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Abstract. Health impact analyses are increasingly tapping
the broad spatial coverage of satellite aerosol optical depth
(AOD) products to estimate human exposure to fine particu-
late matter (PM» 5). We use a forward geophysical approach
to derive ground-level PM; 5 distributions from satellite
AOD at 1km? resolution for 2011 over the northeastern US
by applying relationships between surface PM> s and column
AQOD (calculated offline from speciated mass distributions)
from a regional air quality model (CMAQ; 12 x 12km? hor-
izontal resolution). Seasonal average satellite-derived PM> 5
reveals more spatial detail and best captures observed sur-
face PM; 5 levels during summer. At the daily scale, how-
ever, satellite-derived PMj 5 is not only subject to measure-
ment uncertainties from satellite instruments, but more im-
portantly to uncertainties in the relationship between surface
PM; 5 and column AOD. Using 11 ground-based AOD mea-
surements within 10 km of surface PM» 5 monitors, we show
that uncertainties in modeled PM; 5/AOD can explain more
than 70 % of the spatial and temporal variance in the total un-
certainty in daily satellite-derived PM> 5 evaluated at PM> 5
monitors. This finding implies that a successful geophysical
approach to deriving daily PM; 5 from satellite AOD requires
model skill at capturing day-to-day variations in PM3 5/AOD
relationships. Overall, we estimate that uncertainties in the

modeled PM, 5/AOD lead to an error of 11 ugm™2 in daily
satellite-derived PM> 5, and uncertainties in satellite AOD
lead to an error of 8 ugm—3. Using multi-platform ground,
airborne, and radiosonde measurements, we show that uncer-
tainties of modeled PM» 5 /AOD are mainly driven by model
uncertainties in aerosol column mass and speciation, while
model representation of relative humidity and aerosol ver-
tical profile shape contributes some systematic biases. The
parameterization of aerosol optical properties, which deter-
mines the mass extinction efficiency, also contributes to ran-
dom uncertainty, with the size distribution being the largest
source of uncertainty and hygroscopicity of inorganic salt the
second largest. Future efforts to reduce uncertainty in geo-
physical approaches to derive surface PM; 5 from satellite
AOD would thus benefit from improving model representa-
tion of aerosol vertical distribution and aerosol optical prop-
erties, to narrow uncertainty in satellite-derived PM> 5.
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1 Introduction

Exposure to ambient fine particulate matter (PM> s) is esti-
mated to cause more than 8 million attributable deaths world-
wide in 2015 (Burnett et al., 2018) and is associated with an
increase in the risk of cardiovascular and respiratory disease
(Dominici et al., 2006; Peng et al., 2009). Evidence is emerg-
ing that exposure to PM» s has adverse health effects even
at low concentrations (Crouse et al., 2012; Shi et al., 2015).
Early studies relied on the nearest ground-based monitors to
estimate PM» s exposure (e.g., Dockery et al., 1993; Laden et
al., 2006), but lack of resolution of spatial and temporal gra-
dients in population exposure may lead to substantial errors
in health impact analyses.

Satellite remote sensing, which fills a spatial gap in
ground-based networks, is playing an increasingly important
role in PMj 5 exposure assessment (Cohen et al., 2017; Jer-
rett et al., 2017). Aerosol optical depth (AOD), a measure
of the sum of light extinction by aerosols within the atmo-
spheric column, is retrieved from a number of satellite instru-
ments. The Moderate Resolution Imaging Spectroradiometer
(MODIS) on board Terra and Aqua has provided twice-daily
global AOD data for nearly 2 decades, and the Multi-Angle
Implementation of Atmospheric Correction (MAIAC) prod-
uct has refined the spatial resolution retrieved from MODIS
to 1 km (Lyapustin et al., 2011, 2012; Lyapustin and Wang,
2018), offering the potential to reveal aerosol spatial vari-
ability within urban cores (Hu et al., 2014). A big chal-
lenge to inferring near-surface PM» 5 from column AOD re-
trieved from satellite instruments is to accurately describe
the nonlinear and spatiotemporally varying relationship be-
tween PMj 5 and AOD, which depends on aerosol chemical
composition, vertical profiles, aerosol optical properties, and
the ambient environment (Griffin et al., 2012). Approaches
to link satellite AOD with PM; s exposures are often classi-
fied into two categories: statistical (e.g., Di et al., 2016; Hu
et al., 2014; Kloog et al., 2014) and geophysical (e.g., van
Donkelaar et al., 2010, 2006). A two-stage process is also
used with a geophysical approach followed by a statistical
approach (e.g., van Donkelaar et al., 2015; de Hoogh et al.,
2016; Shaddick et al., 2017).

Statistical approaches fit an optimized relationship be-
tween ground-based PM s and satellite AOD along with
other predictors (e.g., land use, meteorology, traffic density)
using methods such as multiple linear regression (e.g., Gupta
and Christopher, 2009; Lee et al., 2016), geographic regres-
sion (Hu et al., 2014), generalized additive models (e.g.,
Kloog et al., 2014), or machine learning (Di et al., 2016).
In regions with high monitor density, the statistical methods
generally agree better with ground-based observations than
PM, 5 derived with a geophysical approach, but statistical
methods rely on the availability of ground-based monitors
to train the statistical model and are thus limited to regions
with dense monitoring networks.
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The geophysical approach that has been applied to AOD is
a process-based forward approach that uses chemical trans-
port models to explicitly simulate the spatially and tempo-
rally varying relationship between column AOD and PM; 5
(van Donkelaar et al., 2006). The satellite-derived PM> 5 is
calculated by taking the product of satellite AOD with the
modeled ratio of PM; 5 to AOD (van Donkelaar et al., 2006):

PM2.5_m0del

PMa.5_qut = AOD, '
2.5_sat sat X AODqodel

ey
This geophysical approach has the advantage of broad spatial
coverage that is not limited by the availability of in situ mea-
surements (van Donkelaar et al., 2006) and thus has been in-
tegral for studying the global burden of disease attributable to
ambient air pollution (Cohen et al., 2017). Van Donkelaar et
al. (2010) estimate global annual average PM> 5 using AOD
observed from both MODIS and MISR (Multi-angle Imag-
ing SpectroRadiometer) by PM; 5—AOD relationships from
a global chemical transport model (GEOS-Chem). They es-
timate an overall uncertainty of around 25 % for annual av-
erage satellite-derived PM s, but the uncertainty of the geo-
physical approach on short timescales is expected to be larger
(van Donkelaar et al., 2012).

The overall uncertainty in deriving surface PMj 5 with the
geophysical approach consists of uncertainty in the satel-
lite AOD as well as the modeled PM, 5/AOD. First, satel-
lite observations of AOD are subject to uncertainties due
to the viewing geometry, the presence of clouds and snow,
and choices involved in modeling optical aerosol and surface
properties (Superczynski et al., 2017; Toth et al., 2014). Sec-
ond, since the relationship between PMj; 5 and AOD is non-
linear and multivariate, modeled PM» 5/AOD is subject to
model uncertainties in aerosol vertical distributions, aerosol
speciation, and the ambient environment. Third, even if a
model accurately simulates the aerosol mass distribution, cal-
culating AOD in models generally requires assumptions re-
garding the aerosol size distribution, aerosol species density,
refractive index, and hygroscopic growth factors, all of which
are sources of uncertainties (Curci et al., 2015). The ability
of a particle to scatter and absorb light largely depends on
its size, which varies significantly in nature (Stanier et al.,
2004). As resolving the size distribution is computationally
expensive (Adams, 2002), aerosols are typically assumed to
follow a certain distribution (e.g., lognormal), which can in-
troduce error. Moreover, aerosol water uptake (hygroscop-
icity) affects the aerosol size and optical properties, but the
representation of hygroscopic factors in models varies con-
siderably (Chin et al., 2002; Curci et al., 2015; Drury et
al., 2010). The hygroscopic growth factor for organic carbon
(OC) is especially uncertain, varying by organic species, and
is poorly represented in models (Ming et al., 2005; Jimenez
et al., 2009; Latimer and Martin, 2018). The impacts of these
uncertainties on aerosol radiative forcing have been studied
extensively, but their impacts on deriving surface PM> 5 from
satellite-based column AOD have not yet been quantified.
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Here, we estimate PM; 5 distributions over the northeast-
ern US for 2011 using a geophysical approach that com-
bines MAIAC AOD data with modeled PM», s5/AOD rela-
tionships simulated with a regional air quality model, the
Community Multiscale Air Quality (CMAQ) Modeling Sys-
tem. Compared to the global GEOS-Chem model used by
van Donkelaar et al. (2016), CMAQ has finer spatial reso-
lution (12 x 12km2) and a locally refined emission inven-
tory (see Sect. 2.2). We use an ensemble of surface, aircraft,
and radiosonde measurements to evaluate different sources
of uncertainties in satellite-derived PM> s, especially at the
daily scale. To evaluate the sensitivities of satellite-derived
PM3 5 to the parameterization of aerosol optical properties,
we conduct a series of sensitivity tests in an offline AOD
calculation package (FlexAOD). The overarching goal of
the comprehensive uncertainty analysis is to assess the rel-
ative importance of each uncertain factor, thereby advancing
the process-level understanding of the relationship between
satellite AOD and surface PM s air quality.

2 Data and methods
2.1 Satellite AOD products

We use the high-resolution (1 km) daily AOD products re-
trieved from the MODIS instruments on board the Terra and
Aqua satellites with the MAIAC algorithm, which applies
time series analysis and image processing techniques (Lya-
pustin et al., 2011, 2018; Lyapustin and Wang, 2018). The
spatial resolution of MAIAC (1 km) is finer than the conven-
tional MODIS Dark Target and Deep Blue AOD products
(10km). The MAIAC algorithm improved upon the earlier
Dark Target retrieval algorithm (MODO04) by explicitly in-
cluding bidirectional reflectance (rather than the parameter-
ized Dark Target approach), which improves accuracy over
brighter surfaces, with similar accuracy over dark and vege-
tated surfaces (Lyapustin et al., 2011).

Using the quality flags provided, we filtered out pixels
with or adjacent to cloud, snow, or ice. We follow the ap-
proach of Hu et al. (2014) to combine daily MAIAC AOD
from Terra (overpasses around 10:30 local time) and Aqua
(overpasses around 13:30 local time). For the pixels for
which both Terra and Aqua have valid data, we take the av-
erage to reflect the mean daytime AOD. For pixels for which
only one instrument has valid data, AOD may be biased ac-
cordingly towards morning or afternoon conditions. We find,
on average, Terra MAIAC AOD is higher than Aqua MA-
IAC AOD by 0.005 (about 5 % of the annual average AOD)
over the northeastern US in 2011, reflecting diurnal varia-
tions in AOD (Green et al., 2012) and potential calibration
differences (Levy et al., 2018). To account for these differ-
ences, we fit two linear equations (R = 0.87) between Terra
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MAIAC (AODr) and Aqua MAIAC AOD (AODy):

AODt = 0.84A0DA +0.019, )
AOD, = 0.88A0ODT + 0.005. 3)

We use Egs. (2) and (3) to predict the AOD from the other
instrument when one of them is missing and then take the
average. We find little seasonal variation in the linear rela-
tionship.

2.2 CMAQ model

The CMAQ is a regional multipollutant air quality model
developed and maintained by the U.S. Environmental Pro-
tection Agency (EPA). We use the CMAQ (v5.0.2) model
simulations for 2011 conducted at the New York State De-
partment of Environmental Conservation (NYSDEC) for air
quality planning purposes. The simulations are conducted
for the eastern US with 12 km horizontal resolution and 35
vertical layers extending up to 50 hPa. The meteorological
fields to drive CMAQ are provided by annual Weather Re-
search and Forecasting (WRF) v3.4 model simulations over
the continental US. Chemical boundary conditions are from
the GEOS-Chem (2° x 2.5°) global chemical transport model
(Bey et al., 2001, version 8) generated by the EPA. The emis-
sion inventory is based on the 2011 National Emissions In-
ventory (NEI) and processed through the Sparse Matrix Op-
erator Kernel Emissions (SMOKE; Houyoux et al., 2000).
Biogenic emissions are generated with the Biogenic Emis-
sion Inventory System (BEIS) v3.61 (Pierce et al., 2002).
Prescribed burning and wildfire emissions are computed us-
ing the SmartFire 2 (Raffuse et al., 2009). Mobile emissions
are produced from the EPA’s MOtor Vehicle Emission Sim-
ulator (MOVES) 2014a (US EPA, MOVES2014a). The gas-
phase chemical mechanism is CB0S, and the aerosol module
is AEROG6. Appel et al. (2013, 2017) provide details on the
calculation of total PMj; 5 mass and speciated aerosol mass,
as well as model evaluation.

2.3 Offline AOD calculation

We calculate hourly AOD from the CMAQ model
(AODcmag) offline from the archived hourly three-
dimensional, speciated aerosol (i.e., sulfate, nitrate, am-
monium, black carbon (BC), OC, sea salt, soil dust) dis-
tribution and meteorological fields (i.e., relative humidity,
hereafter RH) using the Flexible Aerosol Optical Depth
(FlexAOD) post-processing tool. FlexAOD was originally
developed to calculate aerosol optical properties for the
GEOS-Chem model. It is based on the NASA Codes for
Computation of Bidirectional Reflectance of Flat Particulate
Layers and Rough Surfaces (Mishchenko et al., 1999). We
adapt FlexAOD to CMAQ by matching the aerosol specia-
tion with GEOS-Chem based on Appel et al. (2013). Under
the assumption of spherical particles, aerosol optical proper-
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ties are calculated based on Mie theory. Given size distribu-
tions for each aerosol species, aerosol light extinction (EXT})
at a given model layer is calculated as follows (Curci, 2015):

N

3 . .

EXT) = z _Q“LJCRH“MU’ 4)
i=1 4 re,dry,iloi

where i refers to the species, N is the number of aerosol
species (N = 5: sulfate—nitrate—ammonium (SNA), OC, BC,
dust, sea salt), Qe ary,; is the Mie extinction efficiency of
species i averaged over the dry size distribution, fry,,; is
the hygroscopic growth factor of species i at given RHj, p;
is aerosol density of species i, M;; is the aerosol mass of
species i at layer /, and re qry,; is the dry effective radius.
AODcmMmAaq is then calculated as the vertical integral of EXT)
across all model layers:

L
AODCMAQ = / EXT]dZ. (5)
=1

We use the recommended values of Drury et al. (2010) for
aerosol density. The refractive index (m) in the default run is
adapted from the Optical Properties of Aerosols and Clouds
(OPAC) database (Hess et al., 1998). As CMAQ does not ex-
plicitly simulate the size distribution of aerosols, we assume
lognormal distributions for all species except for dust (as-
sumed to be a gamma distribution). The effective radius (r.),
or the area-weighted mean radius of lognormal size distribu-
tion can be derived as

(ilnzcr )
Fe.dry,i =roe\? %/, (6)

where rq is the specific modal radius, and o is the geo-
metric standard deviation. For the aerosol size distribution
and density, we follow the recommended values of Drury et
al. (2010) in the default run. We apply the single parameter
k to represent the hygroscopic growth of SNA and OC, as
developed by Petters and Kreidenweis (2007) based on the
k-Kohler theory, which is the most commonly used function
in the literature (Brock et al., 2016; Snider et al., 2016). The
hygroscopic growth factor can be simplified as a function of
parameter « and RH (Snider et al., 2016):

RH 173
) . (7

Koehler et al. (2006) suggest « for SNA (ksna) ranges from
0.33 to 0.72, with a mean of 0.53. The hygroscopic growth
factor of OC (koc) varies with species and is correlated
with the age of organics (Duplissy et al., 2011). Duplissy
et al. (2011) and Jimenez et al. (2009) suggest ¥ for OC
typically ranges from O to 0.2. We apply «sna = 0.53, and
koc = 0.1. For BC and sea salt, we apply the hygroscopic
growth factors reported in Chin et al. (2002). In addition
to the default values, we test the sensitivities of the derived
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PMj; 5 to uncertainties in aerosol optical property parameter-
ization by varying each parameter across a range of values
reported in the literature, as specified in Table 1.

2.4 Ground-based observations

The AErosol RObotic NETwork (AERONET) is a federated
instrument network that provides ground-based information
about aerosols including AOD, derived from sun photometer
measurements of direct solar radiation (Holben et al., 1998).
We use Level-2 (cloud screened and quality assured) daily
average data from 13 sites over the northeastern US. We
also include observed AOD from the Distributed Regional
Aerosol Gridded Observation Networks (DRAGON)-USA
2011 field campaign, co-located with the DISCOVER-AQ
aircraft campaign. The DRAGON campaign provides exten-
sive sun photometer measurements of AOD at 38 sites along
the flight path of DISCOVER-AQ from 1 July to 15 Au-
gust 2011, which were incorporated into the AERONET
database. To allow direct comparison with AODpaiac and
AODcmaQ, AERONET AOD measurements at 0.44 and
0.675 um were interpolated to 0.55 um using the Angstrém
exponent (the first derivative of AOD with wavelength, on a
logarithmic scale) provided.

We use ground-based measurements of daily 24h aver-
age PM» 5 from 152 EPA Air Quality System (AQS) sites
over the northeastern US. Of the 152 sites, 13 sites have
AERONET sites within 10 km of them (about the resolution
of CMAQ). We consider these 13 sites to be “co-located” and
use them to evaluate uncertainties in modeled PM; 5 /AOD
relationships. We also use AQS aerosol speciation data at 54
sites, which include the Chemical Speciation Network (CSN)
and the Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) visibility monitoring network.

To evaluate the modeled vertical profile of ambient RH,
we use ground-based soundings from six radiosonde sites
over the northeastern US. Aggregated daily data at 00:00 and
12:00 UTC are acquired from the NOAA Integrated Global
Radiosonde Archive (IGRA), and modeled vertical profiles
are sampled concurrently with radiosonde observations. We
use the RH data calculated from vapor pressure, saturation
vapor pressure, and ambient air pressure (Durre and Yin,
2008).

2.5 NASA DISCOVER-AQ 2011 field campaign

The NASA DISCOVER-AQ (Deriving Information on Sur-
face conditions from Column and Vertically Resolved Ob-
servations Relevant for Air Quality) aircraft campaign over
Baltimore—Washington, D.C. in July 2011 provides exten-
sive, systematic, concurrent measurements of aerosol chem-
ical, optical, and microphysical properties. The NASA P-3B
aircraft performed 14 flights, which include 247 profiles (typ-
ically extending from 0.4 to 3.2 km above the surface) over
six DRAGON sites (Crumeyrolle et al., 2014). We use the

www.atmos-chem-phys.net/19/295/2019/
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Table 1. Optical properties used to calculate AODcpmaQ in FlexAOD. Values in square brackets represent the range of uncertainties for each
parameter, which we used in FlexAOD sensitivity tests to quantify their impacts on the satellite-derived PM 5.

Sulfate oC BC Sea salt Dust
Modal radius 2 (r, um) 0.11% [0.05°-0.15] 0.09% [0.024-0.12¢] 0.02b 0.40°
Geometric standard deviation * (o) 1.6° 1.6° 1.6° 1.5
Aerosol density (p, gem ™) 1.7° [1.65, 1.83]° 1.3°11.2, 1.78)F 1.0 2.2b
Refractive index (m) at 550 nm 1.538 [1.434,1.6°1-i0.0068  1.538 [1.37,1.65]» —i0.008 1.75-i0.448 1.5-i10788 1.53-i0.00558
1.77 [1.58, 1.96]! 1.241 [1.0%, 1.413] 1.44 2.44 1.0d
Hygroscopic growth factor (f) 1.84 1.64 1.44 244 1.0d
at RH=90%
5.1k 1.0¢ 1.44 244 1.0d

5102
4 Assuming lognormal distributions for all aerosol species except for dust. The effective radius is calculated as re = r()e<7l" %) b Drury et al. (2010). ¢ Highwood et al. (2009). ¢ Chin et al. (2002).
¢ Sarangi et al. (2016). f Park et al. (2006). € OPAC (Hess et al., 1998). h Moise et al. (2015). ! k parameter (Petters and Kreidenweis, 2007). The hygroscopic factor (f) is calculated as

1/3 .
f(RH)= (1 =K logflRH) / following Snider et al. (2016), where « = 0.53 in the default run, ¥ = 0.33 for the low end, and x = 0.72 for the high end. ] Calculated from the k parameter equation,

where « = 0.1 in the default run, and « = 0.2 for the high end (Jimenez et al., 2009; Duplissy et al., 2011). ¥ Empirical hygroscopic growth factors used by the revised IMPROVE algorithm (Hand and
Malm, 2006) to calculate light extinction (http:/vista.cira.colostate.edu/Improve/the-improve-algorithm/, last access: 9 January 2019). The revised IMPROVE algorithm assumes no hygroscopic

growth for OC.

simultaneous measurements of aerosol composition (SNA,
OC, BC), scattering, absorption, and extinction coefficients
in dry (RH <40 %), ambient, and wet (RH> 80 %) environ-
ments. To reduce the random uncertainties of individual ob-
servations and to allow direct comparison with CMAQ and
ground-based observations, we aggregate the daily aircraft
profiles horizontally to six locations corresponding to the six
sites, and vertically to CMAQ model layers, and then we
sample CMAQ modeled values consistently with observa-
tions.

3 Results and discussion
3.1 Deriving surface PM; 5 from satellite observations

We derive satellite-based PM; 5 (hereafter PM» 5 ma1ac)
over the northeastern US for 2011 by taking the product
of daily average CMAQ modeled PM; 5/AOD relationships
(PM2 5 cmaQ/AODcMmag) with MAIAC AOD (AODmalAc,
Eq. 1). These unconstrained PM; 5 estimates (Fig. 1) are
independent of surface observations. As PMj 5 malac i
determined as the product of observed AODwmajac and
modeled PM> s cmMaQ/AODcmaQ, the spatial patterns of
PM3 s ma1ac will be affected by the spatial variations in
both AODwmaiac and PM3 5 cmaQ/AODcmaq. Figure la
shows the summertime average (June, July, and August, JJA)
AODparac at 1 km resolution overlaid with AERONET ob-
served AOD. While we find high AOD over some pop-
ulated urban areas such as New York City (NYC), high
AODwa1ac 1s also found over central New York State (NYS),
away from major anthropogenic sources. In CMAQ, PM; 5
(PM> 5_cmaQ) occurs over regions with major anthropogenic
sources such as NYC. AODcmaq also shows a latitudinal
dependence, with higher AOD at lower latitudes, which re-
flects (1) relatively high emissions of aerosol and its precur-

www.atmos-chem-phys.net/19/295/2019/

sors from anthropogenic and biogenic sources over Mary-
land, Pennsylvania, and NYC and (2) latitudinal variations
in RH that affect aerosol hygroscopic growth. The modeled
PM> 5 cmaQ/AODcMmaq varies spatially (1 standard devia-
tion (SD) is 45 ugm™> per unit of AOD), mainly driven by
the spatial variations in PM3 5 cmaq (R =0.86). We find
the overall spatial pattern of satellite-derived PM, 5 corre-
lates more strongly with modeled PM; 5 cmaq/AODcmAQ
(R =0.97) than observed AODpmaiac (R = 0.8), suggest-
ing that the large-scale spatial variability reflects modeled
rather than satellite-based distributions, at least under our
framework for the northeastern US in summer. The tem-
poral variability in PM2 5 marac is also mainly driven by
variability in PM3 5 cmaQ/AODcmaqg (R = 0.61), with little
temporal correlation between regional average AODpmaiac
and PMy 5 maiac (R =0.05, Fig. 2). At short timescales,
the daily variability in regional average PMj 5 ma1ac shows
stronger correlation with PM2 5 cmaQ/AODcMmag in all
seasons except for JJA, when PMjs maiac values are
driven by variability in both AODwpaiac (R =0.5) and
PM> 5 cmaQ/AODcMmaq (R =0.4, Fig. 2). Summertime
AODpmajac is higher than wintertime AOD by 50 %, while
summertime PM> s ma1ac is lower than in winter by 46 %.
Previous studies also found inconsistent seasonal cycles in
AOD and PM; s (Ford et al., 2013; Kim et al., 2015). We
attribute the opposite seasonal cycle in PMj 5 maiac and
AODpma1Ac to three factors: (1) weak boundary layer ventila-
tion in winter that leads to sharp vertical gradients of aerosol
distribution (Kim et al., 2015), (2) higher RH in summer that
leads to larger hygroscopic growth, and (3) model overesti-
mates of PMj 5 (especially OC) in wintertime and underesti-
mates of PMj 5 in summertime, leading to an overestimate of
the winter-to-summer decrease in PM3 5_cmaQ/AODcmaQ
(see Sect. 3.3).

Atmos. Chem. Phys., 19, 295-313, 2019
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Figure 1. Summertime (JJA) average (a) MATIAC AOD (AODpja1aC)s (b) satellite-derived PM3 5 (PM32 5 ma1ac). (€) CMAQ model AOD
(AODcMAQ)s (d) CMAQ model PM; 5 (PM2 5_cmaQ)- and (6) CMAQ modeled PM; 5/AOD (PM3 5_cmaQ/AODcmAQ) ratio overlaid
with ground-based observations (AERONET, AQS, co-located AERONET and AQS sites) over the northeastern US with zoom-in maps over
the New York City region in the upper left corner. (f) Density plot of AOD showing the distribution of MAIAC, CMAQ, and AERONET
observed AOD sampled at AERONET sites. (g) Density plot of PM; 5 showing the distribution of satellite-derived, CMAQ, and AQS

observed PM, 5 sampled at AQS sites.

While at larger spatial scales PM2 5 cmaq/AODcMmag
contributes more to the spatial and temporal variability in
PM3 5 maiac than AODyarac, at smaller scales, over which
we assume the spatial variability in PMj,5/AOD is ho-
mogenous, incorporating fine-resolution satellite data re-
veals stronger spatial gradients (e.g., enhancements along
industrial corridors) than PMj s cmaq (Fig. 1b). In addi-
tion to refining spatial resolution, satellite-derived PM, 5
can correct model summertime biases in PM,s5. Ob-
served AOD from AERONET and PMj;s; from AQS
indicate an overall underestimate in both AODcmag
(Fig. 1c; normalized mean bias (NMB)=—44 %) and
PM35_cmaq (Fig. 1d; NMB = —17 %) in summer. We find
PM> 5 cmaQ/AODcMmaq is overall consistent with the ob-
served PM» 5/AOD sampled at co-located AQS—AERONET
sites (NMB =0.9 %) as the ratio largely cancels out the
model underestimates in both PMj 5 and AOD. AOD dis-
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tributions retrieved from MODIS (AODmarac) agree bet-
ter with AERONET AOD than AODcvag (NMB =5 %,
Fig. 1f), though we find small low biases at two sites in NYC
and at most DRAGON sites over Maryland. Our derived dis-
tribution of PM3 5 maiac is thus closer to PM; 5 observed
at AQS sites than PM3 5 cmag (NMB =4.7 % vs. 44 % for
PM2.5_CMAQ, Fig. 1g). However, the PM2.5_MAIAC distribu-
tion is wider than observed at AQS: the lowest 5% is 5 vs.
7ug m~3 for PM3 5 maiac vs. AQS PM; s, and the highest
5% is 16 vs. 13ugm™>. We find that PMy 5 maiac is bi-
ased high over NYC, coastal regions of Massachusetts, the
borders of upstate New York, and northern Vermont. Eval-
uation of PM2 5 marac in other seasons shows larger biases
and uncertainties (Fig. S1 in the Supplement). In the follow-
ing sections, we examine sources of uncertainties and biases
in satellite-derived PM; 5. We quantify the uncertainties in
terms of bias (systematic) and random uncertainty. The bias
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Figure 2. Regional 10-day running average of (a) MAIAC AOD (AODpjatac, blue), (b) CMAQ modeled PM, 5/AOD relationship
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uncertainty is linked to the overall accuracy, while the ran-
dom uncertainty reflects random fluctuations in the measure-
ments or the imprecision of the model resulting from imper-
fect modeling assumptions and simplifications.

3.2 Evaluation of satellite-observed AOD products

AODpa1ac in general agrees well with AERONET obser-
vations (spatial R = 0.83, temporal R = 0.85, MB = —0.01,
and RMSE =0.07). The performance of AODpajac evalu-
ated at northeastern US AERONET sites is consistent with
the evaluation of Superczynski et al. (2017) over North
America (R =0.82, MB = —0.008). We find, however, that
AODpma1ac in winter (December, January, and February,
DJF) is biased high by 49 % (MB = +0.02) on average. The
wintertime overestimate is likely due to residual snow con-
tamination, which is below the detection limit, even though
we applied a stringent data quality filter to remove pix-
els flagged as snow. We find the wintertime overestimate is
most evident over northern latitudes (e.g., AERONET sites
in Massachusetts; NMB ranges from 80 % to 180 %), where
snow occurs more often. The NMBs of AODpaiac are 15 %
in March, April, and May (MAM), —5 % in JJA, and 17 %
in September, October, and November (SON), though the
quantile range of the error is large, suggesting that single ob-
servations have large random uncertainties (Fig. 3). Taking
the 1o standard deviation of the normalized biases as a met-
ric of random uncertainty, we estimate the uncertainties of
daily satellite observations to be around 80 % in DJF, 60 % in
MAM and SON, and 50 % in JJA. Spatial and/or temporal av-
eraging can reduce these random errors of satellite observa-
tions, which is evidenced as the smaller spread of errors than
for monthly averages at the same spatial resolution, or daily
data at coarser (10 km) resolution, but it does not reduce the
overall MB between AODya1ac and AODagroneT (Fig. 3).
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We find that spatially averaging AODya1ac to 10 km leads
to an overall increase in AODyajac. Temporal averaging,
however, leads to an overall decrease in AODpajac except
for DJF, leading to a smaller positive MB in SON (7 %) and
MAM (7 %), but larger negative MB in JJA (—8 %) and pos-
itive MB (67 %) in DJF.

3.3 Evaluation of modeled PM; s5/AOD relationships

Three factors contribute to the overall uncertainty in
the modeled PM;5/AOD relationship: (1) PMj3 5 cmaQ,
(2) AODcMmaQ, and (3) the relation between (1) and (2).
We evaluate uncertainties of the three factors at 13 paired
AQS—-AERONET sites (within 10 km of each other; about
the resolution of CMAQ). Figure 4 shows the distribution
of the biases of modeled daily PM» 5 cmag, AODcmag, and
PM3 5_cmaQ/AODcMmaq compared with observations. Gen-
erally, PM> 5 cmaqQ biases vary seasonally: from +42 % in
DJF to —39 % in JJA on average. In contrast, AODcmaq bi-
ases show weaker seasonality. The NMBs of AODcmaq are
3% in DJF, —16 % in MAM, —7 % in JJA, and —20 % in
SON. On the daily scale, biases of AODcmag are weakly
correlated with the biases of PM3 s cmaq (R =0.14), sug-
gesting model biases in AOD do not necessarily reflect
biases in modeled PM,s. This is in contrast with prior
analysis of annual means for which emission biases drive
similar biases in AOD and PMj; 5 (van Donkelaar et al.,
2013). The better accuracy of emissions in the northeast-
ern US than elsewhere in the world allows processes other
than emissions to be more important for the northeastern
US. We find the seasonal biases in modeled PM; 5 are re-
tained in the PM> 5 cmag/AODcMmaq ratio, which exceeds
the biases of PM>5 cmaq in DJF, MAM, and SON. As
both PM35_cmaq and AODcmaq are biased low in JJA,
the modeled PMj;5/A0D bias (—20%) is smaller than

Atmos. Chem. Phys., 19, 295-313, 2019
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Figure 3. Distribution of normalized biases of AODya1ac eval-
uated at 52 AERONET (including DRAGON, only available for
JJA) sites in four seasons of 2011 over the northeastern US us-
ing daily MAIAC AOD at 1km resolution and 10km resolution
and monthly average MAIAC AOD composite (only including days
when both satellite and AERONET measurements are available) at
1 km resolution. The box shows the interquartile range (IQR) while
the whiskers extend to show the rest of the distribution with outliers
(points that are either 1.5x IQR or more above the third quantile or
below the first quantile) removed. The red triangles show the sea-
sonal mean normalized biases. Note that the normalized bias is an
asymmetric metric, for which model overestimates are unbounded,
whereas model underestimates are bounded by —100 %; therefore
the mean of normalized biases is typically higher than the median
of the normalized biases.

that of PM3 5 cmag (—39 %). Biases in PM3 5 cmaq and
AODcwMmAaq are oppositely signed in fall, leading to the largest
mean biases of modeled PM»> 5/AOD (474 %). The spread
of the biases of PM> 5 cmaQ/AODcMmAaq is larger than that
of PM2 5 cmag and AODcmaq, with the standard deviation
ranging from 50 % in JJA to 100 % in SON.

3.4 Relative importance of satellite AOD versus
modeled PM; 5/AOD to uncertainties in
satellite-derived PM; 5

We have shown that both satellite AOD and modeled
PM,; 5/A0D are subject to large uncertainties at the daily
timescale. To directly compare the relative importance of
the biases of satellite AOD vs. model PM5 5/AOD for the
satellite-derived PM, 5, we scale the biases of modeled
PM> 5/AOD with daily AODpmaiac, so that the biases are
expressed in units of PM» 5 (ugm™>):

PM2.5_cmaQ 8)

APM3 5_a0p = (AODmaiac — AODAERONET) X .
- AODcmAQ
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Figure 4. As in Fig. 3 but for daily PMj 5 cmaQ, AODcMmAaQ, and

PM3 5 cMAQ/AODcMA( in each season of 2011 evaluated at 11
co-located AQS—AERONET sites over the northeastern US.

We then scale the biases of AODparac with the daily mod-
eled PM» 5/AQD relationship:

PMas cmaq  PMas_ags
AODcmaQ ~ AODAERONET

APM) 5 Rel = ( ) x AODpaiac.  (9)

We can also interpret APM> s aop and APMj 5 rel as the
changes in derived PM; 5 if we use “true” observed AOD or
PM; 5/AOD instead of AODya1ac or modeled PM» 5 /AOD.
As shown in Fig. 5a, mean biases caused by modeled
PM, 5/AOD are +9.2 ugm ™~ in DJF, +2.8 uygm~3 in MAM,
—3.3pugm™3 in JJA, and +7.7ugm™> in SON, which in-
troduces larger biases to the derived PM; 5 than the MA-
IAC satellite product in all seasons (7.6ugm™> in DJF,
+1.3ugm™3 in MAM, —0.7 uygm™3 in JJA, and 0.9 uygm~3
in SON). Using the root-mean-squared APMjs aop to
quantify the random uncertainty, satellite AOD contributes
an overall random error of 8.3ugm™> to daily satellite
PM3 5 ma1ac with the smallest error in JJA (5.1pug m’3)
and largest error in DJF (13.2ugm™3), while modeled
PM,.5/AOD contributes an error of 10.8ugm™ (root-
mean-squared APMj 5 re1), with the smallest error in JJA
(6.5ugm™3) and largest error in SON (15.2ugm™3). The
spread of the biases is larger for modeled PM; 5/AOD than
that for MAIAC AOD except for DJF. Our findings are
consistent with Ford and Heald (2016), who use a higher-
resolution (nested) version of the GEOS-Chem model and
MODIS Dark Target AOD (Collection 6) to estimate 2 times
larger uncertainties in surface PM> 5 resulting from modeled
PM; 5/AOD relationships than in satellite AOD.

At the daily timescale, both APM» 5 aop and APM» 5 Rel
show large day-to-day variability: the lo standard devia-
tion is 10.5ugm™> for daily APMas aop and 8.3 ugm™3
for daily APMa5 Rre;. Next, we evaluate the depen-
dence of the biases of satellite-derived PM; 5 (denoted as
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biases with daily AODpa1ac (Eq. 9). The red triangles show the seasonal mean biases.

APM3 5 malac; evaluated with AQS observed PMj;5) on
APMj 5 Re1 versus APMa s aop by evaluating the Pear-
son correlation coefficients (R). Overall, APMj3 5 ma1ac is
more strongly correlated with APMj s rel (R = 0.85) than
with APM3 5 aop (R = 0.53), indicating the uncertainties of
modeled PMj; 5/A0D are a more important driving factor
to the uncertainties of daily satellite-derived PMj 5, which
could explain 72 % variance (R?) in APMj 5 maiac- In JJA,
however, APM2 5 ma1ac is moderately correlated with both
APM2 5 aop (R =0.48) and APM3 5 rel (R = 0.49), sug-
gesting uncertainties of modeled PM; 5/AOD and satellite
AOD contribute equally to the uncertainties of satellite-
derived PM» 5. We note that there is no statistically signifi-
cant correlation between APM» 5 rel and APM» s aop, With
R ranging from —0.4 in SON to 0.23 in JJA, which suggests
that the errors caused by modeled PM; 5/AOD and by satel-
lite AOD are independent of each other.

3.5 Factors leading to uncertainties in modeled
PM;.5/AOD relationship

Uncertainties in the modeled PM;5/AO0D relationship
mainly reflect uncertain aerosol speciation, aerosol vertical
profiles, ambient RH, and parameterizations for aerosol op-
tical properties including aerosol density, size distribution,
refractive index, and hygroscopic growth. Here we quantify
the uncertainties from each factor and evaluate their impacts
on the derived PMj 5.

3.5.1 Aerosol speciation

Aerosol optical properties vary with chemical composition.
Model biases in the aerosol composition also affect the over-
all representation of particle hygroscopicity. For the same
PM; 5 abundance, variations in the aerosol composition may
alter the particle optical properties, especially hygroscopic-
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ity, and consequently the PM; 5 /AOD relationship. Figure 6a
compares the modeled aerosol composition with ground-
based observations averaged for each season. High biases in
PM3 5_cmaq in winter are largely due to model overestimates
of OC by a factor of 3, and low biases in summer are due
to a combination of underestimated SNA and OC. As a re-
sult, CMAQ overestimates the fraction of OC by about 20 %
in DJF, 15 % in MAM, and less than 10 % in other seasons,
while it underestimates the fraction of SNA by 5 % to 20 %
in all seasons.

To estimate the impacts of model biases in aerosol spe-
ciation on AODcmaq and PM3 5 maiac, we keep the total
aerosol mass the same and redistribute AOD (AODcmaq _ir)
of each species i based on the observed fraction of each
species (i.e., SNA, OC, elemental carbon (EC), soil dust; sea
salt was excluded due to the limited ground-based measure-
ments and its negligible contribution):

PMi _obs
P MTOT '_obs

PMror_cmaQ
PM;_cmaQ

AODcMAQ_ir = x AODcMmAQ i » (10)

where PMror obs and PMror cmaq are the total aerosol
mass from observations and CMAQ, respectively, which
are reconstructed by summing up SNA, OC, EC, and soil
dust. Next, we estimate the uncertainty due to speciation
as the differences in derived PM2 5_maiac (APM2 5 _gpe) us-
ing the redistributed AODcmaq ir instead of the original
AODcMmAQ, shown in Fig. 6b. As SNA generally has the
largest mass extinction efficiency (MEE), a low bias in SNA
leads to an overall underestimate of AODcmaq and therefore
an overestimate of PM2 5 maiac, which is largest in winter
(MB=22ugm™3, SD=2.6ugm™3) and smallest in sum-
mer (MB =0.7 uygm~3, SD = 3.0 ug m~3). The estimated bi-
ases due to speciation show seasonal cycles similar to those
of the modeled PM; 5/AOD biases (Fig. 4), suggesting that
aerosol speciation errors contribute to the seasonality in mod-
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Figure 6. (a) Seasonal average PM, 5 speciation from CMAQ vs. AQS observations in 2011 evaluated at 54 CSN and IMPROVE sites.
(b) Box plots showing the distribution of estimated biases of daily satellite-derived PM» 5 due to model biases in PM» 5 speciation
(APMy 5 _gpe) by season for 2011. Red triangles show the seasonal mean biases. (¢) Pearson correlation coefficient between the biases

in PM3 5 _Ma1AC (APM3 5 Matac) and APMy s gpe.

eled PM; 5/AOD biases. Overall, model-observation dis-
crepancy in speciation causes an error (root-mean-squared
APM3 5_gpe) of 4.0ug m~3. On a daily basis, the correla-
tion (R) between APMj s spe and APMj s malac is over
0.5 for all seasons except JJA, which means model biases
in speciation alone can explain more than 25 % variance
(RZ) in APM3 5 maiac- Biases in speciation in JJA have rel-
atively smaller impacts on the derived PM; s, which con-
tribute less than 1ugm™> MB and show weak correlation
with APM2 5 maiac (R =0.15).

3.5.2 Aerosol vertical profile

A caveat on the results in the Sect. 3.5.1 is that we assume
the model errors in speciation are constant across all verti-
cal layers, as AQS sites only provide observations near the
surface. The DISCOVER-AQ aircraft campaign measured
vertical variations in aerosol composition, although spatial
and temporal coverage is limited. Figure 7a compares the
modeled and observed vertical distributions of SNA, OC,
and BC averaged over the DISCOVER-AQ campaign. We
do not discuss sea salt and dust here since they contribute
a negligible portion of the total aerosol mass in this re-
gion. Both the model and observations show SNA contributes
more than half of the total aerosol across all vertical layers
(Fig. 7). Aircraft observations show SNA decreases gradu-
ally with altitude with a nearly constant vertical gradient,
while SNAcmaq is well mixed below 1.5km and starts to
decline at the same rate as SNAjrcrart above 1.5 km (Fig. 7).
CMAQ underestimates SNA below 1.5 km but overestimates
SNA at higher altitudes. The positive model bias of SNA at
higher altitudes may be due to excessive vertical transport or
overestimation of RH (Sect. 3.4.3) and consequently over-
estimation of SO, oxidation rate and aerosol water uptake.
OC, however, is biased low at all altitudes, which is likely
due to inaccurate treatment of the production of secondary
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organic aerosol (SOA) (Zhang et al., 2009). The newer ver-
sion of CMAQVS5.1 shows higher SOA concentration in sum-
mer with the introduction of new SOA species (Appel et
al., 2017). BC is generally low during the campaign (typi-
cally lower than 0.3 ugm™3). BCcmaq generally agrees well
with BCyjrcraft, though BCeomag tends to overestimate BC
between 1 and 3 km. Figure 7b compares CMAQ modeled
and observed total aerosol mass (SNA + OC + BC) averaged
during the campaign. CMAQ modeled aerosol mass is on av-
erage biased low below 2 km and biased high at higher alti-
tudes (Fig. 7b).

Next, we evaluate how the vertical distribution of aerosols
relates to extinction. Figure 7c compares the modeled and
observed average vertical extinction profiles. We find, con-
sistent with the biases in mass, a low bias in the modeled ex-
tinction profile below 2 km and a high bias above (Fig. 7¢).
The biases in extinction and the biases in mass have the same
signs for more than 80 % of data pairs and are strongly cor-
related (R = 0.85). This suggests that the aerosol vertical
profile of extinction is mainly indicative of mass distribu-
tion. However, column AOD measures the vertical integral of
light extinction by aerosols, which means the modeled AOD
biases would be proportional to modeled surface PM; 5 bi-
ases only if the biases in extinction are constant across all
vertical layers. Since the biases of extinction change sign
at higher altitude, the AOD biases reflect the competing ef-
fects of negative biases near the surface and positive biases
at high altitudes, which lead to an overall negative bias of the
PM, 5/AOD relationship, consistent with the negative NMB
of PM» 5/AOD in July shown in Fig. 4.

To explore the causes of the model-observation discrep-
ancy in extinction and the resulting impacts on the satellite-
derived surface PMj 5, we calculate the vertical extinction
profile in CMAQ by replacing the modeled aerosol mass dis-
tribution (SNA, OC, BC), total MEE (ratio of total mass to
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extinction), or RH with those of the aircraft observations, as
shown in Fig. 8a. Replacing the modeled aerosol mass with
observations, we find a decrease in extinction at high alti-
tudes (above 2.5km) and increase at low altitudes (below
2.5km), but replacing the aerosol mass alone does not ex-
plain all of the model-observation differences. At high alti-
tudes, only replacing the modeled total MEE without chang-
ing the mass captures the observed extinction. We attribute
the model overestimate of extinction to model overestimation
of extinction efficiency at high altitudes. A major contributor
to the model overestimate of total MEE is its excessive RH
at high altitudes, which leads to an overestimate of the hy-
groscopic growth. Replacing RH with observations largely
corrects the high biases aloft but does not correct the low bi-
ases below 2 km (Fig. 8a). At lower altitudes, the model low
biases are due to model underestimates of both aerosol mass
and total MEE. Model underestimates of MEE are likely due
to (1) uncertain optical properties, (2) other aerosols or gases
(e.g., NO3, O3), or liquid clouds that can scatter or absorb
light.

Figure 8b shows the biases of PMzs maiac due to
model uncertainties in vertical profiles of aerosol mass
or MEE or RH, estimated by calculating the changes in
PM; 5 when we replace the model vertical profiles with
observations. Since the aircraft altitude ranges from 0.3 to
3.4km, we use modeled values for the layers below 0.3
and above 3.4km while attempting to minimize the dis-
continuity at both boundaries through vertical interpola-
tion. As SNA and OC contribute most to extinction, we
also evaluate the biases of vertical profiles of SNA and
OC separately. We find that replacing modeled aerosol
mass with observed mass leads to small positive biases
in PM2 5 matac (MB =0.05 pg m_3, SD=43pg m_3), due
to the combined effects of negative biases from SNA
(MB=—2.5ugm™3, SD=4.7ugm™3) and positive biases
from OC (MB =+1.9ugm™3, SD=4.3ugm™3).

We further separate the model—observation discrepancy
in the vertical profiles as differences in total column mass
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versus in vertical profile shape by (1) keeping the mod-
eled vertical distribution but adjusting the mass of each
species uniformly so that the total column mass is equal
to observation and (2) keeping the total column mass the
same as in the model but redistributing the aerosol based
on the observed vertical profiles. We find that redistribut-
ing the aerosol vertical profile leads to a positive mean bias
in PMy 5 maiac (MB = 1.1 ugm—3, SD =4.9 uyg m~3), while
the model—observation discrepancy in column mass leads to
a negative mean bias (MB = —0.6ugm™3, SD=3.6 uygm™>)
(Fig. 8b). The positive biases in the profile shape are mainly
attributed to model biases of the vertical profile of SNA
(MB =1.2pgm~3, SD=5.0ugm™?), which shows a larger
fraction of SNA at higher altitude where aerosol is less ef-
fective at scattering light due to lower RH. The negative MB
of column mass reflects a combination of negative biases of
SNA (MB=—4.1pugm™3, SD=5.6ugm™>) due to model
overestimates of SNA column mass and positive bias of OC
(MB =6.7ugm™3, SD =4.4 ugm™) due to model underes-
timates of column mass of OC. Model biases in MEE lead to
a small positive MB of 0.6 uyg m~3.

Using the observed PMj; 5/AOD acquired from paired
AQS—-AERONET sites, we estimate that model biases in
modeled PM; 5/AOD lead to a negative MB of —0.9 ugm™3
with large day-to-day variability (SD =9.8 ugm™3) during
the DISCOVER-AQ campaign, reflecting the model biases
from different sources as discussed above. Next, we evalu-
ate which factor drives the daily variability in the modeled
PM, 5/AOD biases the most by evaluating the R value be-
tween the estimated biases in modeled PM; 5/AOD versus
that attributed to individual factors. We find model bias in
aerosol mass is the most deterministic factor for the biases
in modeled PM; 5/AOD (R = 0.82, Fig. 8c). Model biases
in aerosol mass can be due to either biases in column mass
or vertical profile shape. We find model biases in modeled
PM; 5/AOD are more dependent on the biases in aerosol
column mass (R =0.79), instead of vertical profile shape.
Model biases in MEE show moderate correlation with model
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Figure 8. (a) Campaign-mean vertical profiles of extinction calculated from CMAQ speciated aerosol fields using FlexAOD and those
calculated by replacing modeled speciated aerosol mass (Mass), total column mass (Column), vertical profile shape (Profile), total mass

extinction efficiency (MEE), and relative humidity (RH) with those

observed during the DISCOVER-AQ 2011 Baltimore—Washington, D.C.

campaign. EXTyp is the aircraft observed vertical extinction profile. (b) Box plots of the distribution of biases of PMj 5 pmaac attributed
to each factor shown in (a), and the biases of PM3 5 \ma1ac attributed to modeled PM; 5/AOD (Rel). Red triangles show the mean biases.
(c) Pearson correlation coefficient between the biases in modeled PM» 5/AOD relationships and the biases in modeled PM, 5/AOD attributed

to individual factors shown in (b).

biases of PM3 5/AOD (R = 0.56). While model uncertainties
in RH lead to an overall negative bias (MB = —1.7 ugm—3,
SD="7.4pg m_3) to PM3 5 mai1ac, they are negatively corre-
lated with model biases of PM3 5/AOD (R = —0.25).

353 RH

Figure 8 suggests model biases in RH contribute a negative
bias to the derived PM3 5 maiac during the DISCOVER-AQ
aircraft campaign. Here we evaluate the impacts of modeled
RH (RHcmaq) biases on derived PM; 5 throughout the year
using six atmospheric soundings over the northeastern US.
We only assess the impacts of RH on the optical properties
(i.e., hygroscopic growth) of aerosols. Comparing RHcmag
with observed RH (RHops), RHemag is overall biased high
with the largest biases in winter. To evaluate the resulting im-
pacts on AODcmaq, we recalculate the extinction using ob-
served ambient RH from the soundings instead of RHcmag
in Eq. (4). Replacing RHcmag with RHeps decreases extine-
tion by ~ 50 % on average from the surface to 5 km in both
JJA and DJF (black lines in Fig. 9a and b). As AOD is the ver-
tical integral of extinction, the total area between EXTsonge
and EXTcmaq (gray shading in Fig. 9a and b) indicates the
differences in AOD due to differences in RH. The differences
in RH below 3 km in DJF, MAM, and SON contribute more
than 80 % to the total differences in AOD. In JJA, the contri-
bution from higher versus lower altitudes is similar, despite
small model RH biases below 2 km.

Atmos. Chem. Phys., 19, 295-313, 2019

We evaluate how the model-observation discrepancy in
RH affects the derived PM> s by calculating the changes
in PM2.5_MAIAC (APM2.5_RH) if EXTgonde 1S used instead
of EXTcmaq. As expected, model errors in RH lead to a
negative bias in derived PM 5 maiac of 3 ug m~3 on aver-
age (Fig. 9c). The negative biases in PMj 5 maiac due to
RH are largest in spring (—3.5 ug m~3) and smallest in sum-
mer (—1.6ugm™3). The hygroscopic growth factor is non-
linearly correlated with RH, which increases more rapidly
at high RH (>80%) than at low to median RH (<80 %,
Fig. S2). Compared with median RH conditions, model RH
errors lead to more than double APM» 5 ry (—6.4 ug m~3 vs.
3 ug m—3) when observed near-surface RH >80 % (Fig. 9d).
At RH>95 %, we find that the APMj 5 ry can be as large
as —20 ugm~— (Fig. 9d). Despite the large impacts of model
errors of RH at humid conditions, there is no significant cor-
relation between APMj 5 ry and APMj 5 maiac (R =0.18,
evaluated at nearby sites within 10 km), suggesting that un-
certainty in RH is not a main contributor to the random un-
certainties in satellite-derived PM> 5.

3.5.4 Uncertainties in the parameterization of aerosol
optical properties

In previous sections, we demonstrated that the satellite-
derived PM3 5 depends on the accuracy of the model sim-
ulation. Even with a perfect simulation, satellite-derived
PM, s will be sensitive to the parameterization of aerosol
optical properties, which would affect the MEE. We eval-
uate the uncertainties associated with the parameterization
of aerosol optical properties by varying each parameter (Ta-
ble 1), and we calculate the corresponding changes in the de-
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Figure 9. (a) DJF and (b) JJA average vertical profiles of the CMAQ
modeled versus observed RH at six atmospheric soundings over
the northeastern US, and the modeled extinction versus that cal-
culated by replacing modeled RH with observed values. The gray
area shows the difference in the two extinction profiles, with the
total area being the difference in AOD. (c¢) Box plots showing
the impacts of model bias of RH on the derived PMj 5 pMaIAC
(APM3 5 rp) in four seasons of 2011, which are calculated by
comparing the PMj 5 pajac minus the one calculated using ob-
served RH. (d) Box plots show the influence of model RH biases on
the derived PM3 5 matac (APM3 5 rp) as a function of observed
near-surface RH.

rived PM3 5 maiac- Figure 10 shows the range of uncertainty
in annual average PM» 5 maiac due to uncertain aerosol size
distributions, hygroscopicity, refractive index, and aerosol
species density.

The size of a particle is a defining characteristic of aerosol
light extinction (Mishchenko et al., 1999). To evaluate model
sensitivities to the uncertainties in size distribution, we vary
the rg of SNA from 0.05 to 0.15 with a 0.02 increase each
time to cover the range of values reported in the literature.
For OC, we calculate AODcmaq With rg = 0.02, 0.06, 0.09,
and 0.12 pm, all values used in previous studies (Hess et al.,
1998; Chin et al., 2002; Highwood, 2009; Drury et al., 2010).
Annual average PM> s varac could vary by up to 5pgm™3
(32 %) with the choice of a modal radius of either rgna or
roc, which is the largest source of uncertainty among the
four parameters (Fig. 10). We find that AODcmaq reaches
a maximum with rgna = 0.07 um (reff = 0.12 um) and mini-
mum with rsna = 0.05 (reff = 0.15 um), while PM3 5 ma1ac
reaches a maximum with rgna = 0.05 (regr = 0.09 um) and
minimum with rsna = 0.11 (refr = 0.19 um), suggesting the
impacts of size distribution are nonlinear and nonuniform
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Figure 10. Uncertainties in annual average satellite-derived
PM3 5 marac due to uncertainties of size distribution, hygro-
scopicity, refractive index, and aerosol species density of sulfate—
nitrate—ammonium (SNA; blue) and organic carbon (OC; green)
sampled over AQS sites. The circle shows the annual average
satellite-derived PM3 5 pma1ac using the default parameters to cal-
culate AODcpmaQ in FlexAOD (Table 1). The error bars represent
the range of PM3 5 pmarac using different values for each param-
eter. The labels indicate the corresponding minimum or maximum
parameter values that produce the range shown in PMj 5 MAlAC-
The horizontal line at 15ug m~3 indicates the annual average
PM3 5 Mmalac calculated using default values for each aerosol op-
tical property in the base FlexAOD.

(Fig. S3). Mie scattering of a particle tends to be most ef-
fective when the particle’s diameter is near the wavelength
of interest (0.55pm). As hygroscopic particle growth also
affects the size distribution, depending on ambient RH and
the hygroscopic growth factor, reducing (or increasing) the
dry effective radius could move the bulk aerosol size either
closer to or further from 0.55um and thus either increase
or decrease the extinction. For OC, as the effective radius
and the hygroscopic growth factor are smaller than for SNA,
increasing the modal radius leads to more effective scatter-
ing, and thus larger AODcpmaqQ and smaller PMj 5 Malac-
Relative to the default roc = 0.09 ym assumed by Drury et
al. (2010), using the roc (0.02 um) recommended by Chin
et al. (2002a) increases PM2 5 marac by 5 ug m—3 (32 %) on
average, worsening the positive biases of PM» 5 maiac. In-
creasing roc to 0.12 um as recommended by Highwood et
al. (2009) has little effect, decreasing PM» 5 ma1ac by 2 %
on average.

The uncertainty of hygroscopicity lies in two aspects:
(1) the function shape and (2) the parameters. Figure S2
compares the k function shape with the hygroscopic growth
factors used by the IMPROVE network (Hand and Malm,
2006), the default algorithm used to calculate AOD online in
CMAQ, with that proposed by Chin et al. (2002) (Table 1).
Using the DISCOVER-AQ aircraft data to evaluate the pa-
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rameterization of hygroscopic growth, we find that the « pa-
rameter best characterizes the observed hygroscopic growth
factor (Fig. S2c¢). Latimer and Martin (2018) similarly found
that implementing a « formulation instead of hygroscopic
growth based on OPAC improved the GEOS-Chem repre-
sentation of mass scattering efficiency. Thus, we choose the «
parameter to represent the hygroscopic growth factor, and the
uncertainty estimate here only reflects uncertainties in the «
parameter. In practice, changes in aerosol composition could
have even larger effects on hygroscopicity than uncertainties
in « as discussed in Sect. 3.5.1.

To test the sensitivity of satellite-derived PM; 5 to uncer-
tainties in the « parameter, we compute AODcmaq using
the low (0.33) and high end of « (0.72) for SNA as sug-
gested by Koehler et al. (2006). As the hygroscopic prop-
erties of inorganic salts are relatively well known, the range
of uncertainty for f(RH) of SNA is 30 % at most (Fig. S2b).
OC, however, is composed of thousands of species with dis-
tinct hygroscopicities. Assuming koc ranges from 0 (non-
hygroscopic) to 0.2 (Jimenez et al., 2009; Duplissy et al.,
2011), the range of f(RH) of OC can be as large as a factor of
2 at high RH>96 % (Fig. S2a). Despite the larger uncertainty
of koc, we find the overall impacts of the uncertainties of
koc on the derived PM» 5 (0.3 ug m~3, 2 % of annual average
PM> 5 maiac) are smaller than those of ksna (1.6 ug m3,
11 % of annual average PM» 5 maiac). The small impacts
of koc reflect the relatively small portion and the less hy-
groscopic nature of OC. For single observations, varying
ksNa leads to a maximum increase in PM2 5 maiac by 20 %
and a maximum decrease by 28 %. Varying koc increases
PMZ.S_MAIAC by 10 % or decreases PMZ.S_MAIAC by 18 % at
most. The overall impact of the uncertainties of ksna ranks
second among the four parameters for SNA, while koc has
the smallest impacts on the derived PM> 5 (Fig. 10).

The refractive index (m) determines the Mie extinction
efficiency, which is subject to uncertainties mostly due to
the lack of measurements (Kanakidou et al., 2005). mgna in
OPAC (default value) is slightly different from that recom-
mended in Chin et al. (2002) and Highwood (2009). Moise
et al. (2015) suggest moc varies by species, with its real
part ranging from 1.37 to 1.65. We calculated another ver-
sion of AODcmaq by varying the real part of mgna and moc
using the lowest and highest values reported in the litera-
ture. We find the annual average PMj 5 maiac decreased by
0.8 ugm~3 (6 %) using the high end of mg_sna, While it in-
creased by 1.3 ugm™> (9 %) on average using the low end.
Though mr_oc has a wider range of uncertainty, its impacts
on PMa 5 marac (—4 % to +6 %) are smaller than that of
mp_sNA. While the overall impacts on PMj 5 maiac due to
uncertainties of mr_sna are generally within 10 % for single
observations, PM3 5 ma1ac can change by more than 20 %
under SNA-dominated and high-RH environments. The over-
all uncertainty due to mg_oc is generally within 5 % for sin-
gle observations, with a few cases (< 10 % of the total data) in
which the relative change in PM3 5 marac can exceed 10 %.
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As aerosol density (p) is assumed to be constant for each
species, varying p has the same effect on the extinction of
given species. We vary the aerosol density of SNA from
1.65 to 1.83 gcm™2 based on the uncertainty estimate from
a laboratory study of Sarangi et al. (2016), which trans-
lates to an uncertainty of —3 % to 7% for AODgna, and
the aerosol density of OC from 1.2 to 1.78 gcm™> follow-
ing Park et al. (2006), which translates to an uncertainty
in AODqc ranging from —8 % to 37 %. We find aerosol
species density, in general, contributes least to the overall
uncertainty in satellite-derived PM> 5. Varying poc across
the range in Table 1 increases annual average PM2 5 malac
by 0.9 ugm™3 (6 %) or decreases it by 0.6ugm— (3 %) at
most. As the aerosol density of inorganic salt is less uncer-
tain, varying pguir leads to negligible changes in annual aver-
age PM» s maiac at both the high (0.7 ug m3,5 %) and low
(—0.5ugm™3, —2 %) ends.

4 Conclusions

We derive surface PM» 5 distributions from satellite observa-
tions of AOD (MAIAC products) at 1 km resolution for 2011
over the northeastern US using a geophysical approach that
simulates the relationship between surface PM; 5 and AOD
with a regional air quality model (CMAQ) and offline AOD
calculation package (FlexAOD). We find that the fine spa-
tial resolution of MAIAC AOD reveals more spatial detail
(“hot spots”), including over populated urban areas or along
major roadways. While the geophysical approach has shown
promise for mapping the PM, 5 exposure at seasonal to an-
nual scales (van Donkelaar et al., 2010, 2016), we show that
estimating PM» 5 from satellite AOD at the daily scale is
not only subject to large measurement uncertainty in satellite
AOD products, but more importantly, to uncertainty in daily
variations in the relationship between surface PMj 5 and col-
umn AOD. We take advantage of multi-platform in situ ob-
servations available over the northeastern US to quantify dif-
ferent sources of uncertainties in the satellite-derived PM> s,
with a particular focus on the daily scale. We use observed
AOD from AERONET sun photometers to quantify uncer-
tainties in satellite and modeled AOD; co-located AQS PM 5
and AERONET sites to evaluate modeled PM, 5/AOD re-
lationships; IMPROVE and CSN aerosol speciation data to
evaluate model uncertainties of aerosol composition; and at-
mospheric soundings to evaluate modeled RH, as well as
their impacts on PM3 5 derivation. To assess the uncertainties
associated with aerosol vertical profiles, we use the extensive
concurrent measurements of extinction and aerosol compo-
sition available from the NASA DISCOVER-AQ 2011 cam-
paign over Baltimore—Washington, D.C. Finally, we estimate
intrinsic uncertainties associated with the model parameteri-
zation of optical properties by testing sensitivities of satellite-
derived PM5 5 to variations in each individual parameter
across ranges reported in the literature using FlexAOD.
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As the relationship between surface PM> 5 and column
AQOD is nonlinear and spatiotemporally heterogeneous, satel-
lite AOD alone is unable to fully resolve the spatial and tem-
poral variability in ground-level PM»> 5. We find that large-
scale spatial and temporal variability in satellite-derived
PMj; 5 correlates more strongly with the variability in mod-
eled PM,5/AOD than with satellite-derived AOD. At the
daily scale over the northeastern US, modeled PM; 5/AOD
introduces larger mean biases to satellite-derived PM> 5 than
the satellite retrievals. Uncertainties in modeled PM; 5/AOD
explain more than 70 % variance in the uncertainties of
satellite-derived PM3 5, suggesting that the precision of daily
satellite-derived PM; 5 depends on the capability of models
to simulate the day-to-day variability in the relationship be-
tween PM» 5 and AOD.

Uncertainties in modeled PMj; 5/AOD relationships can
be attributed to several factors, including uncertain model
aerosol speciation, vertical profiles, RH, and the parameter-
ization of aerosol optical properties. We find that season-
ally varying biases in modeled PM; 5/AOD reflect biases in
aerosol speciation, particularly OC, which is overestimated
in the cold season and underestimated by CMAQ in the warm
season. Biases in aerosol composition in turn affect aerosol
hygroscopicity. The CMAQ model generally overestimates
RH, especially above 2km, contributing to an overall neg-
ative bias to satellite-derived PMj 5, particularly for more
humid conditions. Using concurrent measurements of ver-
tical profiles of aerosol extinction and composition avail-
able from the DISCOVER-AQ 2011 aircraft campaign, we
show that the aerosol extinction is indicative of mass dis-
tributions. Biases in modeled extinction, however, vary with
altitude, such that model biases in vertically integrated col-
umn AOD do not necessarily reflect model biases in sur-
face PMj 5. We find that model uncertainties in column mass
and in the MEE drive the variability in overall uncertainty in
modeled PM; 5/AOD, while RH and aerosol vertical profile
shape contribute some systematic bias.

Even with a model that perfectly simulates the distribu-
tion of aerosols, calculating AOD is subject to additional un-
certainties in aerosol size distributions, hygroscopic growth
factor refractive indices, and aerosol density. Our uncertainty
analysis involving a series of sensitivity tests in FlexAOD in-
dicates that for SNA, the uncertainties in size distributions
contribute most to uncertainty in the derived PM; 5 (32 %),
followed by the hygroscopicity parameter « (11 %), refrac-
tive index (9 %), and aerosol density (5 %). For OC, size dis-
tribution is also the largest source of uncertainty in the de-
rived PMj 5 (32 %). Despite the large uncertainty of the hy-
groscopicity of OC, its impact on the satellite-derived PM; 5
is negligible (2 %), even smaller than uncertainties associated
with the refractive index and aerosol density (6 % each).

Based on this uncertainty analysis, we identify opportu-
nities and directions to develop the applications of satellite-
derived PM> 5 using the geophysical approach, especially at
finer spatial and temporal scales. Van Donkelaar et al. (2016)
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found that calibration with ground-based PM;, s measure-
ments improves the performance of satellite-based PMj 5
at the annual scale, although such calibration is more chal-
lenging at short timescales (van Donkelaar et al., 2012).
As the uncertainties in satellite-derived PM», 5 reflect mul-
tiple factors, calibration targeting specific sources of uncer-
tainty would help further refine the geophysical approach.
Additional collocated measurements of both PM; 5 and AOD
would be valuable to further evaluate the relationship be-
tween surface PMj 5 and satellite AOD (Snider et al., 2015).
Routine measurements of aerosol vertical profiles would aid
uncertainty attribution and likely lead to improved models
and thereby reduce the overall uncertainty in satellite-derived
PM; 5. Quantifying source-specific uncertainties would not
only facilitate future model improvement but more impor-
tantly benefit applications of the satellite-derived PMj 5
products to health studies.
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