Articles | Volume 19, issue 1
https://doi.org/10.5194/acp-19-295-2019
https://doi.org/10.5194/acp-19-295-2019
Research article
 | 
09 Jan 2019
Research article |  | 09 Jan 2019

Assessing uncertainties of a geophysical approach to estimate surface fine particulate matter distributions from satellite-observed aerosol optical depth

Xiaomeng Jin, Arlene M. Fiore, Gabriele Curci, Alexei Lyapustin, Kevin Civerolo, Michael Ku, Aaron van Donkelaar, and Randall V. Martin

Related authors

Impacts of wildfire smoke aerosols on near-surface ozone photochemistry
Jiaqi Shen, Ronald C. Cohen, Glenn M. Wolfe, and Xiaomeng Jin
EGUsphere, https://doi.org/10.5194/egusphere-2025-706,https://doi.org/10.5194/egusphere-2025-706, 2025
Short summary
Global Patterns and Trends in Ground-Level Ozone Chemical Formation Regimes from 1996 to 2022
Yu Tian, Siyi Wang, and Xiaomeng Jin
EGUsphere, https://doi.org/10.5194/egusphere-2025-368,https://doi.org/10.5194/egusphere-2025-368, 2025
Short summary
Direct estimates of biomass burning NOx emissions and lifetimes using daily observations from TROPOMI
Xiaomeng Jin, Qindan Zhu, and Ronald C. Cohen
Atmos. Chem. Phys., 21, 15569–15587, https://doi.org/10.5194/acp-21-15569-2021,https://doi.org/10.5194/acp-21-15569-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Observational constraints suggest a smaller effective radiative forcing from aerosol–cloud interactions
Chanyoung Park, Brian J. Soden, Ryan J. Kramer, Tristan S. L'Ecuyer, and Haozhe He
Atmos. Chem. Phys., 25, 7299–7313, https://doi.org/10.5194/acp-25-7299-2025,https://doi.org/10.5194/acp-25-7299-2025, 2025
Short summary
Analysis of a saline dust storm from the Aralkum Desert – Part 1: Consistency between multisensor satellite aerosol products
Xin Xi, Jun Wang, Zhendong Lu, Andrew M. Sayer, Jaehwa Lee, Robert C. Levy, Yujie Wang, Alexei Lyapustin, Hongqing Liu, Istvan Laszlo, Changwoo Ahn, Omar Torres, Sabur Abdullaev, James Limbacher, and Ralph A. Kahn
Atmos. Chem. Phys., 25, 7403–7429, https://doi.org/10.5194/acp-25-7403-2025,https://doi.org/10.5194/acp-25-7403-2025, 2025
Short summary
Retrieval of microphysical properties of dust aerosols from extinction, backscattering and depolarization lidar measurements using various particle scattering models
Yuyang Chang, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Igor Veselovskii, Fabrice Ducos, Gaël Dubois, Masanori Saito, Anton Lopatin, Oleg Dubovik, and Cheng Chen
Atmos. Chem. Phys., 25, 6787–6821, https://doi.org/10.5194/acp-25-6787-2025,https://doi.org/10.5194/acp-25-6787-2025, 2025
Short summary
Fluorescence spectra of atmospheric aerosols
Jens Reichardt, Felix Lauermann, and Oliver Behrendt
Atmos. Chem. Phys., 25, 5857–5892, https://doi.org/10.5194/acp-25-5857-2025,https://doi.org/10.5194/acp-25-5857-2025, 2025
Short summary
Invisible aerosol layers: improved lidar detection capabilities by means of laser-induced aerosol fluorescence
Benedikt Gast, Cristofer Jimenez, Albert Ansmann, Moritz Haarig, Ronny Engelmann, Felix Fritzsch, Athena A. Floutsi, Hannes Griesche, Kevin Ohneiser, Julian Hofer, Martin Radenz, Holger Baars, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 25, 3995–4011, https://doi.org/10.5194/acp-25-3995-2025,https://doi.org/10.5194/acp-25-3995-2025, 2025
Short summary

Cited articles

Adams, P. J.: Predicting global aerosol size distributions in general circulation models, J. Geophys. Res., 107, 4370, https://doi.org/10.1029/2001JD001010, 2002. 
Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F., and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883–899, https://doi.org/10.5194/gmd-6-883-2013, 2013. 
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. 
Download
Short summary
We use a forward geophysical approach to derive surface PM2.5 distribution from satellite AOD over the northeastern US by applying relationships between surface PM2.5 and column AOD from a regional air quality model (CMAQ). We use multi-platform surface, aircraft, and radiosonde measurements to quantify different sources of uncertainties. We highlight model representation of aerosol vertical distribution and speciation as major sources of uncertainties for satellite-derived PM2.5.
Share
Altmetrics
Final-revised paper
Preprint