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Abstract. The vertical distribution of aerosol extinction co-
efficient (EC) measured by lidar systems has been used to re-
trieve the profile of particle matter with a diameter < 2.5 µm
(PM2.5). However, the traditional linear model (LM) cannot
consider the influence of multiple meteorological variables
sufficiently and then induce the low inversion accuracy. Gen-
erally, the machine learning (ML) algorithms can input mul-
tiple features which may provide us with a new way to solve
this constraint. In this study, the surface aerosol EC and me-
teorological data from January 2014 to December 2017 were
used to explore the conversion of aerosol EC to PM2.5 con-
centrations. Four ML algorithms were used to train the PM2.5
prediction models: random forest (RF), K-nearest neighbor
(KNN), support vector machine (SVM) and extreme gradi-
ent boosting decision tree (XGB). The mean absolute er-
ror (root mean square error) of LM, RF, KNN, SVM and
XGB models were 11.66 (15.68), 5.35 (7.96), 7.95 (11.54),
6.96 (11.18) and 5.62 (8.27) µg/m3, respectively. This result
shows that the RF model is the most suitable model for PM2.5
inversions from EC and meteorological data. Moreover, the
sensitivity analysis of model input parameters was also con-
ducted. All these results further indicated that it is necessary
to consider the effect of meteorological variables when using
EC to retrieve PM2.5 concentrations. Finally, the diurnal and
seasonal variations of transport flux (TF) and PM2.5 profiles
were analyzed based on the lidar data. The large PM2.5 con-
centration occurred at approximately 13:00–17:00 local time
(LT) in 0.2–0.8 km. The diurnal variations of the TF show a

clear conveyor belt at approximately 12:00–18:00 LT in 0.5–
0.8 km. The results indicated that air pollutant transport over
Wuhan mainly occurs at approximately 12:00–18:00 LT in
0.5–0.8 km. The TF near the ground usually has the highest
value in winter (0.26 mg/m2 s), followed by the autumn and
summer (0.2 and 0.19 mg/m2 s, respectively), and the lowest
value in spring (0.14 mg/m2 s). These findings give us impor-
tant information on the atmospheric profile and provide us
sufficient confidence to apply lidar in the study of air quality
monitoring.

1 Introduction

Aerosol is a suspension of fine solid particles or liquid
droplets in air (Hinds, 1999; Chen et al., 2014; Fan et al.,
2019; Huang et al., 2019). In recent decades, with the an-
thropogenic aerosol emissions increasing in China, the con-
centration of fine particle matter with a diameter of less
than 2.5 µm (PM2.5) in the atmosphere has increased signif-
icantly (Ding et al., 2016; Shi et al., 2020; Jin et al., 2021).
Moreover, the high concentrations of PM2.5 cause haze fre-
quently and reduce atmospheric visibility, directly affecting
the ecological environment and human health (Huang et al.,
2014; He et al., 2020; Yin et al., 2021; Raaschou-Nielsen
et al., 2013). Besides that, air pollution incidents caused by
regional transmission still occur occasionally (Wang et al.,
2021; Huang et al., 2020; Le et al., 2020). Although the
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government has taken corresponding environmental protec-
tion measures to ensure the gradual deceasing of PM2.5, ir-
rational PM2.5 concentration control strategies would lead to
an invalid O3 control and these would hinder O3–PM2.5 co-
improvements (Liu et al., 2013). Therefore, it is necessary
to carry out long-term continuous monitoring of the atmo-
spheric environment, especially the spatial variation charac-
teristics of PM2.5 concentrations.

Until now, surface in situ PM2.5 measurements are the
most commonly method used by ground stations, because
they can give us more accurate observations. But the large
spatial and temporal variability of PM2.5 makes difficult to
estimate the abundance at any given location based upon
limited ground stations (Kumar et al., 2011). Consequently,
PM2.5 monitoring has been developed from ground-based
sampling to satellite or other ground-based remote sensing
instruments (Boyouk et al., 2010) gradually, the principle
of which is to obtain the surface PM2.5 concentrations from
aerosol optical depth (AOD) and meteorological variables.
Moreover, it should be stressed in particular that the descrip-
tion of the atmospheric boundary layer by lidar observations
improves the estimation accuracy of surface PM2.5 of these
instruments (Chu et al., 2013). This is also the preliminary
advantage of lidar profile observations in PM2.5 estimations.

In recent years, transport flux (TF) as a representation of
the horizontal transmission flux of pollutants has been put
forward, and it is determined by the horizontal wind speed
and PM2.5 mass concentrations (Tang et al., 2015; Y. Liu
et al., 2019). Obviously, Surface PM2.5 observations are not
sufficient to reveal the transport of pollutants and the for-
mation process of regional pollution in the whole boundary
layer; hence researchers have focused on the vertical distribu-
tion of PM2.5 mass concentrations (Sun et al., 2013; Zhang et
al., 2020; Panahifar et al., 2020). There are three main ways
to measure the profiles of PM2.5 concentrations. The first is
a meteorological tower or unmanned aerial vehicle equipped
with PM detectors, which can directly measure the vertical
distribution of PM2.5 within the range of 0–0.5 km from the
surface (Wu et al., 2009; Yang et al., 2005; Peng et al., 2015).
Some high-performance unmanned aerial vehicles (UAVs)
can even measure the PM2.5 concentrations in the range of 0–
1.5 km (C. Liu et al., 2020). These direct measurement meth-
ods have high accuracy, but the detection height is limited
to less than 1.5 km. In addition, UAVs cannot achieve long-
term and uninterrupted observation. The second way is to
use the WRF-Chem model to simulate the vertical profile of
PM2.5 (Saide et al., 2011; Goldberg et al., 2019; C. Liu et al.,
2021). This way can obtain a continuous variation of PM2.5
profiles near the surface, while the accuracy of the simula-
tion results needs to be improved through field observations.
The last method is using lidar or ceilometers to measure the
aerosol extinction coefficient (EC) profile and then retrieve
the PM2.5 profile based on the EC profile (Lv et al., 2017;
Lyu et al., 2018). Owing to their continuous and large-scale
(by changing inclination and rotating scanning) observation

characteristics, lidar and ceilometers are more widely used
to monitor the vertical distribution of pollutants in the atmo-
sphere (Liu et al., 2018b; Y. Liu et al., 2019; Xiang et al.,
2021), yet the premise is to construct a suitable conversion
model of extinction coefficient to PM2.5 mass concentration.

A series of studies have been conducted to estimate the
PM2.5 concentration profile from aerosol EC profiles mea-
sured by lidar systems (Tao et al., 2016; Lyu et al., 2018;
B. Liu et al., 2019; Panahifar et al., 2020). Tao et al. (2016)
obtained the vertical distribution of PM2.5 mass concentra-
tion based on the EC observed by charge-coupled device
side-scatter lidar and surface PM2.5 concentrations. Lyu et
al. (2018) used the EC profile measured by a mobile lidar
to retrieve the PM2.5 concentration profile in different sea-
sons at Tianjin. B. Liu et al. (2019) studied the vertical dis-
tribution and TF of PM2.5 based on lidar and Doppler wind
radar observations. Panahifar et al. (2020) used lidar to give
the mass concentrations of dust and non-dust particles in
the vertical direction when three differences in the atmo-
spheric environment occur. They also analyzed the influence
of local sources of pollution from Tehran and long-range-
transported dust from the Arabian Peninsula. These studies
retrieved the PM2.5 concentration profile by establishing the
linear relationship between aerosol EC and PM2.5 concen-
trations. However, the PM2.5 concentrations are not only re-
lated to aerosol EC but also to meteorological factors, such
as temperature (T ), relative humidity (RH) and wind speed
(WS) (Boyouk et al., 2010; Chu et al., 2013; Li et al., 2016;
Lv et al., 2017). Under the condition that the physical model
has been built, the advanced machine learning (ML) tech-
niques offer a possible solution to some nonlinear issues in
remote sensing and geoscience fields (Li et al., 2017; Min
et al., 2020). Therefore, there have been attempts to use the
ML algorithms which contain multi-characteristic inputs to
estimate the PM2.5 concentrations (Chen et al., 2018).

Given the abovementioned problems and referencing the
work of the former, surface in situ PM2.5, surface aerosol
EC and meteorological data from January 2014 to Decem-
ber 2017 were used to explore the conversion model be-
tween aerosol EC to PM2.5 concentrations. The traditional
linear model (LM) and four ML models were used to estab-
lish the relationship among surface EC, meteorological pa-
rameters and ground PM2.5 concentrations. The performance
of a linear model and four ML models were then analyzed
and compared. After selecting the suitable ML algorithms,
in other words, the most effective conversion model can be
constructed and applied to the lidar data to obtain the diur-
nal and seasonal variations of TF and PM2.5 profiles during
different periods. The rest of this paper is organized as fol-
lows. In Sect. 2, the study area and detecting instruments are
introduced. The methods for retrieving the PM2.5 profile are
presented in Sect. 3. In Sect. 4, experiments are described,
and the experimental results are analyzed. At the end of the
article, the main findings are summarized.
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Figure 1. Geographic distribution of observation site and the observation instruments used in this study. The photo of the particulate matter
detector is provided by GRIMM Aerosol Technik (© GRIMM).

2 Materials and data

2.1 Observation station

The observational station is at the State Key Laboratory of
Information Engineering in Surveying, Mapping and Re-
mote Sensing (LIESMARS), located at Luoyu Road, Wuhan
(39.98◦ N, 116.38◦W), as shown in Fig. 1. The altitude is
approximately 23 m above sea level (Liu et al., 2018b; Jin et
al., 2019). This observational station has been gradually built
since 2006 and currently includes a series of equipment such
as the lidar, nephelometer, Aethalometer, particulate matter
detector and automatic weather station, etc. (Zhang et al.,
2018; Liu et al., 2018a). In this study, the surface sampling
and observation data were used to build conversion models
and the performance of model was then contrasted and ana-
lyzed. The lidar data were used to analyze the vertical distri-
bution of PM2.5 concentrations and TF.

2.2 Instrumentations and data

2.2.1 Ground-based data

Surface aerosol EC were measured by the combination of
nephelometer (Model 3563, TSI, USA) and Aethalometer
(Model AE31, Magee Scientific, USA). The nephelometer

can measure the aerosol scattering coefficients (SCs) simul-
taneously at 450, 550 and 700 nm, and the error of its data
production is less than 7 % (Gong et al., 2015). The aerosol
SC of lidar at 532 nm can be calculated from wavelengths
at 450, 550 and 700 nm (Yan et al., 2017; Liu et al., 2018a).
Moreover, the aerosol absorption coefficients (ACs) were de-
duced from black carbon concentrations which were mea-
sured by Aethalometer (Xu et al., 2012). The Aethalome-
ter can measure the black carbon concentration at the seven
wavelengths of 370, 470, 520, 590, 660, 880 and 950 nm.
Previous studies indicated that aerosol AC at 532 nm and
black carbon concentrations at 880 nm have a strong corre-
lation, and the determination coefficient (R2) is greater than
0.92 (Yan et al., 2017). Ultimately, the sum of surface aerosol
SC and aerosol AC construct the surface aerosol EC. The
observation data used for the training model were collected
from January 2014 to December 2017.

During this observation period, the particulate matter mon-
itor (Grimm EDM 180, Germany) was used to measure the
surface PM2.5 concentrations. Moreover, the surface mete-
orological parameters, such as T , RH, WS and wind direc-
tion (WD) were obtained from an automatic meteorological
station (U3-NRC, Onset HOBO, USA). These surface obser-
vation data were processed as hourly averages for matching.
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After the matching procedure, a total of 5342 sets of hourly
average data were collected.

2.2.2 Profile data

A Mie lidar system with an operating wavelength of 532 nm
was used to measure the aerosol EC profile. In the mea-
surement, the temporal and spatial resolutions are 1 min and
3.75 m, respectively. The overlap of this system is 200 m.
More detailed descriptions are presented in the previous stud-
ies (Liu et al., 2017). This lidar system can directly measure
the scattering intensity of aerosols, and aerosol EC can be re-
versed by the Fernald method (Fernald, 1984). The lidar ra-
tio in Wuhan area is estimated to be 50 sr (Gong et al., 2010;
Liu et al., 2021). Note that the standard deviation of the as-
sumed lidar ratio is about 20 %, and the uncertainty for EC
derived by lidar is about 10 %–20 % (Liu et al., 2017). The
lidar dataset includes the observation from January 2017 to
December 2019. After removing the cloud and rain days, a
total of 2304 hourly average profiles were obtained.

To calculate the TF of PM2.5, the hourly wind profiles
were obtained from the fifth-generation European Centre for
Medium-Range Weather Forecasts atmospheric reanalysis
system (ERA-5) (Belmonte Rivas and Stoffelen, 2019). The
WS and WD can be calculated from the zonal (u) and merid-
ional (v) component of wind. The wind component data were
downloaded from https://cds.climate.copernicus.eu (last ac-
cess: 13 January 2021) (Guo et al., 2021). In addition, the T
and RH profile can also be obtained from ERA-5 data. The
wind, T and RH profile data over Wuhan were also down-
loaded from January 2017 to December 2019 to match the
lidar data. Note that the vertical resolution of ERA-5 wind
profile is coarser, which only has 12 layers in the height range
of 0–3 km. Therefore, for each sample point of ERA-5 data,
the lidar data at corresponding height were matched one by
one.

3 Methodology

In this section, the statistical methods which were used to
assess the performance of models are introduced. The es-
tablishment of a traditional linear model and four ML mod-
els is then introduced and discussed. Finally, the calculation
method of TF is presented.

3.1 Statistical methods

In this study, the mean absolute error (MAE), root mean
square error (RMSE) and correlation coefficient (R) were
used to assess the performance of each model. Moreover,
the MAE was also regarded as an important indicator in the
model parameter tuning process. RMSE and MAE are two
indexes used in the regression process to represent the differ-
ence between predicted and actual values. The lower the vari-
ance is, the closer the predicted value is to the actual value.

R indicates the correlation between predicted and actual val-
ues. The calculation formulas of MAE, RMSE and R are as
follows:

MAE=

n∑
i=1
|yi − xi |

n
, (1)

RMSE=

√∑n
i=1(yi − xi)

2

n
, (2)

R =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2

√
n∑

i=1
(yi − ȳ)2

, (3)

where xi and yi represent the ith sample point of predicted
and actual values, respectively, and x̄ and ȳ represent the
mean value of the predicted and actual values, respectively.

3.2 Traditional linear model

Traditional linear models (LMs) have been used to retrieve
the PM2.5 mass concentration profile (Lv et al., 2017; Lyu
et al., 2018). The physical principle is that the EC is linear
with PM2.5 when the hygroscopic growth is not considered
(Tao et al., 2016). Aerosol EC is composed of SC and AC.
Figure 2 shows the dependence of PM2.5 on AC, SC and EC
under different RH conditions. The black line represents the
fitting result, and the color bar represents the RH value. For
this set of samples, the AC varies from 0 to 0.15, and SC
varies from 0 to 1.5. It indicated that the SC of aerosol is
dominant. The R of PM2.5 with AC, SC and EC were 0.68,
0.8 and 0.82, respectively. The correlation result passed the
significance test (P < 0.05). These results indicated that the
linear model based on SC or EC have a similar performance.
This also confirms that the linear model established by SC
and PM2.5 can also obtain a good inversion result (B. Liu et
al., 2019).

Here, the surface EC and PM2.5 concentrations were used
to build an LM model. Following B. Liu et al.’s (2019)
method, the linear fitting was restricted through the origin
to avoid unreasonable negative values. The red line repre-
sents the fitting result after forced passing through the origin
(Fig. 2c), and the relationship of the LM model is

EC= 0.0067 ·PM2.5. (4)

3.3 ML methods and optimization

In this study, four classical ML algorithms were used to train
a PM2.5 prediction model: random forest (RF) (Breiman,
2001), K-nearest neighbor (KNN) (Altman, 1992; Coomans
and Massart, 1982), support vector machine (SVM) (Cao,
2003; Drucker et al., 1997) and extreme gradient boosting
decision tree (XGB) (Chen et al., 2015). The input features

Atmos. Chem. Phys., 21, 17003–17016, 2021 https://doi.org/10.5194/acp-21-17003-2021
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Figure 2. The linear regression relationship between observed PM2.5 and (a) AC, (b) SC and (c) EC with the change of RH. The black line
is the regression line, and the red line is the regression line through the origin. The color bar represents the RH.

Figure 3. Probability distribution functions of all sample datasets
(orange line), training dataset (red line) and testing (blue line) for
observed (a) PM2.5 and (b) EC. N represents the total number of
samples of every dataset.

of these models include EC, RH, T , WD and WS. The to-
tal number of experimental samples is 5342 groups, as men-
tioned in the Sect. 2.2.1. Considering the amount of calcula-
tion, we randomly pick 90 % (4807) as a training dataset, and
the remaining 10 % (535) as the independent testing dataset.
Note that the testing dataset is not involved in the training
of the model; it is only used to evaluate model performance.
Figure 3 show the probability distribution functions (PDFs)
for training, testing, and whole datasets of observed PM2.5
and EC. It is apparent that the PDFs of the training dataset
(red line) and whole dataset (orange line) are consistent. The
testing dataset (blue line) and whole dataset (orange line)
have certain deviations in frequency, but the PDF is similar.
Previous studies point out that the training dataset with more
samples probably does not significantly enhance model per-
formance under a similar distribution (Kühnlein et al., 2014;
Min et al., 2020); therefore, we choose the number of train-
ing samples as 4807.

3.3.1 Random forest model

The RF model is a classifier that uses multiple trees to train
and predict samples, which was first proposed by Breiman
(2001). There is no correlation between each decision tree in

Figure 4. Mean absolute errors (MAE) between observed PM2.5
and estimated PM2.5 based on the (a, b) RF, (c) KNN and (d) SVM
models under different tuning process.

the forest, and the final output of the model is jointly deter-
mined by each decision tree in the forest. RF model can han-
dle multiple input features and provide the best outcomes by
considering different features. Due to its high degree of gen-
eralization and fast training speed, the RF model is widely
used in atmospheric remote sensing to solve the nonlinear
fitting problem (Wei et al., 2019).

Here, the RF model was used to predict the PM2.5 concen-
trations. Surface EC, RH, T , WD and WS were regarded as
inputs. For the RF model, three important parameters need
to be adjusted to achieve the optimal effect of the model,
which include maximum feature (max feature), number of
trees (estimator num) and maximum depth of the tree (max
depth num), respectively (Table 1). Figure 4a and b show the
parameter tuning process for estimator num and max depth
num of RF model under four different max features. The max
feature was set to 0.2, 0.4, 0.6 and 0.8, respectively. The re-
sults indicated that the MAE was decreased with max feature

https://doi.org/10.5194/acp-21-17003-2021 Atmos. Chem. Phys., 21, 17003–17016, 2021



17008 Y. Ma et al.: Estimation of the vertical distribution of PM2.5 concentration

Table 1. Summary of tuning parameters and their dynamic ranges of four different machine learning algorithms.

Algorithm Parameter Dynamic range

RF 1. maximum feature (max feature) [0.2, 0.4, 0.6, 0.8]
2. number of tree (estimator num) [0–1400 within an interval of 10]
3. maximum depth of the tree (max depth num) [10–590 within an interval of 1]

KNN 1. number of neighbors (n neighbors) [0–25 within an interval of 1]

SVM 1. penalty parameter (C) [0–1000 within an interval of 50]
2. gamma coefficient (g) [0.0001, 0.0003, 0.0005, 0.0007]

XGB 1. subsample [0.1, 0.2, 0.5, 1]
2. number of tree (estimator num) [0–480 within an interval of 20]
3. maximum depth of the tree (max depth), [1–20 within an interval of 1]
4. learning rate [0.01–0.5 within an interval of 0.01]
5. gamma [0.01–0.99 within an interval of 0.02]

increased, while the MAE is almost unaffected when max
feature is greater than 0.4. The max feature can be set to 0.4.
The values of estimator num and max depth num were then
defined at the minimum MAE. After parameter tuning, esti-
mator num and the max depth num were finally defined to
1000 and 73, respectively.

3.3.2 K nearest neighbor

KNN is a ML algorithm that can be used for both classifi-
cation and regression (Altman, 1992; Coomans and Massart,
1982). Its principle is to find the K training samples closest
to it in the training dataset based on the distance metric for
a given test sample and then make predictions based on the
information of these K “neighbors”. In the atmospheric re-
mote sensing regression task, the average value of the true
values of K samples is usually used as the prediction result.
Of course, the result of the weighted average based on the
distance can also be used as the predicted value (Altman,
1992). The advantage of KNN is that the model can achieve
good results in less training time, so it is applied to real-time
analysis of some datasets. Because KNN does not require
a model with parameters for training, only one parameter
(number of neighbors) needs to be considered in the opti-
mization of the KNN model. The tuning parameter process
for n_neighbors of the KNN model is shown in Fig. 4c. Ac-
cording to the curve of MAE changing with n_neighbors, the
n_neighbors can be set to 6.

3.3.3 Support vector machine

SVM is a two-class classification model, which was first pro-
posed by Cortes and Vapnik in 1995 (Cortes and Vapnik,
1995). Its basic idea is to find a linear classifier with a sepa-
ration hyperplane and maximal interval in the feature space.
According to the limited sample information, the best com-
promise is sought between the complexity of the model (the
learning accuracy of a specific training sample) and the learn-

ing ability (the ability to identify any sample without error) in
order to obtain the best generalization ability (Drucker et al.,
1997). It shows many unique advantages in solving small-
sample, nonlinear and high-dimensional pattern recognition
and can be extended to other machine learning problems such
as function fitting (Cao, 2003).

For the SVM model, the penalty parameter (C) and
gamma coefficient (g) need to be adjusted to achieve the op-
timal effect of the model. The tuning parameter process for C

of the KNN model under four different g values is shown in
Fig. 4d. The g was set to 0.0001, 0.0003, 0.0005 and 0.0007,
respectively. Similarly, it is necessary to take an appropriate
C and g value to minimize the MAE. After parameter tuning,
the C and g were finally defined as 150 and 0.0005, respec-
tively.

3.3.4 Extreme gradient boosting

XGB algorithm is an improved version of the gradient boost-
ing decision tree (GBDT) algorithm. The GBDT algorithm
is an additive model that minimizes the objective function
value by gradually adding decision trees (Friedman, 2002).
However, the objective function does not have a regulariza-
tion term; it is just the sum of the loss function values, which
may easily cause overfitting. The XGB algorithm adds a reg-
ularization term to the cost function on the basis of the GBDT
algorithm and performs a second-order Taylor approxima-
tion to the objective function. Then, the exact or approximate
method is used to search for the segmentation point with the
highest score, and then perform the next segmentation and
expand the leaf nodes (Chen et al., 2015). In this way, it is
ensured that the tree structure will not be too complicated to
cause overfitting in the process of minimizing the loss func-
tion. In addition, this can speed up the calculation.

To achieve the optimal effect of the XGB model, it is nec-
essary to adjust five parameters: subsample, number of tree
(estimator num), maximum depth of the tree (max depth),
learning rate and gamma (Table 1). The tuning parameter

Atmos. Chem. Phys., 21, 17003–17016, 2021 https://doi.org/10.5194/acp-21-17003-2021



Y. Ma et al.: Estimation of the vertical distribution of PM2.5 concentration 17009

Figure 5. Mean absolute errors (MAE) between observed PM2.5
and estimated PM2.5 based on the XGB algorithms under the tuning
process of (a) estimator num, (b) max depth, (c) learning rate and
(d) gamma. Blue, orange, red and green lines indicate the subsample
under different values.

process for these parameters is shown in Fig. 5. The sub-
sample was set to 0.1, 0.2, 0.5 and 1, respectively. The results
show that subsample= 1 is the most suitable. Then according
to the change of the green line in each sub-panel, it is neces-
sary to select an appropriate value to minimize the MAE. The
estimator num, max depth, learning rate and gamma were fi-
nally defined to 400, 6, 0.24 and 0.01, respectively.

3.4 Calculation method of transport flux

TF is an important parameter to measure the horizontal trans-
mission of pollutants (Y. Liu et al., 2019; Shi et al., 2020). In
this study, the TF is determined by the WS and the PM2.5
concentrations in the area under analysis. The calculation
method for a certain height is shown in Eq. (5):

TFi =WSi ·Ci, (5)

where the WSi and Ci are the horizontal wind speed (m/s)
and PM2.5 concentrations (µg/m3) at a certain height, respec-
tively. According to the profiles of PM2.5 and WS, the TF
profile (µg/m2 s) can be obtained.

4 Results and discussion

4.1 Intercomparison of estimated results

In this section, the estimated PM2.5 values of LM, RF, KMM,
SVM and XGB models were compared and analyzed to eval-
uate the performance of these conversion models. Figure 6
shows the variation trends of EC, observed PM2.5 and the

estimated PM2.5 by five models. The results indicated that
the variation in observed PM2.5 was similar to that in the
estimated PM2.5 of five models. However, it notes that the
observed PM2.5 and estimated PM2.5 by LM models have a
large deviation in samples 1–20. The observed PM2.5 were
larger than 100 µg/m3, while the corresponding estimated
PM2.5 of LM was less than 50 µg/m3 (Fig. 6a). This is be-
cause the estimated PM2.5 of the LM model was directly cal-
culated from EC, resulting in the inaccurate inversion results
in some cases. These deviations are improved by machine
learning models, especially in RF and XGB models (Fig. 6b
and c). This is because the ML models consider the influence
of meteorological factors such as RH, T , WD and WS. It can
be understood that the ML models improve the prediction
accuracy through meteorological factor correction. Previous
studies have also pointed out that temperature and humid-
ity correction can effectively improve the inversion accuracy
of surface PM2.5 (Zhang et al., 2015; Li et al., 2016). Zhu
et al. (2021) also indicated that the performance of the RF
model, which considers the effects of RH and T better than
the LM model.

Figure 7 shows the correlation between the observed
PM2.5 concentrations and the estimated PM2.5 concentration
predicted by the five models. The asterisk indicates that the R

passed the statistical significance difference test (P < 0.05).
The R of LM, RF, KNN, SVM and XGB models were 0.82,
0.94, 0.87, 0.88 and 0.93, respectively. The MAE (RMSE)
of these five models were 11.66 (15.68), 5.35 (7.96), 7.95
(11.54), 6.96 (11.18) and 5.62 (8.27) µg/m3, respectively.
These results show that these four ML algorithms had a bet-
ter fitting effect, and the error was only half of the LM error.
It indicated that the performance of ML algorithms is obvi-
ously better than that of the LM algorithm. Among the four
ML algorithms, RF and XGB models have similar perfor-
mance, and both are better than KNN and SVM models. The
RF model has the highest R and the smallest MAE. It shows
that the RF model is the most suitable model for PM2.5 in-
version based on the EC.

4.2 Sensibility analysis

From the results in the previous section, the ML algorithms
that take meteorological variables into account have better
performance than the LM algorithm. The input variable im-
portance analysis was performed to investigate the influence
of meteorological factors, as shown in Fig. 8. For these four
models, the importance ranking of the input variables (EC,
WD, WS, T and RH) is the same. But there is a large differ-
ence in the importance value of each input variable. The im-
portance values of EC in RF, KNN, SVM and XGB are 0.51,
0.87, 0.71 and 0.66, which are much larger than other in-
put features. It indicated that the concentration of PM2.5 was
mainly affected by EC. This also proves that the surface EC
and PM2.5 have a very good linear relationship when the RH
is less than 70 % (Tao et al., 2016; Lv et al., 2017). Another
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Figure 6. Variations of the estimated PM2.5 predicted by (a) LM, (b) RF and KNN, and (c) SVM and XGB. The gray line represents the
observed PM2.5.

Figure 7. Correlation coefficients between observed PM2.5 and estimated PM2.5 based on the (a) LM, (b) RF, (c) KNN, (d) SVM and
(e) XGB models. The gray and black line is the reference and regression line, respectively. The asterisk indicates that the correlation coeffi-
cient (R) passed the statistical significance difference test (P < 0.05).
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Figure 8. Ranking histograms of the input environment variable for
(a) RF, (b) KNN, (c) SVM and (d) XGB models.

Figure 9. Difference of observed PM2.5 and estimated PM2.5 with
the change of EC for (a) LM, (b) RF, (c) KNN, (d) SVM and
(e) XGB models. The gray, red, green, blue and orange points rep-
resent the difference between LM-observed, RF-observed, KNN-
observed, SVM-observed and XGB-observed PM2.5, respectively.
The black line represents the frequency.

special point is that the importance value of RH is approxi-
mately 0.10 in RF and XGB models, while the effect of RH
can be ignored in KNN and SVM models. Combined with
the results in Fig. 7, it finds that the models which considered
the effect of aerosol moisture absorption growth have a bet-
ter performance. In addition, the effect of WS and T are also
ignored in the KNN model. This leads to the performance of
KNN model being weaker than the that of other three mod-
els. These results indicated that it is necessary to consider the

Figure 10. Hourly variations of vertical distribution of (a) EC,
(b) WS, (c) PM2.5 and (d) TF in Wuhan from January 2017 to De-
cember 2019.

effect of meteorological variables when using EC to retrieve
PM2.5 concentrations.

Figure 9 shows the difference between estimated and ob-
served PM2.5 that changed with EC. The gray, red, green,
blue and orange points represent the difference between LM-
observed, RF-observed, KNN-observed, SVM-observed and
XGB-observed PM2.5, respectively. The black line indicates
the frequency of difference. For the LM model, most of the
estimated PM2.5 is overestimated when the EC is larger than
0.6. This may be due to the fact that the LM model does not
take into account the influence of humidity. The heavy pollu-
tion weather is usually accompanied by higher humidity, and
the hygroscopic growth effect of aerosols cannot be ignored
(Zhang et al., 2015; Liu et al., 2018b). By contrast, the dif-
ference between estimated and observed PM2.5 is smaller in
the ML models. In these four models, the frequency with a
difference of less than 5 µg/m3 can reach 0.68, 0.47, 0.59 and
0.65, respectively. The frequency of difference in four ML
models is similar. Moreover, the deviation of the ML models
is relatively stable and does not change with the increase in
EC. It also notes that although five meteorological variables
are input in the ML model, not all models take into account
the influence of each parameter, which leads to differences
in the performance of the model. Overall, the performance of
RF and XGB models are better than SVM and KNN models.
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Figure 11. Seasonal and annual profiles of (a–d) PM2.5 and (e–h) TF from January 2017 to December 2019. Corresponding color-shaded
areas represent standard deviation.

4.3 Vertical evolution of PM2.5 and TF

In this section, the diurnal and seasonal variations of TF
and PM2.5 profiles were analyzed during different periods in
Wuhan. Due to the RF model having the best performance,
the PM2.5 profiles were retrieved based on the RF model.

Figure 10 shows the diurnal variation of the EC, WS,
PM2.5 and TF profiles. The daily maximum value of the
EC appeared at approximately 08:00–13:00 local time (LT)
in 0.4–0.6 km. The EC below 1 km has obvious diurnal
characteristics, which is larger during the daytime (08:00–
20:00 LT) and smaller at nighttime (Fig. 10a). By contrast,
the WS below 1 km is larger during the nighttime and
smaller during the daytime. The daily minimum value of
WS occurred at approximately 13:00–17:00 LT in 0.2–1 km
(Fig. 10b). For the diurnal variation of PM2.5, the high PM2.5
concentrations at nighttime are mainly concentrated below
0.5 km. After sunrise (08:00 LT), the PM2.5 concentrations
increased, and the pollution layer is higher in the vertical di-
rection, distributed between 0.2–0.8 km. The diurnal varia-

tions of TF profiles were similar to those of PM2.5 profiles
(Fig. 10d). Near the ground, the peak TF was 0.26 mg/m2 s
and then remained at approximately 0.15 mg/m2 s. There was
an obvious conveyor belt at approximately 12:00–18:00 LT
in 0.5–0.8 km. These results indicated that the transport of
pollutants over Wuhan mainly occurred between 12:00 and
18:00 LT, which was similar to the results of previous studies
(Ge et al., 2018; B. Liu et al., 2019).

Figure 11 shows the seasonal variation of the PM2.5 and
TF profiles. The concentration of PM2.5 at 0.2 km has the
highest value in the winter (93.7 µg/m3), followed by the au-
tumn and summer (80.3 and 75.8 µg/m3, respectively), and
lowest in the spring (53.5 µg/m3). This finding is similar
to the surface observation results (Wang et al., 2016). The
PM2.5 concentration decreases gradually with the height in-
creases. The PM2.5 concentration decreases rapidly in the
height range of 0.2 to 1 km, but the rate of reduction has
obvious seasonal differences. The decline rate of the PM2.5
in the winter and autumn is higher than that in the spring
and summer. An interesting phenomenon is that the PM2.5
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mass concentrations during summer are large in the height
range of 0.6 to 1.5 km. This may be caused by the transmis-
sion of dust in summer (Liu et al., 2018b, 2020). The ver-
tical profiles of the TF are similar to those of PM2.5 con-
centrations (Fig. 11e–h). The seasonal mean TF at 0.2 km
is the highest in winter (0.26 mg/m2 s), followed by the au-
tumn and summer (0.2 and 0.19 mg/m2 s, respectively), and
lowest in spring (0.14 mg/m2 s). With the height increasing,
the TF profiles have obvious seasonal differences. The vari-
ations in the spring and autumn are similar; the TF gradually
decreases with the height increases. In the summer (Fig. 11f),
the TF is approximately 0.19 mg/m2 s in the height range of
0.2 to 0.5 km and then declines above 0.5 km. The decrease
rate above 0.5 km is slower than other seasons. In the winter
(Fig. 11h), the TF is stable (approximately 0.26 mg/m2 s) in
the height range of 0.2 to 0.5 km and declines rapidly above
0.5 km. These results indicate that the transport of pollutants
mainly occurs in 0.2–1 km. In general, in the autumn and
winter, the TF and PM2.5 concentrations are concentrated
near the ground, indicating that local emissions are the main
source of PM2.5 (Zhang et al., 2021). In the summer, the TF
is relatively high in 0.5–1.5 km, indicating that the concen-
tration of PM2.5 over Wuhan is affected by high-altitude dust
transport (Tao et al., 2013; Liu et al., 2020). In the spring, the
TF and PM2.5 concentrations are at a low level, indicating
that the air quality in Wuhan area is better in spring.

5 Summary and conclusions

This study presents a comprehensive analysis to explore the
conversion of aerosol extinction coefficient to PM2.5 con-
centrations based on the surface observation data from Jan-
uary 2014 to December 2017. The correlation and difference
between observed and estimated PM2.5 have been analyzed
to evaluate the performance of LM, RF, KNN, SVM and
XGB models. Furthermore, diurnal and seasonal variations
of TF and PM2.5 profiles have been investigated.

After using traditional LM and other four ML algorithms
to predict the PM2.5 mass concentrations profile, the results
show that the performance of ML algorithms is better than
the traditional LM algorithm. This because the ML models
consider the effect of meteorological variables and can con-
duct the temperature and humidity correction to improve the
inversion accuracy. Moreover, for the four ML algorithms,
the RF model is the most suitable model for PM2.5 estima-
tions, followed by the XGB model; last are the SVM and
KNN models. The difference in model performance is due
to the difference in the decision tree structure of the model.
Each ML algorithm has its own decision-making method to
consider the weight of input parameters. Combined with the
importance value of input variables and the deviation of re-
sults, the results indicated that the higher the weight of the
meteorological parameters in the model, the smaller the de-
viation of the results. Finally, the diurnal and seasonal vari-

ations of TF and PM2.5 profiles were analyzed. For diur-
nal variations, the high PM2.5 concentrations at nighttime
are mainly concentrated below 0.5 km. During the daytime,
the pollution layers are usually suspended in the higher alti-
tude and are distributed between 0.2–0.8 km. The high TF
appeared at approximately 12:00–18:00 LT in 0.5–0.8 km.
These results indicated that the transport of pollutants over
Wuhan mainly occurred between 12:00 and 18:00 LT. For
seasonal variations, the TF and PM2.5 mass concentrations
are concentrated near the ground in autumn and winter, in-
dicating that local emissions are the main source of PM2.5
during these periods. In the summer, TF has a relatively high
value in 0.5–1.5 km, which indicates the concentration of
PM2.5 over Wuhan is affected by high-altitude dust transport.

Our work comprehensively compares the performance of
LM, RF, KNN, SVM and XGB models. From the perspec-
tive of correlation and deviation between observed and esti-
mated PM2.5, we conclude that the performances of the RF
and XGB models are better than others, followed by the SVM
and KNN models, and finally the LM model. This informa-
tion can provide us with a reference to apply lidar data in air
quality research.
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