Articles | Volume 19, issue 1
https://doi.org/10.5194/acp-19-295-2019
https://doi.org/10.5194/acp-19-295-2019
Research article
 | 
09 Jan 2019
Research article |  | 09 Jan 2019

Assessing uncertainties of a geophysical approach to estimate surface fine particulate matter distributions from satellite-observed aerosol optical depth

Xiaomeng Jin, Arlene M. Fiore, Gabriele Curci, Alexei Lyapustin, Kevin Civerolo, Michael Ku, Aaron van Donkelaar, and Randall V. Martin

Related authors

Global Patterns and Trends in Ground-Level Ozone Chemical Formation Regimes from 1996 to 2022
Yu Tian, Siyi Wang, and Xiaomeng Jin
EGUsphere, https://doi.org/10.5194/egusphere-2025-368,https://doi.org/10.5194/egusphere-2025-368, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Direct estimates of biomass burning NOx emissions and lifetimes using daily observations from TROPOMI
Xiaomeng Jin, Qindan Zhu, and Ronald C. Cohen
Atmos. Chem. Phys., 21, 15569–15587, https://doi.org/10.5194/acp-21-15569-2021,https://doi.org/10.5194/acp-21-15569-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Increased number concentrations of small particles explain perceived stagnation in air quality over Korea
Sohee Joo, Juseon Shin, Matthias Tesche, Naghmeh Dehkhoda, Taegyeong Kim, and Youngmin Noh
Atmos. Chem. Phys., 25, 1023–1036, https://doi.org/10.5194/acp-25-1023-2025,https://doi.org/10.5194/acp-25-1023-2025, 2025
Short summary
Remote-sensing detectability of airborne Arctic dust
Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Yann Blanchard, Seyed Ali Sayedain, and Yasmin AboEl-Fetouh
Atmos. Chem. Phys., 25, 27–44, https://doi.org/10.5194/acp-25-27-2025,https://doi.org/10.5194/acp-25-27-2025, 2025
Short summary
The role of refractive indices in measuring mineral dust with high-spectral-resolution infrared satellite sounders: application to the Gobi Desert
Perla Alalam, Fabrice Ducos, and Hervé Herbin
Atmos. Chem. Phys., 24, 12277–12294, https://doi.org/10.5194/acp-24-12277-2024,https://doi.org/10.5194/acp-24-12277-2024, 2024
Short summary
Influence of covariance of aerosol and meteorology on co-located precipitating and non-precipitating clouds over the Indo-Gangetic Plain
Nabia Gulistan, Khan Alam, and Yangang Liu
Atmos. Chem. Phys., 24, 11333–11349, https://doi.org/10.5194/acp-24-11333-2024,https://doi.org/10.5194/acp-24-11333-2024, 2024
Short summary
Lidar estimates of birch pollen number, mass and related CCN concentrations
Maria Filioglou, Petri Tiitta, Xiaoxia Shang, Ari Leskinen, Pasi Ahola, Sanna Pätsi, Annika Saarto, Ville Vakkari, Uula Isopahkala, and Mika Komppula
EGUsphere, https://doi.org/10.5194/egusphere-2024-3032,https://doi.org/10.5194/egusphere-2024-3032, 2024
Short summary

Cited articles

Adams, P. J.: Predicting global aerosol size distributions in general circulation models, J. Geophys. Res., 107, 4370, https://doi.org/10.1029/2001JD001010, 2002. 
Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F., and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883–899, https://doi.org/10.5194/gmd-6-883-2013, 2013. 
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. 
Download
Short summary
We use a forward geophysical approach to derive surface PM2.5 distribution from satellite AOD over the northeastern US by applying relationships between surface PM2.5 and column AOD from a regional air quality model (CMAQ). We use multi-platform surface, aircraft, and radiosonde measurements to quantify different sources of uncertainties. We highlight model representation of aerosol vertical distribution and speciation as major sources of uncertainties for satellite-derived PM2.5.
Altmetrics
Final-revised paper
Preprint