Articles | Volume 17, issue 4
https://doi.org/10.5194/acp-17-3097-2017
https://doi.org/10.5194/acp-17-3097-2017
Research article
 | 
28 Feb 2017
Research article |  | 28 Feb 2017

Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution

Yucong Miao, Jianping Guo, Shuhua Liu, Huan Liu, Zhanqing Li, Wanchun Zhang, and Panmao Zhai

Related authors

Revisiting the evolution of downhill thunderstorms over Beijing: A new perspective from radar wind profiler mesonet
Xiaoran Guo, Jianping Guo, Tianmeng Chen, Ning Li, Fan Zhang, and Yuping Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-707,https://doi.org/10.5194/egusphere-2024-707, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
LGHAP v2: A global gap-free aerosol optical depth and PM2.5 concentration dataset since 2000 derived via big earth data analytics
Kaixu Bai, Ke Li, Liuqing Shao, Xinran Li, Chaoshun Liu, Zhengqiang Li, Mingliang Ma, Di Han, Yibing Sun, Zhe Zheng, Ruijie Li, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-519,https://doi.org/10.5194/essd-2023-519, 2024
Preprint under review for ESSD
Short summary
A merged continental planetary boundary layer height dataset based on high-resolution radiosonde measurements, ERA5 reanalysis, and GLDAS
Jianping Guo, Jian Zhang, Jia Shao, Tianmeng Chen, Kaixu Bai, Yuping Sun, Ning Li, Jingyan Wu, Rui Li, Jian Li, Qiyun Guo, Jason B. Cohen, Panmao Zhai, Xiaofeng Xu, and Fei Hu
Earth Syst. Sci. Data, 16, 1–14, https://doi.org/10.5194/essd-16-1-2024,https://doi.org/10.5194/essd-16-1-2024, 2024
Short summary
Extending wind profile beyond the surface layer by combining physical and machine learning approaches
Boming Liu, Xin Ma, Jianping Guo, Hui Li, Shikuan Jin, Yingying Ma, and Wei Gong
EGUsphere, https://doi.org/10.5194/egusphere-2023-2727,https://doi.org/10.5194/egusphere-2023-2727, 2023
Short summary
Characterizing the near-global cloud vertical structures over land using high-resolution radiosonde measurements
Hui Xu, Jianping Guo, Bing Tong, Jinqiang Zhang, Tianmeng Chen, Xiaoran Guo, Jian Zhang, and Wenqing Chen
Atmos. Chem. Phys., 23, 15011–15038, https://doi.org/10.5194/acp-23-15011-2023,https://doi.org/10.5194/acp-23-15011-2023, 2023
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Regional to global distributions, trends, and drivers of biogenic volatile organic compound emission from 2001 to 2020
Hao Wang, Xiaohong Liu, Chenglai Wu, and Guangxing Lin
Atmos. Chem. Phys., 24, 3309–3328, https://doi.org/10.5194/acp-24-3309-2024,https://doi.org/10.5194/acp-24-3309-2024, 2024
Short summary
Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 24, 3217–3240, https://doi.org/10.5194/acp-24-3217-2024,https://doi.org/10.5194/acp-24-3217-2024, 2024
Short summary
Seasonal characteristics of emission, distribution, and radiative effect of marine organic aerosols over the western Pacific Ocean: an investigation with a coupled regional climate aerosol model
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024,https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Fire–precipitation interactions amplify the quasi-biennial variability in fires over southern Mexico and Central America
Yawen Liu, Yun Qian, Philip J. Rasch, Kai Zhang, Lai-yung Ruby Leung, Yuhang Wang, Minghuai Wang, Hailong Wang, Xin Huang, and Xiu-Qun Yang
Atmos. Chem. Phys., 24, 3115–3128, https://doi.org/10.5194/acp-24-3115-2024,https://doi.org/10.5194/acp-24-3115-2024, 2024
Short summary
Improved estimates of smoke exposure during Australia fire seasons: importance of quantifying plume injection heights
Xu Feng, Loretta J. Mickley, Michelle L. Bell, Tianjia Liu, Jenny A. Fisher, and Maria Val Martin
Atmos. Chem. Phys., 24, 2985–3007, https://doi.org/10.5194/acp-24-2985-2024,https://doi.org/10.5194/acp-24-2985-2024, 2024
Short summary

Cited articles

Abdi, H. and Williams, L. J.: Principal component analysis, Wiley Interdiscip. Rev. Comput. Stat., 2, 433–459, https://doi.org/10.1002/wics.101, 2010.
Bernaards, C. A. and Jennrich, R. I.: Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis, Educ. Psychol. Meas., 65, 676–696, https://doi.org/10.1177/0013164404272507, 2005.
Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos. Environ., 42, 1–42, https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System, Part I: Model Implementation and Sensitivity, Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2, 2001.
Chen, Y., Zhao, C., Zhang, Q., Deng, Z., Huang, M., and Ma, X.: Aircraft study of mountain chimney effect of Beijing, China, J. Geophys. Res.-Atmos., 114, 1–10, https://doi.org/10.1029/2008JD010610, 2009.
Download
Short summary
Three synoptic patterns associated with heavy aerosol pollution in Beijing were identified using an objective classification approach. Relationships between synoptic patterns, aerosol pollution, and boundary layer height in Beijing during summer were revealed as well. Further, factors/mechanisms leading to the low BLHs in Beijing were unraveled. The key findings have implications for understanding the crucial roles that meteorological factors play in forecasting aerosol pollution in Beijing.
Altmetrics
Final-revised paper
Preprint