Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-9963-2023
https://doi.org/10.5194/acp-23-9963-2023
Research article
 | 
07 Sep 2023
Research article |  | 07 Sep 2023

Constraints on simulated past Arctic amplification and lapse rate feedback from observations

Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch

Related authors

Quantifying the impact of solar zenith angle, cloud optical thickness, and surface albedo on the solar radiative effect of Arctic low-level clouds over open ocean and sea ice
Sebastian Becker, André Ehrlich, Michael Schäfer, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/egusphere-2025-1210,https://doi.org/10.5194/egusphere-2025-1210, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
High-resolution maps of Arctic surface skin temperature and type retrieved from airborne thermal infrared imagery collected during the HALO-(𝒜𝒞)³ campaign
Joshua Jeremias Müller, Michael Schäfer, Sophie Rosenburg, André Ehrlich, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/amt-2024-3967,https://doi.org/10.5194/amt-2024-3967, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Life cycle studies and liquid-phase characterization of Arctic mixed-phase clouds: MOSAiC 2019–2020 results
Cristofer Jimenez, Albert Ansmann, Kevin Ohneiser, Hannes Griesche, Ronny Engelmann, Martin Radenz, Julian Hofer, Dietrich Althausen, Daniel Alexander Knopf, Sandro Dahlke, Johannes Bühl, Holger Baars, Patric Seifert, and Ulla Wandinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-967,https://doi.org/10.5194/egusphere-2025-967, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025,https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
Investigating KDP signatures inside and below the dendritic growth layer with W-band Doppler Radar and in situ snowfall camera
Anton Kötsche, Alexander Myagkov, Leonie von Terzi, Maximilian Maahn, Veronika Ettrichrätz, Teresa Vogl, Alexander Ryzhkov, Petar Bukovcic, Davide Ori, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2025-734,https://doi.org/10.5194/egusphere-2025-734, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary

Related subject area

Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Fine and coarse dust radiative impact during an intense Saharan dust outbreak over the Iberian Peninsula – short-wave direct radiative effect
María-Ángeles López-Cayuela, Carmen Córdoba-Jabonero, Michaël Sicard, Jesús Abril-Gago, Vanda Salgueiro, Adolfo Comerón, María José Granados-Muñoz, Maria João Costa, Constantino Muñoz-Porcar, Juan Antonio Bravo-Aranda, Daniele Bortoli, Alejandro Rodríguez-Gómez, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 25, 3213–3231, https://doi.org/10.5194/acp-25-3213-2025,https://doi.org/10.5194/acp-25-3213-2025, 2025
Short summary
Modeling actinic flux and photolysis frequencies in dense biomass burning plumes
Jan-Lukas Tirpitz, Santo Fedele Colosimo, Nathaniel Brockway, Robert Spurr, Matt Christi, Samuel Hall, Kirk Ullmann, Johnathan Hair, Taylor Shingler, Rodney Weber, Jack Dibb, Richard Moore, Elizabeth Wiggins, Vijay Natraj, Nicolas Theys, and Jochen Stutz
Atmos. Chem. Phys., 25, 1989–2015, https://doi.org/10.5194/acp-25-1989-2025,https://doi.org/10.5194/acp-25-1989-2025, 2025
Short summary
Regional modeling of surface solar radiation, aerosol, and cloud cover spatial variability and projections over northern France and Benelux
Gabriel Chesnoiu, Isabelle Chiapello, Nicolas Ferlay, Pierre Nabat, Marc Mallet, and Véronique Riffault
Atmos. Chem. Phys., 25, 1307–1331, https://doi.org/10.5194/acp-25-1307-2025,https://doi.org/10.5194/acp-25-1307-2025, 2025
Short summary
A numerical sensitivity study on the snow-darkening effect by black carbon deposition over the Arctic in spring
Zilu Zhang, Libo Zhou, and Meigen Zhang
Atmos. Chem. Phys., 25, 1–25, https://doi.org/10.5194/acp-25-1-2025,https://doi.org/10.5194/acp-25-1-2025, 2025
Short summary
Improved calculation of single-scattering properties of frozen droplets and frozen-droplet aggregates observed in deep convective clouds
Jeonggyu Kim, Sungmin Park, Greg M. McFarquhar, Anthony J. Baran, Joo Wan Cha, Kyoungmi Lee, Seoung Soo Lee, Chang Hoon Jung, Kyo-Sun Sunny Lim, and Junshik Um
Atmos. Chem. Phys., 24, 12707–12726, https://doi.org/10.5194/acp-24-12707-2024,https://doi.org/10.5194/acp-24-12707-2024, 2024
Short summary

Cited articles

Amini, S. and Straus, D. M.: Control of storminess over the Pacific and North America by circulation regimes, Clim. Dynam., 52, 4749–4770, https://doi.org/10.1007/s00382-018-4409-7, 2019. a
Becker, S., Ehrlich, A., Stapf, J., Lüpkes, C., Mech, M., Crewell, S., and Wendisch, M.: Meteorological measurements by dropsondes released from POLAR 5 during AFLUX 2019, PANGAEA – Data Publisher for Earth & Environmental Science [data set], https://doi.org/10.1594/PANGAEA.921996, 2020. a, b
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., and Pettersen, C.: July 2012 Greenland melt extent enhanced by low-level liquid clouds, Nature, 496, 83–86, https://doi.org/10.1038/nature12002, 2013. a
Bentsen, M., Oliviè, D. J. L., Seland, y., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-MM model output prepared for CMIP6 CMIP, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.506, 2019. a
Block, K., Schneider, F. A., Mülmenstädt, J., Salzmann, M., and Quaas, J.: Climate models disagree on the sign of total radiative feedback in the Arctic, Tellus A, 72, 1–14, https://doi.org/10.1080/16000870.2019.1696139, 2020. a, b
Download
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Share
Altmetrics
Final-revised paper
Preprint