Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-9963-2023
https://doi.org/10.5194/acp-23-9963-2023
Research article
 | 
07 Sep 2023
Research article |  | 07 Sep 2023

Constraints on simulated past Arctic amplification and lapse rate feedback from observations

Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch

Data sets

Initial radiosonde data from 2019-10 to 2020-09 during project MOSAiC M. Maturilli, D. J. Holdridge, S. Dahlke, J. Graeser, A. Sommerfeld, R. Jaiser, H. Deckelmann, and A. Schulz https://doi.org/10.1594/PANGAEA.928656

10-meter (m) meteorological flux tower measurements (Level 1 Raw), Multidisciplinary drifting observatory for the study of arctic climate (MOSAiC), central Arctic, October 2019-September 2020 C. Cox, M. Gallagher, M. Shupe, O. Persson, A. Solomon, B. Blomquist, I. Brooks, D. Costa, D. Gottas, J. Hutchings, et al. https://doi.org/10.18739/A2VM42Z5F

ARM Instrument: Interpolated Sonde (interpolatedsonde) M. Jensen, S. Giangrande, T. Fairless, and A. Zhou https://doi.org/10.5439/1095316

Meteorological measurements from 8 dropsondes released during POLAR 4 flight on 1993-03-04 along a track orthogonal to the pack ice edge north west of Svalbard C. Lüpkes and K. H. Schlünzen https://doi.org/10.1594/PANGAEA.857807

Airborne and dropsonde measurements in MCAOs during STABLE in March 2013 C. Lüpkes, J. Hartmann, A. U. Schmitt, G. Birnbaum, T. Vihma, and J. Michaelis https://doi.org/10.1594/PANGAEA.936635

Meteorological measurements by dropsondes released from POLAR 5 during AFLUX 2019 S. Becker, A. Ehrlich, J. Stapf, C. Lüpkes, M. Mech, S. Crewell, and M. Wendisch https://doi.org/10.1594/PANGAEA.921996

Berkeley Earth Combined Land and Ocean Temperature Field, Jan 1850-Nov 2019 R. Rohde and Z. Hausfather https://doi.org/10.5281/zenodo.3634713

An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set (https://www.metoffice.gov.uk/hadobs/hadcrut5/data/current/download.html) C. P. Morice, J. J. Kennedy, N. A. Rayner, J. P. Winn, E. Hogan, R. E. Killick, R. J. H. Dunn, T. J. Osborn, P. D. Jones, and I. R. Simpson https://doi.org/10.1029/2019JD032361

NOAA Global Surface Temperature Dataset (NOAAGlobalTemp), Version 5.0 H.-M. Zhang, B. Huang, J. H. Lawrimore, M. J. Menne, and T. M. Smith https://doi.org/10.25921/9qth-2p70

ERA5 monthly averaged data on single levels from 1940 to present H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut https://doi.org/10.24381/cds.f17050d7

ESA Cloud Climate Change Initiative (ESA Cloud_cci) data: Cloud_cci AVHRR-PM L3C/L3U CLD_PRODUCTS v3.0 M. Stengel, O. Sus, S. Stapelberg, S. Finkensieper, B. Würzler, D. Philipp, R. Hollmann, and C. Poulsen https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003

NOAA Climate Data Record (CDR) of Monthly Outgoing Longwave Radiation (OLR), Version 2.7 L. Hai-Tien and NOAA CDR Program https://doi.org/10.7289/V5222RQP

Model code and software

Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications (https://github.com/dalesteam/dales) T. Heus, C. C. van Heerwaarden, H. J. J. Jonker, A. Pier Siebesma, S. Axelsen, K. van den Dries, O. Geoffroy, A. F. Moene, D. Pino, S. R. de Roode, and J. Vilà-Guerau de Arellano https://doi.org/10.5194/gmd-3-415-2010

jchylik/dales: Dales4.3_sb3 (dales4.3sb3cgn) C. van Heerwaarden, sjboeing, H. Ouwersloot, thijsheus, J. Attema, F. Jansson, S. Arabas, J. Vila, sderoode, afmoene, and B. van Stratum https://doi.org/10.5281/zenodo.5642477

Download
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Altmetrics
Final-revised paper
Preprint