Articles | Volume 19, issue 1
Atmos. Chem. Phys., 19, 295–313, 2019
https://doi.org/10.5194/acp-19-295-2019
Atmos. Chem. Phys., 19, 295–313, 2019
https://doi.org/10.5194/acp-19-295-2019

Research article 09 Jan 2019

Research article | 09 Jan 2019

Assessing uncertainties of a geophysical approach to estimate surface fine particulate matter distributions from satellite-observed aerosol optical depth

Xiaomeng Jin et al.

Related authors

Direct estimates of biomass burning NOx emissions and lifetime using daily observations from TROPOMI
Xiaomeng Jin, Qindan Zhu, and Ronald Cohen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-381,https://doi.org/10.5194/acp-2021-381, 2021
Preprint under review for ACP
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Restoring the top-of-atmosphere reflectance during solar eclipses: a proof of concept with the UV absorbing aerosol index measured by TROPOMI
Victor Trees, Ping Wang, and Piet Stammes
Atmos. Chem. Phys., 21, 8593–8614, https://doi.org/10.5194/acp-21-8593-2021,https://doi.org/10.5194/acp-21-8593-2021, 2021
Short summary
Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations
Yan Yu and Paul Ginoux
Atmos. Chem. Phys., 21, 8511–8530, https://doi.org/10.5194/acp-21-8511-2021,https://doi.org/10.5194/acp-21-8511-2021, 2021
Short summary
Aerosol above-cloud direct radiative effect and properties in the Namibian region during the AErosol, RadiatiOn, and CLOuds in southern Africa (AEROCLO-sA) field campaign – Multi-Viewing, Multi-Channel, Multi-Polarization (3MI) airborne simulator and sun photometer measurements
Aurélien Chauvigné, Fabien Waquet, Frédérique Auriol, Luc Blarel, Cyril Delegove, Oleg Dubovik, Cyrille Flamant, Marco Gaetani, Philippe Goloub, Rodrigue Loisil, Marc Mallet, Jean-Marc Nicolas, Frédéric Parol, Fanny Peers, Benjamin Torres, and Paola Formenti
Atmos. Chem. Phys., 21, 8233–8253, https://doi.org/10.5194/acp-21-8233-2021,https://doi.org/10.5194/acp-21-8233-2021, 2021
Short summary
Himawari-8-derived diurnal variations in ground-level PM2.5 pollution across China using the fast space-time Light Gradient Boosting Machine (LightGBM)
Jing Wei, Zhanqing Li, Rachel T. Pinker, Jun Wang, Lin Sun, Wenhao Xue, Runze Li, and Maureen Cribb
Atmos. Chem. Phys., 21, 7863–7880, https://doi.org/10.5194/acp-21-7863-2021,https://doi.org/10.5194/acp-21-7863-2021, 2021
Short summary
Lidar depolarization ratio of atmospheric pollen at multiple wavelengths
Stephanie Bohlmann, Xiaoxia Shang, Ville Vakkari, Elina Giannakaki, Ari Leskinen, Kari E. J. Lehtinen, Sanna Pätsi, and Mika Komppula
Atmos. Chem. Phys., 21, 7083–7097, https://doi.org/10.5194/acp-21-7083-2021,https://doi.org/10.5194/acp-21-7083-2021, 2021
Short summary

Cited articles

Adams, P. J.: Predicting global aerosol size distributions in general circulation models, J. Geophys. Res., 107, 4370, https://doi.org/10.1029/2001JD001010, 2002. 
Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F., and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883–899, https://doi.org/10.5194/gmd-6-883-2013, 2013. 
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. 
Download
Short summary
We use a forward geophysical approach to derive surface PM2.5 distribution from satellite AOD over the northeastern US by applying relationships between surface PM2.5 and column AOD from a regional air quality model (CMAQ). We use multi-platform surface, aircraft, and radiosonde measurements to quantify different sources of uncertainties. We highlight model representation of aerosol vertical distribution and speciation as major sources of uncertainties for satellite-derived PM2.5.
Altmetrics
Final-revised paper
Preprint