et al.

Related authors

Demistify: a large-eddy simulation (LES) and single-column model (SCM) intercomparison of radiation fog
Ian Boutle, Wayne Angevine, Jian-Wen Bao, Thierry Bergot, Ritthik Bhattacharya, Andreas Bott, Leo Ducongé, Richard Forbes, Tobias Goecke, Evelyn Grell, Adrian Hill, Adele L. Igel, Innocent Kudzotsa, Christine Lac, Bjorn Maronga, Sami Romakkaniemi, Juerg Schmidli, Johannes Schwenkel, Gert-Jan Steeneveld, and Benoît Vié
Atmos. Chem. Phys., 22, 319–333, https://doi.org/10.5194/acp-22-319-2022,https://doi.org/10.5194/acp-22-319-2022, 2022
Short summary
Intercomparison of atmospheric trace gas dispersion models: Barnett Shale case study
Anna Karion, Thomas Lauvaux, Israel Lopez Coto, Colm Sweeney, Kimberly Mueller, Sharon Gourdji, Wayne Angevine, Zachary Barkley, Aijun Deng, Arlyn Andrews, Ariel Stein, and James Whetstone
Atmos. Chem. Phys., 19, 2561–2576, https://doi.org/10.5194/acp-19-2561-2019,https://doi.org/10.5194/acp-19-2561-2019, 2019
Short summary
In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft
N. L. Wagner, C. A. Brock, W. M. Angevine, A. Beyersdorf, P. Campuzano-Jost, D. Day, J. A. de Gouw, G. S. Diskin, T. D. Gordon, M. G. Graus, J. S. Holloway, G. Huey, J. L. Jimenez, D. A. Lack, J. Liao, X. Liu, M. Z. Markovic, A. M. Middlebrook, T. Mikoviny, J. Peischl, A. E. Perring, M. S. Richardson, T. B. Ryerson, J. P. Schwarz, C. Warneke, A. Welti, A. Wisthaler, L. D. Ziemba, and D. M. Murphy
Atmos. Chem. Phys., 15, 7085–7102, https://doi.org/10.5194/acp-15-7085-2015,https://doi.org/10.5194/acp-15-7085-2015, 2015
Short summary
Uncertainty in Lagrangian pollutant transport simulations due to meteorological uncertainty from a mesoscale WRF ensemble
W. M. Angevine, J. Brioude, S. McKeen, and J. S. Holloway
Geosci. Model Dev., 7, 2817–2829, https://doi.org/10.5194/gmd-7-2817-2014,https://doi.org/10.5194/gmd-7-2817-2014, 2014
Short summary
The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014,https://doi.org/10.5194/acp-14-10931-2014, 2014

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Estimated regional CO2 flux and uncertainty based on an ensemble of atmospheric CO2 inversions
Naveen Chandra, Prabir K. Patra, Yousuke Niwa, Akihiko Ito, Yosuke Iida, Daisuke Goto, Shinji Morimoto, Masayuki Kondo, Masayuki Takigawa, Tomohiro Hajima, and Michio Watanabe
Atmos. Chem. Phys., 22, 9215–9243, https://doi.org/10.5194/acp-22-9215-2022,https://doi.org/10.5194/acp-22-9215-2022, 2022
Short summary
Assessing the representativity of NH3 measurements influenced by boundary-layer dynamics and the turbulent dispersion of a nearby emission source
Ruben B. Schulte, Margreet C. van Zanten, Bart J. H. van Stratum, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 22, 8241–8257, https://doi.org/10.5194/acp-22-8241-2022,https://doi.org/10.5194/acp-22-8241-2022, 2022
Short summary
Analysis of CO2, CH4, and CO surface and column concentrations observed at Réunion Island by assessing WRF-Chem simulations
Sieglinde Callewaert, Jérôme Brioude, Bavo Langerock, Valentin Duflot, Dominique Fonteyn, Jean-François Müller, Jean-Marc Metzger, Christian Hermans, Nicolas Kumps, Michel Ramonet, Morgan Lopez, Emmanuel Mahieu, and Martine De Mazière
Atmos. Chem. Phys., 22, 7763–7792, https://doi.org/10.5194/acp-22-7763-2022,https://doi.org/10.5194/acp-22-7763-2022, 2022
Short summary
Technical note: Interpretation of field observations of point-source methane plume using observation-driven large-eddy simulations
Anja Ražnjević, Chiel van Heerwaarden, Bart van Stratum, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, and Maarten Krol
Atmos. Chem. Phys., 22, 6489–6505, https://doi.org/10.5194/acp-22-6489-2022,https://doi.org/10.5194/acp-22-6489-2022, 2022
Short summary
Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations
Zichong Chen, Daniel Jacob, Hannah Nesser, Melissa Sulprizio, Alba Lorente, Daniel Varon, Xiao Lu, Lu Shen, Zhen Qu, Elise Penn, and Xueying Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-303,https://doi.org/10.5194/acp-2022-303, 2022
Revised manuscript accepted for ACP
Short summary

Cited articles

Angevine, W. M.: Supporting data, https://esrl.noaa.gov/csl/groups/csl4/modeldata/, last access: 9 October 2020. 
Angevine, W. M., Brioude, J., McKeen, S., and Holloway, J. S.: Uncertainty in Lagrangian pollutant transport simulations due to meteorological uncertainty from a mesoscale WRF ensemble, Geosci. Model Dev., 7, 2817–2829, https://doi.org/10.5194/gmd-7-2817-2014, 2014. 
Gao, Z., Liu, H., Li, D., Katul, G. G., and Blanken, P. D.: Enhanced temperature-humidity similarity caused by entrainment processes with increased wind shear, J. Geophys. Res., 123, 4110–4121, https://doi.org/10.1029/2017JD028195, 2018. 
Hsu, Y.-K., VanCuren, T., Park, S., Jakober, C., Herner, J., FitzGibbon, M., Blake, D. R., and Parrish, D. D.: Methane emissions inventory verification in southern California, Atmos. Environ., 44, 1–7, https://doi.org/10.1016/j.atmosenv.2009.10.002, 2010. 
Joint Committee for Guides in Metrology: JCGM 100 – Evaluation of measurement data – Guide to the expression of uncertainty in measurement, JCGM, 120 pp., 2008. 
Download
Short summary
Emissions of air pollutants must be known for a wide variety of applications. Different methods of estimating emissions often disagree substantially. In this study, we apply standard methods to a well-known source, a power plant. We explore the uncertainty implied by the different answers that come from the different methods, different samples taken over several years, and different pollutants. We find that the overall uncertainty of emissions estimates is about 30 %.
Altmetrics
Final-revised paper
Preprint