Articles | Volume 19, issue 7
Atmos. Chem. Phys., 19, 4783–4821, 2019
https://doi.org/10.5194/acp-19-4783-2019

Special issue: Chemistry–Climate Modelling Initiative (CCMI) (ACP/AMT/ESSD/GMD...

Atmos. Chem. Phys., 19, 4783–4821, 2019
https://doi.org/10.5194/acp-19-4783-2019
Research article
10 Apr 2019
Research article | 10 Apr 2019

Evaluation of CESM1 (WACCM) free-running and specified dynamics atmospheric composition simulations using global multispecies satellite data records

Lucien Froidevaux et al.

Related authors

Upper stratospheric ClO and HOCl trends (2005–2020): Aura Microwave Limb Sounder and model results
Lucien Froidevaux, Douglas E. Kinnison, Michelle L. Santee, Luis F. Millán, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, John J. Orlando, and Ryan A. Fuller
Atmos. Chem. Phys., 22, 4779–4799, https://doi.org/10.5194/acp-22-4779-2022,https://doi.org/10.5194/acp-22-4779-2022, 2022
Short summary
Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter
Farahnaz Khosrawi, Oliver Kirner, Björn-Martin Sinnhuber, Sören Johansson, Michael Höpfner, Michelle L. Santee, Lucien Froidevaux, Jörn Ungermann, Roland Ruhnke, Wolfgang Woiwode, Hermann Oelhaf, and Peter Braesicke
Atmos. Chem. Phys., 17, 12893–12910, https://doi.org/10.5194/acp-17-12893-2017,https://doi.org/10.5194/acp-17-12893-2017, 2017
Short summary
Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS): methodology and sample results with a focus on HCl, H2O, and O3
L. Froidevaux, J. Anderson, H.-J. Wang, R. A. Fuller, M. J. Schwartz, M. L. Santee, N. J. Livesey, H. C. Pumphrey, P. F. Bernath, J. M. Russell III, and M. P. McCormick
Atmos. Chem. Phys., 15, 10471–10507, https://doi.org/10.5194/acp-15-10471-2015,https://doi.org/10.5194/acp-15-10471-2015, 2015

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
The historical ozone trends simulated with the SOCOLv4 and their comparison with observations and reanalyses
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Jan Sedlacek, William Ball, and Thomas Peter
Atmos. Chem. Phys., 22, 15333–15350, https://doi.org/10.5194/acp-22-15333-2022,https://doi.org/10.5194/acp-22-15333-2022, 2022
Short summary
Atmospheric impacts of chlorinated very short-lived substances over the recent past – Part 1: Stratospheric chlorine budget and the role of transport
Ewa M. Bednarz, Ryan Hossaini, Martyn P. Chipperfield, N. Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 22, 10657–10676, https://doi.org/10.5194/acp-22-10657-2022,https://doi.org/10.5194/acp-22-10657-2022, 2022
Short summary
Effects of reanalysis forcing fields on ozone trends and age of air from a chemical transport model
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Andreas Chrysanthou, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 22, 10635–10656, https://doi.org/10.5194/acp-22-10635-2022,https://doi.org/10.5194/acp-22-10635-2022, 2022
Short summary
The influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th century
Ville Maliniemi, Pavle Arsenovic, Annika Seppälä, and Hilde Nesse Tyssøy
Atmos. Chem. Phys., 22, 8137–8149, https://doi.org/10.5194/acp-22-8137-2022,https://doi.org/10.5194/acp-22-8137-2022, 2022
Short summary
From the middle stratosphere to the surface, using nitrous oxide to constrain the stratosphere–troposphere exchange of ozone
Daniel J. Ruiz and Michael J. Prather
Atmos. Chem. Phys., 22, 2079–2093, https://doi.org/10.5194/acp-22-2079-2022,https://doi.org/10.5194/acp-22-2079-2022, 2022
Short summary

Cited articles

Anderson, J., Froidevaux, L., Fuller, R. A., Bernath, P. F., Livesey, N. J., Pumphrey, H. C., Read, W. G., Russell III, J. M., and Walker, K. A.: GOZCARDS Merged Water Vapor 1 month L3 10 degree Zonal Means on a Vertical Pressure Grid V1.01, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/MEASURES/GOZCARDS/DATA3004, 2013. 
Andersson, M. E., Verronen, P. T., Marsh, D. R., Pälvärinta, S.-M., and Plane, J. M. C.: WACCM-D-Improved modeling of nitric acid and active chlorine during energetic particle precipitation, J. Geophys. Res.-Atmos., 121, 10328–10341, https://doi.org/10.1002/2015JD024173, 2016. 
Ball, W. T., Alsing, J., Mortlock, D. J., Rozanov, E. V., Tummon, F., and Haigh, J. D.: Reconciling differences in stratospheric ozone composites, Atmos. Chem. Phys., 17, 12269–12302, https://doi.org/10.5194/acp-17-12269-2017, 2017. 
Bandoro, J., Solomon, S., Santer, B. D., Kinnison, D. E., and Mills, M. J.: Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings, Atmos. Chem. Phys., 18, 143–166, https://doi.org/10.5194/acp-18-143-2018, 2018. 
Download
Short summary
This work evaluates two versions of a 3-D global model of upper-atmospheric composition for recent decades. The two versions differ mainly in their dynamical (wind) constraints. Model–data differences, variability, and trends in five gases (ozone, H2O, HCl, HNO3, and N2O) are compared. While the match between models and observations is impressive, a few areas of discrepancy are noted. This work also updates trends in composition based on recent satellite-based measurements (through 2018).
Altmetrics
Final-revised paper
Preprint