Articles | Volume 21, issue 22
https://doi.org/10.5194/acp-21-17003-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-17003-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of the vertical distribution of particle matter (PM2.5) concentration and its transport flux from lidar measurements based on machine learning algorithms
Yingying Ma
State Key Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan, China
Yang Zhu
School of Computer Science and Technology, Wuhan University of
Science and Technology, Wuhan, China
Boming Liu
CORRESPONDING AUTHOR
State Key Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan, China
Hui Li
State Key Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan, China
Shikuan Jin
State Key Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan, China
Yiqun Zhang
State Key Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan, China
Ruonan Fan
State Key Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan, China
Wei Gong
CORRESPONDING AUTHOR
School of Electronic Information, Wuhan University, Wuhan, China
Related authors
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Yinbao Jin, Yiming Liu, Xiao Lu, Xiaoyang Chen, Ao Shen, Haofan Wang, Yinping Cui, Yifei Xu, Siting Li, Jian Liu, Ming Zhang, Yingying Ma, and Qi Fan
Atmos. Chem. Phys., 24, 367–395, https://doi.org/10.5194/acp-24-367-2024, https://doi.org/10.5194/acp-24-367-2024, 2024
Short summary
Short summary
This study aims to address these issues by evaluating eight independent biomass burning (BB) emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES) using the WRF-Chem model and analyzing their impact on aerosol optical properties (AOPs) and direct radiative forcing (DRF) during wildfire events in peninsular Southeast Asia (PSEA) that occurred in March 2019.
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023, https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Short summary
To better understand the Asian aerosol environment, we studied distributions and trends of aerosol with different sizes and types. Over the past 2 decades, dust, sulfate, and sea salt aerosol decreased by 5.51 %, 3.07 %, and 9.80 %, whereas organic carbon and black carbon aerosol increased by 17.09 % and 6.23 %, respectively. The increase in carbonaceous aerosols was a feature of Asia. An exception is found in East Asia, where the carbonaceous aerosols reduced, owing largely to China's efforts.
Boming Liu, Xin Ma, Jianping Guo, Hui Li, Shikuan Jin, Yingying Ma, and Wei Gong
Atmos. Chem. Phys., 23, 3181–3193, https://doi.org/10.5194/acp-23-3181-2023, https://doi.org/10.5194/acp-23-3181-2023, 2023
Short summary
Short summary
Wind energy is one of the most essential clean and renewable forms of energy in today’s world. However, the traditional power law method generally estimates the hub-height wind speed by assuming a constant exponent between surface and hub-height wind speeds. This inevitably leads to significant uncertainties in estimating the wind speed profile. To minimize the uncertainties, we here use a machine learning algorithm known as random forest to estimate the wind speed at hub height.
Shikuan Jin, Yingying Ma, Cheng Chen, Oleg Dubovik, Jin Hong, Boming Liu, and Wei Gong
Atmos. Meas. Tech., 15, 4323–4337, https://doi.org/10.5194/amt-15-4323-2022, https://doi.org/10.5194/amt-15-4323-2022, 2022
Short summary
Short summary
Aerosol parameter retrievals have always been a research focus. In this study, we used an advanced aerosol algorithms (GRASP, developed by Oleg Dubovik) to test the ability of DPC/Gaofen-5 (the first polarized multi-angle payload developed in China) images to obtain aerosol parameters. The results show that DPC/GRASP achieves good results (R > 0.9). This research will contribute to the development of hardware and algorithms for aerosols
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-26, https://doi.org/10.5194/amt-2022-26, 2022
Publication in AMT not foreseen
Short summary
Short summary
Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is the comparison of wind speed on a large scale between the Aeolus, ERA5 and RS , shedding important light on the data application of Aeolus wind products.
Hui Li, Boming Liu, Xin Ma, Shikuan Jin, Yingying Ma, Yuefeng Zhao, and Wei Gong
Atmos. Meas. Tech., 14, 5977–5986, https://doi.org/10.5194/amt-14-5977-2021, https://doi.org/10.5194/amt-14-5977-2021, 2021
Short summary
Short summary
Radiosonde (RS) is widely used to detect the vertical structures of the planetary boundary layer (PBL), and numerous methods have been proposed for retrieving PBL height (PBLH) from RS data. However, an algorithm that is suitable under all atmospheric conditions does not exist. This study evaluates the performance of four common PBLH algorithms under different thermodynamic stability conditions based on RS data.
Jianping Guo, Boming Liu, Wei Gong, Lijuan Shi, Yong Zhang, Yingying Ma, Jian Zhang, Tianmeng Chen, Kaixu Bai, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021, https://doi.org/10.5194/acp-21-2945-2021, 2021
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China have thus far not been evaluated by in situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future research and applications.
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-41, https://doi.org/10.5194/acp-2021-41, 2021
Revised manuscript not accepted
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future researches and applications.
Lianfa Lei, Zhenhui Wang, Jiang Qin, Lei Zhu, Rui Chen, Jianping Lu, and Yingying Ma
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-283, https://doi.org/10.5194/amt-2020-283, 2020
Revised manuscript not accepted
Short summary
Short summary
This paper proposes a new method of Multichannel Microwave Radiometer 3-D antenna pattern measurement by observing the sun. The antenna pattern derived from the solar observation was compared with the result of the far-field measurement with a point source in the microwave anechoic chamber at 30 GHz, the maximum error of the beamwidth is less than 0.1°, which showed that this pattern matched well to the pattern measurement using a point source in the microwave anechoic chamber.
Boming Liu, Jianping Guo, Wei Gong, Lijuan Shi, Yong Zhang, and Yingying Ma
Atmos. Meas. Tech., 13, 4589–4600, https://doi.org/10.5194/amt-13-4589-2020, https://doi.org/10.5194/amt-13-4589-2020, 2020
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. However, the wind profile across China remains poorly understood. Here we reveal the salient features of winds from the radar wind profile of China, including the main instruments, spatial coverage and sampling frequency. This work is expected to allow the public and scientific community to be more familiar with the nationwide network and encourage the use of these valuable data in future research and applications.
S. Jin, Y. Ma, W. Gong, and M. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 807–812, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-807-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-807-2020, 2020
S. Jin, Y. Ma, Y. Jin, Y. Guan, and M. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 25–31, https://doi.org/10.5194/isprs-archives-XLII-3-W5-25-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-25-2018, 2018
Boming Liu, Yingying Ma, Jiqiao Liu, Wei Gong, Wei Wang, and Ming Zhang
Atmos. Meas. Tech., 11, 5075–5085, https://doi.org/10.5194/amt-11-5075-2018, https://doi.org/10.5194/amt-11-5075-2018, 2018
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Yinbao Jin, Yiming Liu, Xiao Lu, Xiaoyang Chen, Ao Shen, Haofan Wang, Yinping Cui, Yifei Xu, Siting Li, Jian Liu, Ming Zhang, Yingying Ma, and Qi Fan
Atmos. Chem. Phys., 24, 367–395, https://doi.org/10.5194/acp-24-367-2024, https://doi.org/10.5194/acp-24-367-2024, 2024
Short summary
Short summary
This study aims to address these issues by evaluating eight independent biomass burning (BB) emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES) using the WRF-Chem model and analyzing their impact on aerosol optical properties (AOPs) and direct radiative forcing (DRF) during wildfire events in peninsular Southeast Asia (PSEA) that occurred in March 2019.
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023, https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Short summary
To better understand the Asian aerosol environment, we studied distributions and trends of aerosol with different sizes and types. Over the past 2 decades, dust, sulfate, and sea salt aerosol decreased by 5.51 %, 3.07 %, and 9.80 %, whereas organic carbon and black carbon aerosol increased by 17.09 % and 6.23 %, respectively. The increase in carbonaceous aerosols was a feature of Asia. An exception is found in East Asia, where the carbonaceous aerosols reduced, owing largely to China's efforts.
Boming Liu, Xin Ma, Jianping Guo, Hui Li, Shikuan Jin, Yingying Ma, and Wei Gong
Atmos. Chem. Phys., 23, 3181–3193, https://doi.org/10.5194/acp-23-3181-2023, https://doi.org/10.5194/acp-23-3181-2023, 2023
Short summary
Short summary
Wind energy is one of the most essential clean and renewable forms of energy in today’s world. However, the traditional power law method generally estimates the hub-height wind speed by assuming a constant exponent between surface and hub-height wind speeds. This inevitably leads to significant uncertainties in estimating the wind speed profile. To minimize the uncertainties, we here use a machine learning algorithm known as random forest to estimate the wind speed at hub height.
Tianqi Shi, Zeyu Han, Ge Han, Xin Ma, Huilin Chen, Truls Andersen, Huiqin Mao, Cuihong Chen, Haowei Zhang, and Wei Gong
Atmos. Chem. Phys., 22, 13881–13896, https://doi.org/10.5194/acp-22-13881-2022, https://doi.org/10.5194/acp-22-13881-2022, 2022
Short summary
Short summary
CH4 works as the second-most important greenhouse gas, its reported emission inventories being far less than CO2. In this study, we developed a self-adjusted model to estimate the CH4 emission rate from strong point sources by the UAV-based AirCore system. This model would reduce the uncertainty in CH4 emission rate quantification accrued by errors in measurements of wind and concentration. Actual measurements on Pniówek coal demonstrate the high accuracy and stability of our developed model.
Shikuan Jin, Yingying Ma, Cheng Chen, Oleg Dubovik, Jin Hong, Boming Liu, and Wei Gong
Atmos. Meas. Tech., 15, 4323–4337, https://doi.org/10.5194/amt-15-4323-2022, https://doi.org/10.5194/amt-15-4323-2022, 2022
Short summary
Short summary
Aerosol parameter retrievals have always been a research focus. In this study, we used an advanced aerosol algorithms (GRASP, developed by Oleg Dubovik) to test the ability of DPC/Gaofen-5 (the first polarized multi-angle payload developed in China) images to obtain aerosol parameters. The results show that DPC/GRASP achieves good results (R > 0.9). This research will contribute to the development of hardware and algorithms for aerosols
Haowei Zhang, Boming Liu, Xin Ma, Ge Han, Qinglin Yang, Yichi Zhang, Tianqi Shi, Jianye Yuan, Wanqi Zhong, Yanran Peng, Jingjing Xu, and Wei Gong
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-215, https://doi.org/10.5194/essd-2022-215, 2022
Preprint withdrawn
Short summary
Short summary
Obtaining highly accurate and high-resolution spatiotemporal maps of carbon dioxide concentration distributions is crucial for promoting the study of the carbon cycle, and carbon emissions assessed by top-down theory. The official discrete satellite data provided by Gosat-2, OCO-2, and OCO-3 have data voids and relatively low efficiency. Here, we present carbon dioxide cover dataset, an innovative methodology to obtain XCO2 maps of high spatiotemporal resolution by using satellite data.
X. Xia, Z. Zhu, T. Zhang, G. Wei, and Y. Ji
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 545–550, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-545-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-545-2022, 2022
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-26, https://doi.org/10.5194/amt-2022-26, 2022
Publication in AMT not foreseen
Short summary
Short summary
Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is the comparison of wind speed on a large scale between the Aeolus, ERA5 and RS , shedding important light on the data application of Aeolus wind products.
Hui Li, Boming Liu, Xin Ma, Shikuan Jin, Yingying Ma, Yuefeng Zhao, and Wei Gong
Atmos. Meas. Tech., 14, 5977–5986, https://doi.org/10.5194/amt-14-5977-2021, https://doi.org/10.5194/amt-14-5977-2021, 2021
Short summary
Short summary
Radiosonde (RS) is widely used to detect the vertical structures of the planetary boundary layer (PBL), and numerous methods have been proposed for retrieving PBL height (PBLH) from RS data. However, an algorithm that is suitable under all atmospheric conditions does not exist. This study evaluates the performance of four common PBLH algorithms under different thermodynamic stability conditions based on RS data.
Xin Lu, Feiyue Mao, Daniel Rosenfeld, Yannian Zhu, Zengxin Pan, and Wei Gong
Atmos. Chem. Phys., 21, 11979–12003, https://doi.org/10.5194/acp-21-11979-2021, https://doi.org/10.5194/acp-21-11979-2021, 2021
Short summary
Short summary
In this paper, a novel method for retrieving cloud base height and geometric thickness is developed and applied to produce a global climatology of boundary layer clouds with a high accuracy. The retrieval is based on the 333 m resolution low-level cloud distribution as obtained from the CALIPSO lidar data. The main part of the study describes the variability of cloud vertical geometrical properties in space, season, and time of the day. Resultant new insights are presented.
Jianping Guo, Boming Liu, Wei Gong, Lijuan Shi, Yong Zhang, Yingying Ma, Jian Zhang, Tianmeng Chen, Kaixu Bai, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021, https://doi.org/10.5194/acp-21-2945-2021, 2021
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China have thus far not been evaluated by in situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future research and applications.
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-41, https://doi.org/10.5194/acp-2021-41, 2021
Revised manuscript not accepted
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future researches and applications.
Lianfa Lei, Zhenhui Wang, Jiang Qin, Lei Zhu, Rui Chen, Jianping Lu, and Yingying Ma
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-283, https://doi.org/10.5194/amt-2020-283, 2020
Revised manuscript not accepted
Short summary
Short summary
This paper proposes a new method of Multichannel Microwave Radiometer 3-D antenna pattern measurement by observing the sun. The antenna pattern derived from the solar observation was compared with the result of the far-field measurement with a point source in the microwave anechoic chamber at 30 GHz, the maximum error of the beamwidth is less than 0.1°, which showed that this pattern matched well to the pattern measurement using a point source in the microwave anechoic chamber.
Boming Liu, Jianping Guo, Wei Gong, Lijuan Shi, Yong Zhang, and Yingying Ma
Atmos. Meas. Tech., 13, 4589–4600, https://doi.org/10.5194/amt-13-4589-2020, https://doi.org/10.5194/amt-13-4589-2020, 2020
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. However, the wind profile across China remains poorly understood. Here we reveal the salient features of winds from the radar wind profile of China, including the main instruments, spatial coverage and sampling frequency. This work is expected to allow the public and scientific community to be more familiar with the nationwide network and encourage the use of these valuable data in future research and applications.
B. Chen, S. Shi, W. Gong, J. Sun, B. Chen, K. Guo, L. Du, J. Yang, Q. Xu, and S. Song
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 501–505, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-501-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-501-2020, 2020
B. Wang, S. Song, W. Gong, S. Shi, B. Chen, J. Yang, L. Du, and J. Sun
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 547–551, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-547-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-547-2020, 2020
S. Jin, Y. Ma, W. Gong, and M. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 807–812, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-807-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-807-2020, 2020
Lixia Chen, Zizheng Guo, Kunlong Yin, Dhruba Pikha Shrestha, and Shikuan Jin
Nat. Hazards Earth Syst. Sci., 19, 2207–2228, https://doi.org/10.5194/nhess-19-2207-2019, https://doi.org/10.5194/nhess-19-2207-2019, 2019
Short summary
Short summary
The study aims to evaluate the influence of land use and land cover change on landslide susceptibility at a regional scale, based on the application of Geographic Information System (GIS) and remote sensing (RS) technologies. The specific objective is to answer the following question: which land cover/land use change poses the highest risk so that mitigation measures can be implemented in time?
Huizheng Che, Xiangao Xia, Hujia Zhao, Oleg Dubovik, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Victor Estelles, Yaqiang Wang, Jun Zhu, Bing Qi, Wei Gong, Honglong Yang, Renjian Zhang, Leiku Yang, Jing Chen, Hong Wang, Yu Zheng, Ke Gui, Xiaochun Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 11843–11864, https://doi.org/10.5194/acp-19-11843-2019, https://doi.org/10.5194/acp-19-11843-2019, 2019
Short summary
Short summary
A full-scale description of ground-based aerosol microphysical and optical properties over China is presented. Moreover, the results have also provided significant information about optical and radiative aerosol properties for different types of sites covering a broad expanse of China. The results have considerable value for ground-truthing satellite observations and validating aerosol models.
S. Jin, Y. Ma, Y. Jin, Y. Guan, and M. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 25–31, https://doi.org/10.5194/isprs-archives-XLII-3-W5-25-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W5-25-2018, 2018
Boming Liu, Yingying Ma, Jiqiao Liu, Wei Gong, Wei Wang, and Ming Zhang
Atmos. Meas. Tech., 11, 5075–5085, https://doi.org/10.5194/amt-11-5075-2018, https://doi.org/10.5194/amt-11-5075-2018, 2018
Feiyue Mao, Zengxin Pan, Wei Wang, Xin Lu, and Wei Gong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-429, https://doi.org/10.5194/acp-2017-429, 2017
Revised manuscript not accepted
Shuo Shi, Wei Gong, Lin Du, Jia Sun, and Jian Yang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 1043–1047, https://doi.org/10.5194/isprs-archives-XLI-B8-1043-2016, https://doi.org/10.5194/isprs-archives-XLI-B8-1043-2016, 2016
Ge Han, Wei Gong, Xiaohui Cui, Miao Zhang, and Jun Chen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 73–77, https://doi.org/10.5194/isprs-archives-XLI-B8-73-2016, https://doi.org/10.5194/isprs-archives-XLI-B8-73-2016, 2016
Lin Du, Shuo Shi, Wei Gong, Jian Yang, Jia Sun, and Feiyue Mao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 9–13, https://doi.org/10.5194/isprs-archives-XLI-B1-9-2016, https://doi.org/10.5194/isprs-archives-XLI-B1-9-2016, 2016
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Remote-sensing detectability of airborne Arctic dust
The role of refractive indices in measuring mineral dust with high-spectral-resolution infrared satellite sounders: application to the Gobi Desert
Influence of covariance of aerosol and meteorology on co-located precipitating and non-precipitating clouds over the Indo-Gangetic Plain
Lidar estimates of birch pollen number, mass and related CCN concentrations
Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and central Africa
Fluorescence properties of long-range transported smoke: Insights from five-channel lidar observations over Moscow during the 2023 wildfire season
Invisible aerosol layers: improved lidar detection capabilities by means of laser-induced aerosol fluorescence
Distinct effects of Fine and Coarse Aerosols on Microphysical Processes of Shallow Precipitation Systems in Summer over Southern China
The emission, transport, and impacts of the extreme Saharan dust storm of 2015
Increased number concentrations of small particles explains perceived stagnation in air quality over Korea
California wildfire smoke contributes to a positive atmospheric temperature anomaly over the western United States
Dust storms from the Taklamakan Desert significantly darken snow surface on surrounding mountains
Opposite effects of aerosols and meteorological parameters on warm clouds in two contrasting regions over eastern China
Effect of wind speed on marine aerosol optical properties over remote oceans with use of spaceborne lidar observations
Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US
A remote sensing algorithm for vertically resolved cloud condensation nuclei number concentrations from airborne and spaceborne lidar observations
Opinion: Aerosol remote sensing over the next 20 years
Monitoring biomass burning aerosol transport using CALIOP observations and reanalysis models: a Canadian wildfire event in 2019
Thermal infrared observations of a western United States biomass burning aerosol plume
A new look into the impacts of dust radiative effects on the energetics of tropical easterly waves
Wind-driven emissions of coarse-mode particles in an urban environment
Measurement report: Dust and anthropogenic aerosols' vertical distributions over northern China dense aerosols gathered at the top of the mixing layer
Climatological assessment of the vertically resolved optical and microphysical aerosol properties by lidar measurements, sun photometer, and in situ observations over 17 years at Universitat Politècnica de Catalunya (UPC) Barcelona
Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: differences between major European cities and their surrounding environments
Impact of assimilating NOAA VIIRS aerosol optical depth (AOD) observations on global AOD analysis from the Copernicus Atmosphere Monitoring Service (CAMS)
Spectral dependence of birch and pine pollen optical properties using a synergy of lidar instruments
Validation activities of Aeolus wind products on the southeastern Iberian Peninsula
Thermal infrared dust optical depth and coarse-mode effective diameter over oceans retrieved from collocated MODIS and CALIOP observations
A comprehensive reappraisal of long-term aerosol characteristics, trends, and variability in Asia
Satellite (GOSAT-2 CAI-2) retrieval and surface (ARFINET) observations of aerosol black carbon over India
Spatiotemporal variation characteristics of global fires and their emissions
The (mis)identification of high-latitude dust events using remote sensing methods in the Yukon, Canada: a sub-daily variability analysis
Comparison of dust optical depth from multi-sensor products and MONARCH (Multiscale Online Non-hydrostatic AtmospheRe CHemistry) dust reanalysis over North Africa, the Middle East, and Europe
Understanding day–night differences in dust aerosols over the dust belt of North Africa, the Middle East, and Asia
Satellite observations of smoke–cloud–radiation interactions over the Amazon rainforest
Single-scattering properties of ellipsoidal dust aerosols constrained by measured dust shape distributions
Validation of the TROPOMI/S5P aerosol layer height using EARLINET lidars
Vertical characterization of fine and coarse dust particles during an intense Saharan dust outbreak over the Iberian Peninsula in springtime 2021
Aerosol optical depth regime over megacities of the world
South American 2020 regional smoke plume: intercomparison with previous years, impact on solar radiation, and the role of Pantanal biomass burning season
Circular polarization in atmospheric aerosols
Spatiotemporal continuous estimates of daily 1 km PM2.5 from 2000 to present under the Tracking Air Pollution in China (TAP) framework
Robust evidence for reversal of the trend in aerosol effective climate forcing
Simultaneous retrievals of biomass burning aerosols and trace gases from the ultraviolet to near-infrared over northern Thailand during the 2019 pre-monsoon season
A decadal assessment of the climatology of aerosol and cloud properties over South Africa
Aerosol characterisation in the subtropical eastern North Atlantic region using long-term AERONET measurements
Long-range transport of Asian dust to the Arctic: identification of transport pathways, evolution of aerosol optical properties, and impact assessment on surface albedo changes
Canadian and Alaskan wildfire smoke particle properties, their evolution, and controlling factors, from satellite observations
Evaluation of aerosol optical depths and clear-sky radiative fluxes of the CERES Edition 4.1 SYN1deg data product
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend
Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Yann Blanchard, Seyed Ali Sayedain, and Yasmin AboEl-Fetouh
Atmos. Chem. Phys., 25, 27–44, https://doi.org/10.5194/acp-25-27-2025, https://doi.org/10.5194/acp-25-27-2025, 2025
Short summary
Short summary
Dust from mid-latitude deserts or from local drainage basins is a weak component of atmospheric aerosols in the Arctic. Satellite-based dust estimates are often overestimated because dust and cloud measurements can be confused. Illustrations are given with an emphasis on the flawed claim that a classic indicator of dust (negative brightness temperature differences) is proof of the presence of airborne Arctic dust. Low-altitude warm-water plumes are the likely source of such negative values.
Perla Alalam, Fabrice Ducos, and Hervé Herbin
Atmos. Chem. Phys., 24, 12277–12294, https://doi.org/10.5194/acp-24-12277-2024, https://doi.org/10.5194/acp-24-12277-2024, 2024
Short summary
Short summary
This study dives into the impact of mineral dust laboratory complex refractive indices (CRIs) on quantifying the dust microphysical properties using satellite infrared remote sensing. Results show that using CRIs obtained by advanced realistic techniques can improve the accuracy of these measurements, emphasizing the importance of choosing the suitable CRI in atmospheric models. This improvement is crucial for better predicting the dust radiative effect and impact on the climate.
Nabia Gulistan, Khan Alam, and Yangang Liu
Atmos. Chem. Phys., 24, 11333–11349, https://doi.org/10.5194/acp-24-11333-2024, https://doi.org/10.5194/acp-24-11333-2024, 2024
Short summary
Short summary
This study looks at the influence of aerosol and meteorology on precipitating and non-precipitating clouds over the Indo-Gangetic Plain (IGP). A major finding of this study was that the high loading of aerosols led to a high occurrence of precipitating clouds under unstable conditions in summer. The study has the potential to open a new avenue for the scientific community to further explore and understand the complications of aerosol–cloud–precipitation over the complex topography of the IGP.
Maria Filioglou, Petri Tiitta, Xiaoxia Shang, Ari Leskinen, Pasi Ahola, Sanna Pätsi, Annika Saarto, Ville Vakkari, Uula Isopahkala, and Mika Komppula
EGUsphere, https://doi.org/10.5194/egusphere-2024-3032, https://doi.org/10.5194/egusphere-2024-3032, 2024
Short summary
Short summary
Every year a vast number of people experience allergic reactions due to exposure in airborne pollen. These symptoms are concentration-dependent thus, accurate information of the pollen load in the atmosphere is essential. Moreover, pollen grains and fragments of it are likely to contribute to cloud processes and suppress precipitation. In this work, we estimate the concentration and cloud-relevant parameters of birch pollen in the atmosphere using observations from a ceilometer instrument.
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024, https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary
Short summary
This paper introduces a retrieval algorithm to estimate two key absorbing components in smoke (black carbon and brown carbon) using DSCOVR EPIC measurements. Our analysis reveals distinct smoke properties, including spectral absorption, layer height, and black carbon and brown carbon, over North America and central Africa. The retrieved smoke properties offer valuable observational constraints for modeling radiative forcing and informing health-related studies.
Igor Veselovskii, Mikhail Korenskiy, Nikita Kasianik, Boris Barchunov, Qiaoyun Hu, Philippe Goloub, and Thierry Podvin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2874, https://doi.org/10.5194/egusphere-2024-2874, 2024
Short summary
Short summary
A fluorescence lidar was utilized to study transported smoke during the wildfire season from May to September 2023. The lidar performs fluorescence measurements at 5 wavelengths. Observations reveal that the fluorescence capacity increases with altitude, suggesting higher concentration of organic compounds in the UTLS compared to the lower troposphere. And urban aerosol fluorescence tends to decrease with wavelength, while the peak of smoke fluorescence is observed at 513 or 560 nm channels.
Benedikt Gast, Cristofer Jimenez, Albert Ansmann, Moritz Haarig, Ronny Engelmann, Felix Fritzsch, Athena Augusta Floutsi, Hannes Griesche, Kevin Ohneiser, Julian Hofer, Martin Radenz, Holger Baars, Patric Seifert, and Ulla Wandinger
EGUsphere, https://doi.org/10.5194/egusphere-2024-2586, https://doi.org/10.5194/egusphere-2024-2586, 2024
Short summary
Short summary
In this study, we discuss the enhanced detection capabilities of a fluorescence lidar in the case of optically thin aerosol layers in the upper troposphere and lower stratosphere (UTLS) region. Our results suggest that such thin aerosol layers are not so rare in the UTLS and can potentially trigger and impact cirrus cloud formation through heterogeneous ice nucleation. By altering the microphysical cloud properties, this could affect cloud evolution and lifetime, and thus their climate effect.
Fengjiao Chen, Yuanjian Yang, Lu Yu, Yang Li, Weiguang Liu, Yan Liu, and Simone Lolli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2206, https://doi.org/10.5194/egusphere-2024-2206, 2024
Short summary
Short summary
The precipitation microphysical mechanisms responsible for the varied impacts of aerosols on shallow precipitation remain unclear. This study reveals that coarse aerosols invigorate shallow rainfall through enhanced coalescence processes, whereas fine aerosols suppress shallow rainfall via intensified breakup microphysical processes. These impacts are independent of thermodynamic environments but are more significant in low-humidity conditions.
Brian Harr, Bing Pu, and Qinjian Jin
Atmos. Chem. Phys., 24, 8625–8651, https://doi.org/10.5194/acp-24-8625-2024, https://doi.org/10.5194/acp-24-8625-2024, 2024
Short summary
Short summary
We found that the formation of the extreme trans-Atlantic African dust event in June 2015 was associated with a brief surge in dust emissions over western North Africa and extreme circulation patterns, including intensified easterly jets, which facilitated the westward transport of dust. The dust plume modified radiative flux along its transport pathway but had minor impacts on air quality in the US due to the record-high Caribbean low-level jet advecting part of the plume to the Pacific.
Sohee Joo, Juseon Shin, Matthias Tesche, Dehkhoda Naghmeh, Taegyeong Kim, and Youngmin Noh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1208, https://doi.org/10.5194/egusphere-2024-1208, 2024
Short summary
Short summary
In our study, we investigated why, in Northeast Asia, visibility has not improved even though air pollution levels have decreased. By examining trends in Seoul and Ulsan, we found that the particles in the air are getting smaller, which scatters light more effectively and reduces how far we can see. Our findings suggest that changes in particle properties adversely affected public perception of air quality improvement even though the PM2.5 mass concentration is continuously decreasing.
James L. Gomez, Robert J. Allen, and King-Fai Li
Atmos. Chem. Phys., 24, 6937–6963, https://doi.org/10.5194/acp-24-6937-2024, https://doi.org/10.5194/acp-24-6937-2024, 2024
Short summary
Short summary
Wildfires in California (CA) have grown very large during the past 20 years. These fires emit sunlight-absorbing aerosols. Analyzing observational data, our study finds that aerosols emitted from large fires in northern CA spread throughout CA and Nevada and heat the atmosphere. This heating is consistent with larger-than-normal temperatures and dry conditions. Further study is needed to determine how much the aerosols heat the atmosphere and whether they are drying the atmosphere as well.
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024, https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Short summary
This study investigated the impact of dust storms from the Taklamakan Desert on surrounding high mountains and regional radiation balance. Using satellite data and simulations, researchers found that dust storms significantly darken the snow surface in the Tien Shan, Kunlun, and Qilian mountains, reaching mountains up to 1000 km away. This darkening occurs not only in spring but also during summer and autumn, leading to increased absorption of solar radiation.
Yuqin Liu, Tao Lin, Jiahua Zhang, Fu Wang, Yiyi Huang, Xian Wu, Hong Ye, Guoqin Zhang, Xin Cao, and Gerrit de Leeuw
Atmos. Chem. Phys., 24, 4651–4673, https://doi.org/10.5194/acp-24-4651-2024, https://doi.org/10.5194/acp-24-4651-2024, 2024
Short summary
Short summary
A new method, the geographical detector method (GDM), has been applied to satellite data, in addition to commonly used statistical methods, to study the sensitivity of cloud properties to aerosol over China. Different constraints for aerosol and cloud liquid water path apply over polluted and clean areas. The GDM shows that cloud parameters are more sensitive to combinations of parameters than to individual parameters, but confounding effects due to co-variation of parameters cannot be excluded.
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409, https://doi.org/10.5194/acp-24-4389-2024, https://doi.org/10.5194/acp-24-4389-2024, 2024
Short summary
Short summary
This paper investigates the correlation between marine aerosol optical properties and wind speeds over remote oceans using the spaceborne lidars ALADIN and CALIOP. Three remote ocean areas are selected. Pure marine aerosol optical properties at 355 nm are derived from ALADIN. The relationships between marine aerosol optical properties and wind speeds are analyzed within and above the marine atmospheric boundary layer, revealing the effect of wind speed on marine aerosols over remote oceans.
Jingting Huang, S. Marcela Loría-Salazar, Min Deng, Jaehwa Lee, and Heather A. Holmes
Atmos. Chem. Phys., 24, 3673–3698, https://doi.org/10.5194/acp-24-3673-2024, https://doi.org/10.5194/acp-24-3673-2024, 2024
Short summary
Short summary
Increased wildfire intensity has resulted in taller wildfire smoke plumes. We investigate the vertical structure of wildfire smoke plumes using aircraft lidar data and establish two effective smoke plume height metrics. Four novel satellite-based plume height products are evaluated for wildfires in the western US. Our results provide guidance on the strengths and limitations of these satellite products and set the stage for improved plume rise estimates by leveraging satellite products.
Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar
Atmos. Chem. Phys., 24, 2861–2883, https://doi.org/10.5194/acp-24-2861-2024, https://doi.org/10.5194/acp-24-2861-2024, 2024
Short summary
Short summary
Global measurements of cloud condensation nuclei (CCN) are essential for understanding aerosol–cloud interactions and predicting climate change. To address this gap, we introduced a remote sensing algorithm that retrieves vertically resolved CCN number concentrations from airborne and spaceborne lidar systems. This innovation offers a global distribution of CCN concentrations from space, facilitating model evaluation and precise quantification of aerosol climate forcing.
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024, https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary
Short summary
Aerosols are small liquid or solid particles suspended in the atmosphere, including smoke, particulate pollution, dust, and sea salt. Today, we rely on satellites viewing Earth's atmosphere to learn about these particles. Here, we speculate on the future to imagine how satellite viewing of aerosols will change. We expect more public and private satellites with greater capabilities, better ways to infer information from satellites, and merging of data with models.
Xiaoxia Shang, Antti Lipponen, Maria Filioglou, Anu-Maija Sundström, Mark Parrington, Virginie Buchard, Anton S. Darmenov, Ellsworth J. Welton, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Alejandro Rodríguez-Gómez, Mika Komppula, and Tero Mielonen
Atmos. Chem. Phys., 24, 1329–1344, https://doi.org/10.5194/acp-24-1329-2024, https://doi.org/10.5194/acp-24-1329-2024, 2024
Short summary
Short summary
In June 2019, smoke particles from a Canadian wildfire event were transported to Europe. The long-range-transported smoke plumes were monitored with a spaceborne lidar and reanalysis models. Based on the aerosol mass concentrations estimated from the observations, the reanalysis models had difficulties in reproducing the amount and location of the smoke aerosols during the transport event. Consequently, more spaceborne lidar missions are needed for reliable monitoring of aerosol plumes.
Blake T. Sorenson, Jeffrey S. Reid, Jianglong Zhang, Robert E. Holz, William L. Smith Sr., and Amanda Gumber
Atmos. Chem. Phys., 24, 1231–1248, https://doi.org/10.5194/acp-24-1231-2024, https://doi.org/10.5194/acp-24-1231-2024, 2024
Short summary
Short summary
Smoke particles are typically submicron in size and assumed to have negligible impacts at the thermal infrared spectrum. However, we show that infrared signatures can be observed over dense smoke plumes from satellites. We found that giant particles are unlikely to be the dominant cause. Rather, co-transported water vapor injected to the middle to upper troposphere and surface cooling beneath the plume due to shadowing are significant, with the surface cooling effect being the most dominant.
Farnaz Hosseinpour and Eric M. Wilcox
Atmos. Chem. Phys., 24, 707–724, https://doi.org/10.5194/acp-24-707-2024, https://doi.org/10.5194/acp-24-707-2024, 2024
Short summary
Short summary
This study shows mechanistic relationships between the radiative effect of dust aerosols in the Saharan air layer and the kinetic energy of the African easterly waves across the tropical Atlantic Ocean using 22 years of daily satellite observations and reanalysis data based on satellite assimilation. Our findings suggest that dust aerosols not merely are transported by these waves but also contribute to the growth of waves through the enhancement of diabatic heating induced by dust.
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024, https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Short summary
This work introduces a new method that uses remote sensing techniques to obtain surface number emissions of particles with a diameter greater than 500 nm. The technique was applied to study particle emissions at an urban site near Houston, TX, USA. The emissions followed a diurnal pattern and peaked near noon local time. The daily averaged emissions correlated with wind speed. The source is likely due to wind-driven erosion of material situated on asphalted and other hard surfaces.
Zhuang Wang, Chune Shi, Hao Zhang, Yujia Chen, Xiyuan Chi, Congzi Xia, Suyao Wang, Yizhi Zhu, Kaidi Zhang, Xintong Chen, Chengzhi Xing, and Cheng Liu
Atmos. Chem. Phys., 23, 14271–14292, https://doi.org/10.5194/acp-23-14271-2023, https://doi.org/10.5194/acp-23-14271-2023, 2023
Short summary
Short summary
The annual cycle of dust and anthropogenic aerosols' vertical distributions was revealed by polarization Raman lidar in Beijing. Anthropogenic aerosols typically accumulate at the top of the mixing layer (ML) due to the hygroscopic growth of atmospheric particles, and this is most significant in summer. There is no significant relationship between bottom dust mass concentration and ML height, while the dust in the upper air tends to be distributed near the mixing layer.
Simone Lolli, Michaël Sicard, Francesco Amato, Adolfo Comeron, Cristina Gíl-Diaz, Tony C. Landi, Constantino Munoz-Porcar, Daniel Oliveira, Federico Dios Otin, Francesc Rocadenbosch, Alejandro Rodriguez-Gomez, Andrés Alastuey, Xavier Querol, and Cristina Reche
Atmos. Chem. Phys., 23, 12887–12906, https://doi.org/10.5194/acp-23-12887-2023, https://doi.org/10.5194/acp-23-12887-2023, 2023
Short summary
Short summary
We evaluated the long-term trends and seasonal variability of the vertically resolved aerosol properties over the past 17 years in Barcelona. Results shows that air quality is improved, with a consistent drop in PM concentrations at the surface, as well as the column aerosol optical depth. The results also show that natural dust outbreaks are more likely in summer, with aerosols reaching an altitude of 5 km, while in winter, aerosols decay as an exponential with a scale height of 600 m.
Ludovico Di Antonio, Claudia Di Biagio, Gilles Foret, Paola Formenti, Guillaume Siour, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 23, 12455–12475, https://doi.org/10.5194/acp-23-12455-2023, https://doi.org/10.5194/acp-23-12455-2023, 2023
Short summary
Short summary
Long-term (2000–2021) 1 km resolution satellite data have been used to investigate the climatological aerosol optical depth (AOD) variability and trends at different scales in Europe. Average enhancements of the local-to-regional AOD ratio at 550 nm of 57 %, 55 %, 39 % and 32 % are found for large metropolitan areas such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions.
Sebastien Garrigues, Melanie Ades, Samuel Remy, Johannes Flemming, Zak Kipling, Istvan Laszlo, Mark Parrington, Antje Inness, Roberto Ribas, Luke Jones, Richard Engelen, and Vincent-Henri Peuch
Atmos. Chem. Phys., 23, 10473–10487, https://doi.org/10.5194/acp-23-10473-2023, https://doi.org/10.5194/acp-23-10473-2023, 2023
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global monitoring of aerosols using the ECMWF forecast model constrained by the assimilation of satellite aerosol optical depth (AOD). This work aims at evaluating the assimilation of the NOAA VIIRS AOD product in the ECMWF model. It shows that the introduction of VIIRS in the CAMS data assimilation system enhances the accuracy of the aerosol analysis, particularly over Europe and desert and maritime sites.
Maria Filioglou, Ari Leskinen, Ville Vakkari, Ewan O'Connor, Minttu Tuononen, Pekko Tuominen, Samuli Laukkanen, Linnea Toiviainen, Annika Saarto, Xiaoxia Shang, Petri Tiitta, and Mika Komppula
Atmos. Chem. Phys., 23, 9009–9021, https://doi.org/10.5194/acp-23-9009-2023, https://doi.org/10.5194/acp-23-9009-2023, 2023
Short summary
Short summary
Pollen impacts climate and public health, and it can be detected in the atmosphere by lidars which measure the linear particle depolarization ratio (PDR), a shape-relevant optical parameter. As aerosols also cause depolarization, surface aerosol and pollen observations were combined with measurements from ground-based lidars operating at different wavelengths to determine the optical properties of birch and pine pollen and quantify their relative contribution to the PDR.
Jesús Abril-Gago, Pablo Ortiz-Amezcua, Diego Bermejo-Pantaleón, Juana Andújar-Maqueda, Juan Antonio Bravo-Aranda, María José Granados-Muñoz, Francisco Navas-Guzmán, Lucas Alados-Arboledas, Inmaculada Foyo-Moreno, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 23, 8453–8471, https://doi.org/10.5194/acp-23-8453-2023, https://doi.org/10.5194/acp-23-8453-2023, 2023
Short summary
Short summary
Validation activities of Aeolus wind products were performed in Granada with different upward-probing instrumentation (Doppler lidar system and radiosondes) and spatiotemporal collocation criteria. Specific advantages and disadvantages of each instrument were identified, and an optimal comparison criterion is proposed. Aeolus was proven to provide reliable wind products, and the upward-probing instruments were proven to be useful for Aeolus wind product validation activities.
Jianyu Zheng, Zhibo Zhang, Hongbin Yu, Anne Garnier, Qianqian Song, Chenxi Wang, Claudia Di Biagio, Jasper F. Kok, Yevgeny Derimian, and Claire Ryder
Atmos. Chem. Phys., 23, 8271–8304, https://doi.org/10.5194/acp-23-8271-2023, https://doi.org/10.5194/acp-23-8271-2023, 2023
Short summary
Short summary
We developed a multi-year satellite-based retrieval of dust optical depth at 10 µm and the coarse-mode dust effective diameter over global oceans. It reveals climatological coarse-mode dust transport patterns and regional differences over the North Atlantic, the Indian Ocean and the North Pacific.
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023, https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Short summary
To better understand the Asian aerosol environment, we studied distributions and trends of aerosol with different sizes and types. Over the past 2 decades, dust, sulfate, and sea salt aerosol decreased by 5.51 %, 3.07 %, and 9.80 %, whereas organic carbon and black carbon aerosol increased by 17.09 % and 6.23 %, respectively. The increase in carbonaceous aerosols was a feature of Asia. An exception is found in East Asia, where the carbonaceous aerosols reduced, owing largely to China's efforts.
Mukunda M. Gogoi, S. Suresh Babu, Ryoichi Imasu, and Makiko Hashimoto
Atmos. Chem. Phys., 23, 8059–8079, https://doi.org/10.5194/acp-23-8059-2023, https://doi.org/10.5194/acp-23-8059-2023, 2023
Short summary
Short summary
Considering the climate warming potential of atmospheric black carbon (BC), satellite-based retrieval is a novel idea. This study highlights the regional distribution of BC based on observations by the Cloud and Aerosol Imager-2 on board the GOSAT-2 satellite and near-surface measurements of BC in ARFINET. The satellite retrieval fairly depicts the regional and seasonal features of BC over the Indian region, which are similar to those recorded by surface observations.
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023, https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary
Short summary
Using 20-year multi-source data, this study shows pronounced regional and seasonal variations in fire activities and emissions. Seasonal variability of fires is larger with increasing latitude. The increase in temperature in the Northern Hemisphere's middle- and high-latitude forest regions was primarily responsible for the increase in fires and emissions, while the changes in fire occurrence in tropical regions were more influenced by the decrease in precipitation and relative humidity.
Rosemary Huck, Robert G. Bryant, and James King
Atmos. Chem. Phys., 23, 6299–6318, https://doi.org/10.5194/acp-23-6299-2023, https://doi.org/10.5194/acp-23-6299-2023, 2023
Short summary
Short summary
This study shows that mineral aerosol (dust) emission events in high-latitude areas are under-represented in both ground- and space-based detecting methods. This is done through a suite of ground-based data to prove that dust emissions from the proglacial area, Lhù’ààn Mân, occur almost daily but are not always recorded at different timescales. Dust has multiple effects on atmospheric processes; therefore, accurate quantification is important in the calibration and validation of climate models.
Michail Mytilinaios, Sara Basart, Sergio Ciamprone, Juan Cuesta, Claudio Dema, Enza Di Tomaso, Paola Formenti, Antonis Gkikas, Oriol Jorba, Ralph Kahn, Carlos Pérez García-Pando, Serena Trippetta, and Lucia Mona
Atmos. Chem. Phys., 23, 5487–5516, https://doi.org/10.5194/acp-23-5487-2023, https://doi.org/10.5194/acp-23-5487-2023, 2023
Short summary
Short summary
Multiscale Online Non-hydrostatic AtmospheRe CHemistry model (MONARCH) dust reanalysis provides a high-resolution 3D reconstruction of past dust conditions, allowing better quantification of climate and socioeconomic dust impacts. We assess the performance of the reanalysis needed to reproduce dust optical depth using dust-related products retrieved from satellite and ground-based observations and show that it reproduces the spatial distribution and seasonal variability of atmospheric dust well.
Jacob Z. Tindan, Qinjian Jin, and Bing Pu
Atmos. Chem. Phys., 23, 5435–5466, https://doi.org/10.5194/acp-23-5435-2023, https://doi.org/10.5194/acp-23-5435-2023, 2023
Short summary
Short summary
We use the Infrared Atmospheric Sounder Interferometer (IASI) retrievals of dust variables (dust optical depth and dust layer height) and surface observations to understand the day- and nighttime variations in dust aerosols over the dust belt. Our results show that daytime dust aerosols are significantly different from nighttime, and such day–night variations are influenced by meteorological factors such as wind speed, precipitation, and turbulent motions within the atmospheric boundary layer.
Ross Herbert and Philip Stier
Atmos. Chem. Phys., 23, 4595–4616, https://doi.org/10.5194/acp-23-4595-2023, https://doi.org/10.5194/acp-23-4595-2023, 2023
Short summary
Short summary
We provide robust evidence from multiple sources showing that smoke from fires in the Amazon rainforest significantly modifies the diurnal cycle of convection and cools the climate. Low to moderate amounts of smoke increase deep convective clouds and rain, whilst beyond a threshold amount, the smoke starts to suppress the convection and rain. We are currently at this threshold, suggesting increases in fires from agricultural practices or droughts will reduce cloudiness and rain over the region.
Yue Huang, Jasper F. Kok, Masanori Saito, and Olga Muñoz
Atmos. Chem. Phys., 23, 2557–2577, https://doi.org/10.5194/acp-23-2557-2023, https://doi.org/10.5194/acp-23-2557-2023, 2023
Short summary
Short summary
Global aerosol models and remote sensing retrievals use dust optical models with inconsistent and inaccurate dust shape approximations. Here, we present a new dust optical model constrained by measured dust shape distributions. This new dust optical model is an improvement on the current dust optical models used in models and retrieval algorithms, as quantified by comparisons against laboratory and field observations of dust optics.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Dimitris Balis, J. Pepijn Veefkind, Martin de Graaf, Lucia Mona, Nikolaos Papagianopoulos, Gesolmina Pappalardo, Ioanna Tsikoudi, Vassilis Amiridis, Eleni Marinou, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Daniele Bortoli, Maria João Costa, Vanda Salgueiro, Alexandros Papayannis, Maria Mylonaki, Lucas Alados-Arboledas, Salvatore Romano, Maria Rita Perrone, and Holger Baars
Atmos. Chem. Phys., 23, 1919–1940, https://doi.org/10.5194/acp-23-1919-2023, https://doi.org/10.5194/acp-23-1919-2023, 2023
Short summary
Short summary
Comparisons with ground-based correlative lidar measurements constitute a key component in the validation of satellite aerosol products. This paper presents the validation of the TROPOMI aerosol layer height (ALH) product, using archived quality assured ground-based data from lidar stations that belong to the EARLINET network. Comparisons between the TROPOMI ALH and co-located EARLINET measurements show good agreement over the ocean.
María Ángeles López-Cayuela, Carmen Córdoba-Jabonero, Diego Bermejo-Pantaleón, Michaël Sicard, Vanda Salgueiro, Francisco Molero, Clara Violeta Carvajal-Pérez, María José Granados-Muñoz, Adolfo Comerón, Flavio T. Couto, Rubén Barragán, María-Paz Zorzano, Juan Antonio Bravo-Aranda, Constantino Muñoz-Porcar, María João Costa, Begoña Artíñano, Alejandro Rodríguez-Gómez, Daniele Bortoli, Manuel Pujadas, Jesús Abril-Gago, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 23, 143–161, https://doi.org/10.5194/acp-23-143-2023, https://doi.org/10.5194/acp-23-143-2023, 2023
Short summary
Short summary
An intense Saharan dust outbreak crossing the Iberian Peninsula in springtime was monitored to determinine the specific contribution of fine and coarse dust particles at five lidar stations, strategically covering its SW–central–NE pathway. Expected dust ageing along the transport started unappreciated. A different fine-dust impact on optical (~30 %) and mass (~10 %) properties was found. Use of polarized lidar measurements (mainly in elastic systems) for fine/coarse dust separation is crucial.
Kyriakoula Papachristopoulou, Ioannis-Panagiotis Raptis, Antonis Gkikas, Ilias Fountoulakis, Akriti Masoom, and Stelios Kazadzis
Atmos. Chem. Phys., 22, 15703–15727, https://doi.org/10.5194/acp-22-15703-2022, https://doi.org/10.5194/acp-22-15703-2022, 2022
Short summary
Short summary
Megacities' air quality is determined by atmospheric aerosols. We focus on changes over the last two decades in the 81 largest cities, using satellite data. European and American cities have lower aerosol compared to African and Asian cities. For European, North American and East Asian cities, aerosols are decreasing over time, especially in China and the US. In the remaining cities, aerosol loads are increasing, particularly in India.
Nilton Évora do Rosário, Elisa Thomé Sena, and Marcia Akemi Yamasoe
Atmos. Chem. Phys., 22, 15021–15033, https://doi.org/10.5194/acp-22-15021-2022, https://doi.org/10.5194/acp-22-15021-2022, 2022
Short summary
Short summary
The 2020 burning season in Brazil was marked by an atypically high number of fire spots across Pantanal, leading to high amounts of smoke within the biome. This study shows that smoke over Pantanal, usually a fraction of that over Amazonia, was higher and resulted mainly from fires in conservation and indigenous areas. It also contributes to highlighting Pantanal's 2020 burning season as the worst combination of a climate extreme scenario and inadequately enforced environmental regulations.
Santiago Gassó and Kirk D. Knobelspiesse
Atmos. Chem. Phys., 22, 13581–13605, https://doi.org/10.5194/acp-22-13581-2022, https://doi.org/10.5194/acp-22-13581-2022, 2022
Short summary
Short summary
Atmospheric particles interact with light resulting in observable optical polarization. Thus, we can learn about their composition from space. New satellite sensor technology measures full polarization of reflected sunlight. This paper considers circular polarization, an overlooked category of polarization with distinctive features that could bring new insights. We review existing literature and make novel computations to consider this previously underappreciated category of polarization.
Qingyang Xiao, Guannan Geng, Shigan Liu, Jiajun Liu, Xia Meng, and Qiang Zhang
Atmos. Chem. Phys., 22, 13229–13242, https://doi.org/10.5194/acp-22-13229-2022, https://doi.org/10.5194/acp-22-13229-2022, 2022
Short summary
Short summary
We provided complete coverage PM2.5 concentrations at a 1-km resolution from 2000 to the present, carefully considering the significant changes in land use characteristics in China. This high-resolution PM2.5 data successfully revealed the local-scale PM2.5 variations. We noticed changes in PM2.5 spatial patterns in association with the clean air policies, with the pollution hotspots having transferred from urban centers to rural regions with limited air quality monitoring.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Ukkyo Jeong, Si-Chee Tsay, N. Christina Hsu, David M. Giles, John W. Cooper, Jaehwa Lee, Robert J. Swap, Brent N. Holben, James J. Butler, Sheng-Hsiang Wang, Somporn Chantara, Hyunkee Hong, Donghee Kim, and Jhoon Kim
Atmos. Chem. Phys., 22, 11957–11986, https://doi.org/10.5194/acp-22-11957-2022, https://doi.org/10.5194/acp-22-11957-2022, 2022
Short summary
Short summary
Ultraviolet (UV) measurements from satellite and ground are important for deriving information on several atmospheric trace and aerosol characteristics. Simultaneous retrievals of aerosol and trace gases in this study suggest that water uptake by aerosols is one of the important phenomena affecting aerosol properties over northern Thailand, which is important for regional air quality and climate. Obtained aerosol properties covering the UV are also important for various satellite algorithms.
Abdulaziz Tunde Yakubu and Naven Chetty
Atmos. Chem. Phys., 22, 11065–11087, https://doi.org/10.5194/acp-22-11065-2022, https://doi.org/10.5194/acp-22-11065-2022, 2022
Short summary
Short summary
This study examined the source of atmospheric aerosols and their role in forming clouds and rainfall over South Africa. The research provided answers to the cause of low precipitation, mainly linked to drought and water shortages experienced over the region. Further insight into the cause of occasional flooding that occurs in other parts of the area is provided. Finally, the study described the relationship between aerosol–cloud precipitation based on observation over the region.
África Barreto, Rosa D. García, Carmen Guirado-Fuentes, Emilio Cuevas, A. Fernando Almansa, Celia Milford, Carlos Toledano, Francisco J. Expósito, Juan P. Díaz, and Sergio F. León-Luis
Atmos. Chem. Phys., 22, 11105–11124, https://doi.org/10.5194/acp-22-11105-2022, https://doi.org/10.5194/acp-22-11105-2022, 2022
Short summary
Short summary
A comprehensive characterization of atmospheric aerosols in the subtropical eastern North Atlantic has been carried out in this paper using long-term ground AERONET photometric observations over the period 2005–2020 from a unique network made up of four stations strategically located from sea level to 3555 m height on the island of Tenerife. This is a region that can be considered a key location to study the seasonal dependence of dust transport from the Sahel-Sahara.
Xiaoxi Zhao, Kan Huang, Joshua S. Fu, and Sabur F. Abdullaev
Atmos. Chem. Phys., 22, 10389–10407, https://doi.org/10.5194/acp-22-10389-2022, https://doi.org/10.5194/acp-22-10389-2022, 2022
Short summary
Short summary
Long-range transport of Asian dust to the Arctic was considered an important source of Arctic air pollution. Different transport routes to the Arctic had divergent effects on the evolution of aerosol properties. Depositions of long-range-transported dust particles can reduce the Arctic surface albedo considerably. This study implied that the ubiquitous long-transport dust from China exerted considerable aerosol indirect effects on the Arctic and may have potential biogeochemical significance.
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022, https://doi.org/10.5194/acp-22-10267-2022, 2022
Short summary
Short summary
We compare retrievals of wildfire smoke particle size, shape, and light absorption from the MISR satellite instrument to modeling and other satellite data on land cover type, drought conditions, meteorology, and estimates of fire intensity (fire radiative power – FRP). We find statistically significant differences in the particle properties based on burning conditions and land cover type, and we interpret how changes in these properties point to specific aerosol aging mechanisms.
David W. Fillmore, David A. Rutan, Seiji Kato, Fred G. Rose, and Thomas E. Caldwell
Atmos. Chem. Phys., 22, 10115–10137, https://doi.org/10.5194/acp-22-10115-2022, https://doi.org/10.5194/acp-22-10115-2022, 2022
Short summary
Short summary
This paper presents an evaluation of the aerosol analysis incorporated into the Clouds and the Earth's Radiant Energy System (CERES) data products as well as the aerosols' impact on solar radiation reaching the surface. CERES is a NASA Earth observation mission with instruments flying on various polar-orbiting satellites. Its primary objective is the study of the radiative energy balance of the climate system as well as examination of the influence of clouds and aerosols on this balance.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022, https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Short summary
The study provides baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Cited articles
Altman, N. S.: An introduction to kernel and nearest-neighbor nonparametric
regression, Am. Stat., 46, 175–185, 1992.
Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT, Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019, 2019.
Boyouk, N., Léon, J. F., Delbarre, H., Podvin, T., and Deroo, C.: Impact of the mixing boundary layer on the relationship between PM2.5 and aerosol optical thickness, Atmos. Environ., 44, 271–277,
2010.
Breiman, L.: Random forests, in: Machine Learning, 45, 5–32, 2001.
Cao, L.: Support vector machines experts for time series forecasting,
Neurocomputing, 51, 321–339, 2003.
Chen, G., Li, S., Knibbs, L. D., Hamm, N. A., Cao, W., Li, T., Guo, J., Ren, H., Abramson, M. J., and Guo, Y.: A machine learning method to estimate PM2.5 concentrations across
China with remote sensing, meteorological and land use information, Sci. Total Enviro., 636, 52–60, 2018.
Chen, J. S., Xin, J. Y., An, J. L., Wang, Y. W., Liu, Z. R., Chao, N., and Meng, Z.:
Observation of aerosol optical properties and particulate pollution at
background station in the Pearl River Delta region, Atmos. Res., 143,
216–227, 2014.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., and Cho, H.:
Xgboost: extreme gradient boosting, R package version 0.4–2, available at: https://mran.microsoft.com/snapshot/2020-07-15/web/packages/xgboost/vignettes/xgboost.pdf (last access: 20 November 2021), 1, 2015.
Chu, D. A., Tsai, T. C., Chen, J. P., Chang, S. C., Jeng, Y. J., Chiang, W.
L., and Lin, N. H.: Interpreting aerosol lidar profiles to better
estimate surface PM2.5 for columnar AOD measurements, Atmos.
Environ., 79, 172–187, 2013.
Coomans, D. and Massart, D. L.: Alternative k-nearest neighbour rules in
supervised pattern recognition: part 1. k-Nearest neighbour classifcation by
using alternative voting rules, Anal. Chim. Acta, 136, 15–27, 1982.
Cortes, C. and Vapnik, V.: Support-vector networks, Mach. Learn.,
20, 273–297, 1995.
Ding, A.J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M., Petäjä,
T., and Chi, X. G.: Enhanced haze pollution by black carbon in megacities in
China, Geophys. Res. Lett., 43, 2873–2879, 2016.
Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J., and Vapnik, V. N.: Support
vector regression machines, in: Advances in Neural Information Processing
Systems 9, NIPS 1996, MIT Press, 155–161, 1997.
ECMWF Support Portal: ERA5 hourly data on pressure levels from 1979 to present, ECMWF Support Portal [data set], https://doi.org/10.24381/cds.bd0915c6, 2018.
Fan, W. Z., Qin, K., Xu, J., Yuan, L. M., Li, D., Jin, Z., and Zhang, K.: Aerosol
vertical distribution and sources estimation at a site of the Yangtze River
Delta region of China, Atmos. Res., 217, 128–136, 2019.
Fernald, F. G.: Analysis of atmospheric lidar observations: some comments,
Appl. Optics, 23, 652e653, https://doi.org/10.1364/ao.23.000652, 1984.
Friedman, J. H.: Stochastic gradient boosting, Comput. Stat. Data Anal., 38, 367–378,
2002.
Ge, B., Wang, Z., Lin, W., Xu, X., Li, J., Ji, D., and Ma, Z.: Air pollution
over the North China Plain and its implication of regional transport: A new
sight from the observed evidences, Environ. Pollut., 234, 29–38,
https://doi.org/10.1016/j.envpol.2017.10.084, 2018.
Goldberg, D. L., Gupta, P., Wang, K., Jena, C., Zhang, Y., Lu, Z., and
Streets, D. G.: Using gap-filled MAIAC AOD and WRF-Chem to estimate
daily PM2.5 concentrations at 1 km resolution in the Eastern United States,
Atmos. Environ., 199, 443–452, 2019.
Gong, W., Zhang, J., Mao, F., and Jun, L.: Measurements for profiles of aerosol
extinction coefficient, backscatter coefficient, and lidar ratio over Wuhan
in China with Raman/Mie lidar, Chin. Opt. Lett., 8, 533–536, 2010.
Gong, W., Zhang, M., Han, G., Ma, X., and Zhu, Z.: An investigation of aerosol scattering and absorption properties in Wuhan, Central China, Atmosphere, 6, 503–520, 2015.
Guo, J., Liu, B., Gong, W., Shi, L., Zhang, Y., Ma, Y., Zhang, J., Chen, T., Bai, K., Stoffelen, A., de Leeuw, G., and Xu, X.: Technical note: First comparison of wind observations from ESA's satellite mission Aeolus and ground-based radar wind profiler network of China, Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021, 2021.
He, G., Pan, Y., and Tanaka, T.: The short-term impacts of COVID-19 lockdown
on urban air pollution in China, Nat. Sustain., 3, 1005–1011,
https://doi.org/10.1038/s41893-020-0581-y, 2020.
Hinds, W. C.: Aerosol technology: properties, behavior, and
measurement of airborne particles, John Wiley & Sons, New York, 1999.
Huang, J., Ma, J., Guan, X., Li, Y., and He, Y.: Progress in semi-arid
climate change studies in China, Adv. Atmos. Sci., 36, 922–937, 2019.
Huang, J. P., Wang, T. H., Wang, W. C., Li, Z. Q., and Yan, H. R.: Climate effects of
dust aerosols over East Asian arid and semiarid regions, J.
Geophys. Res.-Atmos., 119, 11398–11416, 2014.
Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Wang,
J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, L., Li, Y., Che, F., Pang, N.,
Wang, H., Tong, D., Qin, W., Cheng, W., Liu, W., Fu, Q., Liu, B., Chai, F.,
Davis, S., Zhang, Q., and He, K.: Enhanced secondary pollution offset
reduction of primary emissions during COVID-19 lockdown in China, Nat. Sci.
Rev., 13, 1–7, 2020.
Jin, S., Ma, Y., Zhang, M., Gong, W., Lei, L., and Ma, X.: Comparation of
aerosol optical properties and associated radiative effects of air pollution
events between summer and winter: A case study in January and July 2014 over
Wuhan, Central China, Atmos. Environ., 218, 117004, https://doi.org/10.1016/j.atmosenv.2019.117004, 2019.
Jin, S., Zhang, M., Ma, Y., Gong, W., Chen, C., Yang, L., Hu, X., Liu, B.,
Chen, N., Du, B., and Shi, Y.: Adapting the Dark Target Algorithm to
Advanced MERSI Sensor on the FengYun-3-D Satellite: Retrieval and Validation
of Aerosol Optical Depth Over Land, IEEE T. Geosci.
Remote, 59, 8781–8797, 2021.
Kühnlein, M., Appelhans, T., Thies, B., and Nauß, T.: Precipitation estimates from MSG SEVIRI daytime, nighttime, and twilight data with random forests, J. Appl. Meteorol. Climatol., 53, 2457–2480, 2014.
Kumar, N., Chu, D. A., Forst, A., Peters, T., and Willis, R.: Satellite
remote sensing for developing time-space resolved estimates of ambient
particulate in Cleveland, OH, Aerosol Sci. Technol., 45, 1090e1108,
https://doi.org/10.1080/02786826.2011.581256, 2011.
Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., and Seinfeld, J.
H.: Unexpected air pollution with marked emission reductions during the
COVID-19 outbreak in China, Science, 369, 702–706, 2020.
Li, T., Shen, H., Yuan, Q., Zhang, X., and Zhang, L.: Estimating
ground-level PM2.5 by fusing satellite and station observations: a
geo-intelligent deep learning approach, Geophys. Res. Lett.,
44, 11–985, 2017.
Li, Z., Zhang, Y., Shao, J., Li, B., Hong, J., Liu, D., Li, D., Wei, P., Li,
W., and Li, L.: Remote sensing of atmospheric particulate mass of dry PM2.5 near
the ground: Method validation using ground-based measurements, Remote
Sens. Environ., 173, 59–68, 2016.
Liu, B., Ma, Y., Gong, W., and Zhang, M.: Observations of aerosol
color ratio and depolarization ratio over Wuhan, Atmos. Pollut.
Res., 8, 1113–1122, 2017.
Liu, B., Gong, W., Ma, Y., Zhang, M., Yang, J., and Zhang, M.: Surface
aerosol optical properties during high and low pollution periods at an urban
site in central China, Aerosol Air Qual. Res., 18, 3035–3046,
2018a.
Liu, B., Ma, Y., Gong, W., Zhang, M., and Yang, J.: Study of continuous air
pollution in winter over Wuhan based on ground-based and satellite
observations, Atmos. Pollut. Res., 9, 156–165, 2018b.
Liu, B., Ma, Y., Guo, J., Gong, W., Zhang, Y., Mao, F., Li, J., Guo, X., and
Shi, Y.: Boundary layer heights as derived from groundbased Radar wind
profiler in Beijing, IEEE T. Geosci. Remote, 57, 8095–8104, https://doi.org/10.1109/TGRS.2019.2918301, 2019.
Liu, B., Ma, Y., Shi, Y., Jin, S., Jin, Y., and Gong, W.: The characteristics
and sources of the aerosols within the nocturnal residual layer over Wuhan,
China, Atmos. Res., 241, 104959, https://doi.org/10.1016/j.atmosres.2020.104959, 2020.
Liu, C., Huang, J., Wang, Y., Tao, X., Hu, C., Deng, L., Xu, J., Xiao,
H.-W., Luo, L., and Xiao, H.-Y.: Vertical distribution of PM2.5 and interactions
with the atmospheric boundary layer during the development stage of a heavy
haze pollution event, Sci. Total Environ., 704, 135329, https://doi.org/10.1016/j.scitotenv.2019.135329, 2020.
Liu, C., Huang, J., Hu, X. M., Hu, C., Wang, Y., Fang, X., Luo, L., Xiao, H. W., and Xiao, H. Y.: Evaluation of WRF-Chem simulations on vertical profiles of PM2.5 with UAV observations during a haze pollution event, Atmos. Environ., 252, 118332, https://doi.org/10.1016/j.atmosenv.2021.118332, 2021.
Liu, F., Yi, F., Yin, Z., Zhang, Y., He, Y., and Yi, Y.: Measurement report: characteristics of clear-day convective boundary layer and associated entrainment zone as observed by a ground-based polarization lidar over Wuhan (30.5∘ N, 114.4∘ E), Atmos. Chem. Phys., 21, 2981–2998, https://doi.org/10.5194/acp-21-2981-2021, 2021.
Liu, H., Wang, X. M., Pang, J. M., and He, K. B.: Feasibility and difficulties of China's new air quality standard compliance: PRD case of PM2.5 and ozone from 2010 to 2025, Atmos. Chem. Phys., 13, 12013–12027, https://doi.org/10.5194/acp-13-12013-2013, 2013.
Liu, Y., Tang, G., Zhou, L., Hu, B., Liu, B., Li, Y., Liu, S., and Wang, Y.: Mixing layer transport flux of particulate matter in Beijing, China, Atmos. Chem. Phys., 19, 9531–9540, https://doi.org/10.5194/acp-19-9531-2019, 2019.
Lv, L., Liu, W., Zhang, T., Chen, Z., Dong, Y., Fan, G., Xiang, Y., Yao, Y.,
Yang, N., and Chu, B.: Observations of particle extinction, PM2.5 mass
concentration profile and flux in north China based on mobile lidar
technique, Atmos. Environ., 164, 360–369, 2017.
Lyu, L., Dong, Y., Zhang, T., Liu, C., Liu, W., Xie, Z., Xiang, Y., Zhang,
Y., Chen, Z., and Fan, G.: Vertical Distribution Characteristics of PM2.5
Observed by a Mobile Vehicle Lidar in Tianjin, China in 2016, J.
Meteorol. Res., 32, 60–68, 2018.
Min, M., Li, J., Wang, F., Liu, Z., and Menzel, W. P.: Retrieval of
cloud top properties from advanced geostationary satellite imager
measurements based on machine learning algorithms, Remote Sens.
Environm., 239, 111616, https://doi.org/10.1016/j.rse.2019.111616, 2020.
Panahifar, H., Moradhaseli, R., and Khalesifard, H. R.: Monitoring
atmospheric particulate matters using vertically resolved measurements of a
polarization lidar, in-situ recordings and satellite data over Tehran, Iran,
Sci. Rep.-UK, 10, 1–15, 2020.
Peng, Z. R., Wang, D., Wang, Z., Gao, Y., and Lu, S.: A study of vertical distribution patterns of PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles: A case in Hangzhou, China, Atmos. Environ., 123, 357–369, 2015.
Raaschou-Nielsen, O., Andersen, Z. J., Beelen, R., Samoli, E., Stafoggia, M., Weinmayr, G., Hoffmann, B., Fiischer, P., and Hoek, G.: Air pollution and lung cancer
incidence in 17 European cohorts: prospective analyses from the European
Study of Cohorts for Air Pollution Effects (ESCAPE), The lancet oncology,
14, 813–822, 2013.
Saide, P. E., Carmichael, G. R., Spak, S. N., Gallardo, L., Osses, A. E.,
Mena-Carrasco, M. A., and Pagowski, M.: Forecasting urban PM10 and
PM2.5 pollution episodes in very stable nocturnal conditions and complex
terrain using WRF–Chem CO tracer model, Atmos. Environ., 45,
2769–2780, 2011.
Shi, Y., Liu, B., Chen, S., Gong, W., Ma, Y., Zhang, M., Jin, S. K., and Jin, Y.: Characteristics of aerosol within the nocturnal residual layer and its effects on surface PM2.5 over China, Atmos. Environ., 241, 117841, https://doi.org/10.1016/j.atmosenv.2020.117841, 2020.
Sun, Y., Song, T., Tang, G., and Wang, Y.: The vertical distribution of PM2.5 and boundary-layer structure during summer haze in Beijing, Atmos. Environ., 74, 413–421, 2013.
Tang, G., Zhu, X., Hu, B., Xin, J., Wang, L., Münkel, C., Mao, G., and Wang, Y.: Impact of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer observations, Atmos. Chem. Phys., 15, 12667–12680, https://doi.org/10.5194/acp-15-12667-2015, 2015.
Tao, M., Chen, L., Wang, Z., Tao, J. H., and Su, L.: Satellite observation of abnormal
yellow haze clouds over East China during summer agricultural burning
season, Atmos. Environ., 79, 632–640, 2013.
Tao, Z., Wang, Z., Yang, S., Shan, H., Ma, X., Zhang, H., Zhao, S., Liu, D., Xie, C., and Wang, Y.: Profiling the PM2.5 mass concentration vertical distribution in the boundary layer, Atmos. Meas. Tech., 9, 1369–1376, https://doi.org/10.5194/amt-9-1369-2016, 2016.
Wang, T., Han, Y., Hua, W., Tang, J., Huang, J., Zhou, T., Huang, Z., Bi, J., and Xie,
H.: Profiling dust mass concentration in Northwest China using a
joint lidar and sun-photometer setting, Remote Sens., 13, 1099,
https://doi.org/10.3390/rs13061099, 2021.
Wang, W., Mao, F., Gong, W., Pan, Z., and Du, L.: Evaluating the governing
factors of variability in nocturnal boundary layer height based on elastic
lidar in Wuhan, Int. J. Env. Res. Pub.
He., 13, 1071, https://doi.org/10.3390/ijerph13111071, 2016.
Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., and Cribb, M.:
Estimating 1 km-resolution PM2.5 concentrations across China using the
space-time random forest approach, Remote Sens. Environ., 231, 111221,
https://doi.org/10.1016/j.rse.2019.111221, 2019.
Wu, Z. L., Liu, A. X., Zhang, C. C., and Wu, B. G.: Vertical distribution feature of PM2.5 and effect of boundary layer in Tianjin, Urban Environ. Urban Ecol., 22, 24–29, 2009.
Xiang, Y., Zhang, T., Ma, C., Lv, L., Liu, J., Liu, W., and Cheng, Y.: Lidar vertical observation network and data assimilation reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations over the North China Plain, Atmos. Chem. Phys., 21, 7023–7037, https://doi.org/10.5194/acp-21-7023-2021, 2021.
Xu, J., Tao, J., Zhang, R., Cheng, T., Leng, C., Chen, J., and Zhu, Z.: Measurements of surface aerosol optical properties in winter of Shanghai, Atmos. Res., 109, 25–35, 2012.
Yan, W., Yang, L., Chen, J., Wang, X., Wen, L., Zhao, T., and Wang, W.: Aerosol optical properties at urban and coastal sites in Shandong
Province, Northern China, Atmos. Res., 188, 39–47,
2017.
Yang, L., He, K., Zhang, Q., and Wang, Q. D.: Vertical distributive characters of PM2.5 at the ground layer in Autumn and Winter in Beijing, Res. Environ. Sci., 18, 23–28, 2005.
Yin, Z., Yi, F., He, Y., Liu, F., Yu, C., Zhang, Y., and Wang, W.: Asian
dust impacts on heterogeneous ice formation at Wuhan based on polarization
lidar measurements, Atmos. Environ., 246, 118166, https://doi.org/10.1016/j.atmosenv.2020.118166, 2021.
Zhang, L., Sun, J. Y., Shen, X. J., Zhang, Y. M., Che, H., Ma, Q. L., Zhang, Y. W., Zhang, X. Y., and Ogren, J. A.: Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China, Atmos. Chem. Phys., 15, 8439–8454, https://doi.org/10.5194/acp-15-8439-2015, 2015.
Zhang, L., An, J., Liu, M., Li, Z., Liu, Y., Tao, L., and Luo, Y.: Spatiotemporal variations and influencing factors of PM2.5 concentrations in Beijing, China, Environ. Pollut., 262, 114276, https://doi.org/10.1016/j.envpol.2020.114276, 2020.
Zhang, M., Ma, Y. Y., Gong, W., Liu, B. M., Shi, Y. F., and Chen, Z. Y.: Aerosol
optical properties and radiative effects: assessment of urban aerosols in
central China using 10-year observations, Atmos. Environ., 182, 275–285,
2018.
Zhang, M., Jin, S., Ma, Y., Fan, R., Wang, L., Gong, W., and Liu, B.: Haze
events at different levels in winters: A comprehensive study of
meteorological factors, Aerosol characteristics and direct radiative forcing
in megacities of north and central China, Atmos. Environ., 245,
118056, https://doi.org/10.1016/j.atmosenv.2020.118056, 2021.
Zhu, Y., Ma, Y., Liu, B., Xu, X., Jin, S., and Gong, W.: Retrieving the
Vertical Distribution of PM2.5 Mass Concentration From Lidar Via a
Random Forest Model, IEEE T. Geosci. Remote, in press,
https://doi.org/10.1109/TGRS.2021.3102059, 2021.
Short summary
The vertical distribution of the aerosol extinction coefficient (EC) measured by lidar systems has been used to retrieve the profile of particle matter with a diameter of less than 2.5 μm (PM2.5). However, the traditional linear model cannot consider the influence of multiple meteorological variables sufficiently, which then causes low inversion accuracy. In this study, the machine learning algorithms which can input multiple features are used to solve this constraint.
The vertical distribution of the aerosol extinction coefficient (EC) measured by lidar systems...
Altmetrics
Final-revised paper
Preprint