Articles | Volume 20, issue 9
https://doi.org/10.5194/acp-20-5487-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-5487-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event
Elena Ruiz-Donoso
CORRESPONDING AUTHOR
Leipzig Institute for Meteorology (LIM), University of Leipzig, Leipzig, Germany
André Ehrlich
Leipzig Institute for Meteorology (LIM), University of Leipzig, Leipzig, Germany
Michael Schäfer
Leipzig Institute for Meteorology (LIM), University of Leipzig, Leipzig, Germany
Evelyn Jäkel
Leipzig Institute for Meteorology (LIM), University of Leipzig, Leipzig, Germany
Vera Schemann
Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Susanne Crewell
Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Mario Mech
Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Birte Solveig Kulla
Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Leif-Leonard Kliesch
Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Roland Neuber
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Potsdam, Germany
Manfred Wendisch
Leipzig Institute for Meteorology (LIM), University of Leipzig, Leipzig, Germany
Related authors
Marcus Klingebiel, André Ehrlich, Elena Ruiz-Donoso, Nils Risse, Imke Schirmacher, Evelyn Jäkel, Michael Schäfer, Kevin Wolf, Mario Mech, Manuel Moser, Christiane Voigt, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-848, https://doi.org/10.5194/acp-2022-848, 2023
Preprint under review for ACP
Short summary
Short summary
In this study we explain how we use aircraft measurements from two Arctic research campaigns to identify cloud properties (like droplet size) over sea-ice and ice-free ocean. To make sure that our measurements make sense, we compare them with other observations. Our results show e.g. larger cloud droplets in early summer than in spring. Moreover, the cloud droplets are also larger over ice-free ocean than compared to sea-ice. In the future, our data can be used to improve climate models.
André Ehrlich, Manfred Wendisch, Christof Lüpkes, Matthias Buschmann, Heiko Bozem, Dmitri Chechin, Hans-Christian Clemen, Régis Dupuy, Olliver Eppers, Jörg Hartmann, Andreas Herber, Evelyn Jäkel, Emma Järvinen, Olivier Jourdan, Udo Kästner, Leif-Leonard Kliesch, Franziska Köllner, Mario Mech, Stephan Mertes, Roland Neuber, Elena Ruiz-Donoso, Martin Schnaiter, Johannes Schneider, Johannes Stapf, and Marco Zanatta
Earth Syst. Sci. Data, 11, 1853–1881, https://doi.org/10.5194/essd-11-1853-2019, https://doi.org/10.5194/essd-11-1853-2019, 2019
Short summary
Short summary
During the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. The data set combines remote sensing and in situ measurement of cloud, aerosol, and trace gas properties, as well as turbulent and radiative fluxes, which will be used to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification.
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-157, https://doi.org/10.5194/essd-2023-157, 2023
Preprint under review for ESSD
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Sophie Rosenburg, Charlotte Lange, Evelyn Jäkel, Michael Schäfer, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-64, https://doi.org/10.5194/amt-2023-64, 2023
Preprint under review for AMT
Short summary
Short summary
Snow layer melting and melt pond formation on Arctic sea ice are important seasonal processes affecting the surface reflection and energy budget. Sea ice reflectance was surveyed by airborne imaging spectrometers in May/June 2017. Adapted retrieval approaches were applied to determine snow layer liquid water fraction, snow grain effective radius, and melt pond depth. The retrievals show potentials and limitations of spectral airborne imaging to map melting snow layer and melt pond properties.
Jan Chylik, Dmitry Chechin, Regis Dupuy, Birte S. Kulla, Christof Lüpkes, Stephan Mertes, Mario Mech, and Roel A. J. Neggers
Atmos. Chem. Phys., 23, 4903–4929, https://doi.org/10.5194/acp-23-4903-2023, https://doi.org/10.5194/acp-23-4903-2023, 2023
Short summary
Short summary
Arctic low-level clouds play an important role in the ongoing warming of the Arctic. Unfortunately, these clouds are not properly represented in weather forecast and climate models. This study tries to cover this gap by focusing on clouds over open water during the spring, observed by research aircraft near Svalbard. The study combines the high-resolution model with sets of observational data. The results show the importance of processes that involve both ice and the liquid water in the clouds.
Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, André Ehrlich, and Manfred Wendisch
Atmos. Chem. Phys., 23, 4685–4707, https://doi.org/10.5194/acp-23-4685-2023, https://doi.org/10.5194/acp-23-4685-2023, 2023
Short summary
Short summary
Clouds represent a very important component of the Arctic climate system, as they strongly reduce the amount of heat lost to space from the sea ice surface. Properties of clouds, as well as their persistence, strongly depend on the complex interaction of such small-scale properties as phase transitions, radiative transfer and turbulence. In this study we use airborne observations to learn more about the effect of clouds and radiative cooling on turbulence in comparison with other factors.
Sabrina Schnitt, Andreas Foth, Heike Kalesse-Los, Mario Mech, Claudia Acquistapace, Friedhelm Jansen, Ulrich Löhnert, Bernhard Pospichal, Johannes Röttenbacher, Susanne Crewell, and Bjorn Stevens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-140, https://doi.org/10.5194/essd-2023-140, 2023
Preprint under review for ESSD
Short summary
Short summary
This publication describes the microwave radiometric measurements performed during the EUREC4A campaign at Barbados Cloud Observatory (BCO) and aboard the RV Meteor and RV Maria S Merian. We present retrieved Integrated Water Vapor (IWV), Liquid Water Path (LWP) and temperature and humidity profiles as a unified, quality-controlled, multi-site data set on a three second temporal resolution for a core period between January 19, 2020 and February 14, 2020.
Elisa F. Akansu, Sandro Dahlke, Holger Siebert, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/egusphere-2023-629, https://doi.org/10.5194/egusphere-2023-629, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The height of the mixing layer is an important factor for the surface-level distribution of energy or other substances. The experimental determination of this height – especially under the influence of clouds – is associated with large uncertainties, particularly under stable conditions that we often find during the polar night. We present a reference method using turbulence measurements on a tethered balloon, which allows us to evaluate approaches based on radiosondes or surface observations.
Andreas Walbröl, Janosch Michaelis, Sebastian Becker, Henning Dorff, Irina Gorodetskaya, Benjamin Kirbus, Melanie Lauer, Nina Maherndl, Marion Maturilli, Johanna Mayer, Hanno Müller, Roel A. J. Neggers, Fiona M. Paulus, Johannes Röttenbacher, Janna E. Rückert, Imke Schirmacher, Nils Slättberg, André Ehrlich, Manfred Wendisch, and Susanne Crewell
EGUsphere, https://doi.org/10.5194/egusphere-2023-668, https://doi.org/10.5194/egusphere-2023-668, 2023
Short summary
Short summary
We present the weather and sea ice conditions and climatological context of the airborne HALO–(AC)3 campaign, which took place over the North Atlantic sector of the Arctic from 07 March to 12 April 2022. From the ERA5 reanalysis, we identified record breaking warm air intrusions and a large variety of marine cold air outbreaks. Sea ice concentration was mostly within the interquartile range of the climatology. Our study serves as basis for future analyses of the data collected during HALO–(AC)3.
Lara Foth, Wolfgang Dorn, Annette Rinke, Evelyn Jäkel, and Hannah Niehaus
EGUsphere, https://doi.org/10.5194/egusphere-2023-634, https://doi.org/10.5194/egusphere-2023-634, 2023
Short summary
Short summary
It is demonstrated that the explicit consideration of the cloud dependence of the snow surface albedo in a climate model results in a more realistic simulation of the surface albedo during the snow melt period in late May and June. Although this improvement appears to be relatively insubstantial, it has significant impact on the simulated sea-ice volume and extent in the model due to an amplification of the snow/sea-ice albedo feedback, one of the main contributors to Arctic amplification.
Imke Schirmacher, Pavlos Kollias, Katia Lamer, Mario Mech, Lukas Pfitzenmaier, Manfred Wendisch, and Susanne Crewell
EGUsphere, https://doi.org/10.5194/egusphere-2023-636, https://doi.org/10.5194/egusphere-2023-636, 2023
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
CloudSat’s relatively coarse spatial resolution, low sensitivity, and blind zone limit its assessment of Arctic low-level clouds, which affect the surface energy balance. We compare cloud fractions from CloudSat and fine-resolved airborne radar observations, to determine CloudSat’s limitations. Cloudsat overestimates cloud fractions above its blind zone, especially during cold air outbreaks over open water, and misses a cloud fraction of 32 % and half of the precipitation inside its blind zone.
André Ehrlich, Martin Zöger, Andreas Giez, Vladyslav Nenakhov, Christian Mallaun, Rolf Maser, Timo Röschenthaler, Anna E. Luebke, Kevin Wolf, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 16, 1563–1581, https://doi.org/10.5194/amt-16-1563-2023, https://doi.org/10.5194/amt-16-1563-2023, 2023
Short summary
Short summary
Measurements of the broadband radiative energy budget from aircraft are needed to study the effect of clouds, aerosol particles, and surface conditions on the Earth's energy budget. However, the moving aircraft introduces challenges to the instrument performance and post-processing of the data. This study introduces a new radiometer package, outlines a greatly simplifying method to correct thermal offsets, and provides exemplary measurements of solar and thermal–infrared irradiance.
Melanie Lauer, Annette Rinke, Irina Gorodetskaya, Michael Sprenger, Mario Mech, and Susanne Crewell
EGUsphere, https://doi.org/10.5194/egusphere-2023-261, https://doi.org/10.5194/egusphere-2023-261, 2023
Short summary
Short summary
We present a new method to analyse the influence of Atmospheric Rivers (ARs), cyclones, and fronts on the precipitation in the Arctic, based on two campaigns ACLOUD (early summer 2017) and AFLUX (early spring 2019). There are first indications for seasonal differences: In early summer, the precipitation is mostly related to ARs and fronts, especially when they are co-located, whereas in early spring, cyclones are isolated from ARs and fronts. contributed most to the precipitation.
Manuel Moser, Christiane Voigt, Tina Jurkat-Witschas, Valerian Hahn, Guillaume Mioche, Olivier Jourdan, Régis Dupuy, Christophe Gourbeyre, Alfons Schwarzenboeck, Johannes Lucke, Yvonne Boose, Mario Mech, Stephan Borrmann, André Ehrlich, Andreas Herber, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-44, https://doi.org/10.5194/acp-2023-44, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
This study provides comprehensive microphysical and thermodynamic phase analyses of low-level cloud properties in the northern Fram Strait, above the sea ice and the open ocean, during spring and summer. Using data collected by airborne in-situ cloud instruments during 20 research flights in the vicinity of Svalbard, we show that Arctic low-level cloud properties vary significantly with the seasonal meteorological situations and surface conditions.
Sebastian Becker, André Ehrlich, Michael Schäfer, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-849, https://doi.org/10.5194/acp-2022-849, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
This study analyzes the variability of the warming/cooling effect of clouds on the Arctic surface. Therefore, aircraft radiation measurements were performed over sea ice and open ocean during three seasonally different campaigns. It is found that clouds cool the open ocean surface, strongest in summer. Over sea ice, clouds warm the surface in spring, but have a neutral effect in summer. Due to the variable sea ice extent, clouds warm the surface during spring, but cool it during late summer.
Yunfan Liu, Hang Su, Siwen Wang, Chao Wei, Wei Tao, Mira L. Pöhlker, Christopher Pöhlker, Bruna A. Holanda, Ovid O. Krüger, Thorsten Hoffmann, Manfred Wendisch, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Yafang Cheng
Atmos. Chem. Phys., 23, 251–272, https://doi.org/10.5194/acp-23-251-2023, https://doi.org/10.5194/acp-23-251-2023, 2023
Short summary
Short summary
The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the Amazon remain unclear. With model developments of new secondary organic aerosol schemes and constrained by observation, we show that strong aerosol nucleation and condensation in the UT is triggered by biogenic organics, and organic condensation is key for UT CCN production. This UT CCN-producing mechanism may prevail over broader vegetation canopies and deserves emphasis in aerosol–climate feedback.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-836, https://doi.org/10.5194/acp-2022-836, 2023
Preprint under review for ACP
Short summary
Short summary
The lapse-rate feedback (LRF) is a major driver of the "Arctic amplification" of climate change. It arises since the warming is more pronounced at the surface than aloft. There are several processes mediating the LRF in the Arctic, for instance the omnipresent temperature inversion. Here, we compare multi-model climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF.
Marcus Klingebiel, André Ehrlich, Elena Ruiz-Donoso, Nils Risse, Imke Schirmacher, Evelyn Jäkel, Michael Schäfer, Kevin Wolf, Mario Mech, Manuel Moser, Christiane Voigt, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-848, https://doi.org/10.5194/acp-2022-848, 2023
Preprint under review for ACP
Short summary
Short summary
In this study we explain how we use aircraft measurements from two Arctic research campaigns to identify cloud properties (like droplet size) over sea-ice and ice-free ocean. To make sure that our measurements make sense, we compare them with other observations. Our results show e.g. larger cloud droplets in early summer than in spring. Moreover, the cloud droplets are also larger over ice-free ocean than compared to sea-ice. In the future, our data can be used to improve climate models.
Manfred Wendisch, Johannes Stapf, Sebastian Becker, André Ehrlich, Evelyn Jäkel, Marcus Klingebiel, Christof Lüpkes, Michael Schäfer, and Matthew D. Shupe
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-614, https://doi.org/10.5194/acp-2022-614, 2022
Preprint under review for ACP
Short summary
Short summary
Atmospheric radiation measurements have been conducted during two field campaigns using research aircraft. The data are analysed to see if the near-surface air in the Arctic is warmed or cooled if warm/humid air masses from the South enter the Arctic, or cold/dry air moves from the North from the Arctic to mid-latitude areas. It is important to studie these processes and to check if climate models represent them well. Otherwise it is not possible to reliably forecast the furure Arctic climate.
Annakaisa von Lerber, Mario Mech, Annette Rinke, Damao Zhang, Melanie Lauer, Ana Radovan, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 7287–7317, https://doi.org/10.5194/acp-22-7287-2022, https://doi.org/10.5194/acp-22-7287-2022, 2022
Short summary
Short summary
Snowfall is an important climate indicator. However, microphysical snowfall processes are challenging for atmospheric models. In this study, the performance of a regional climate model is evaluated in modeling the spatial and temporal distribution of Arctic snowfall when compared to CloudSat satellite observations. Excellent agreement in averaged annual snowfall rates is found, and the shown methodology offers a promising diagnostic tool to investigate the shown differences further.
Sebastian Becker, André Ehrlich, Evelyn Jäkel, Tim Carlsen, Michael Schäfer, and Manfred Wendisch
Atmos. Meas. Tech., 15, 2939–2953, https://doi.org/10.5194/amt-15-2939-2022, https://doi.org/10.5194/amt-15-2939-2022, 2022
Short summary
Short summary
Airborne radiation measurements are used to characterize the solar directional reflection of a mixture of Arctic sea ice and open-ocean surfaces in the transition zone between both surface types. The mixture reveals reflection properties of both surface types. It is shown that the directional reflection of the mixture can be reconstructed from the directional reflection of the individual surfaces, accounting for the special conditions present in the transition zone.
Michael Schäfer, Kevin Wolf, André Ehrlich, Christoph Hallbauer, Evelyn Jäkel, Friedhelm Jansen, Anna Elizabeth Luebke, Joshua Müller, Jakob Thoböll, Timo Röschenthaler, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 15, 1491–1509, https://doi.org/10.5194/amt-15-1491-2022, https://doi.org/10.5194/amt-15-1491-2022, 2022
Short summary
Short summary
The new airborne thermal infrared imager VELOX is introduced. It measures two-dimensional fields of spectral thermal infrared radiance or brightness temperature within the large atmospheric window. The technical specifications as well as necessary calibration and correction procedures are presented. Example measurements from the first field deployment are analysed with respect to cloud coverage and cloud top altitude.
Anna E. Luebke, André Ehrlich, Michael Schäfer, Kevin Wolf, and Manfred Wendisch
Atmos. Chem. Phys., 22, 2727–2744, https://doi.org/10.5194/acp-22-2727-2022, https://doi.org/10.5194/acp-22-2727-2022, 2022
Short summary
Short summary
A combination of aircraft and satellite observations is used to show how the characteristics of tropical shallow clouds interact with incoming and outgoing energy. A complete depiction of these clouds is challenging to obtain, but such data are useful for understanding how models can correctly represent them. The amount of cloud is found to be the most important factor, while other cloud characteristics become increasingly impactful when more cloud is present.
Carolina Viceto, Irina V. Gorodetskaya, Annette Rinke, Marion Maturilli, Alfredo Rocha, and Susanne Crewell
Atmos. Chem. Phys., 22, 441–463, https://doi.org/10.5194/acp-22-441-2022, https://doi.org/10.5194/acp-22-441-2022, 2022
Short summary
Short summary
We focus on anomalous moisture transport events known as atmospheric rivers (ARs). During ACLOUD and PASCAL, three AR events were identified: 30 May, 6 June, and 9 June 2017. We explore their spatio-temporal evolution and precipitation patterns using measurements, reanalyses, and a model. We show the importance of the following: Atlantic and Siberian pathways during spring–summer in the Arctic, AR-associated heat/moisture increase, precipitation phase transition, and high-resolution datasets.
Claudia Acquistapace, Richard Coulter, Susanne Crewell, Albert Garcia-Benadi, Rosa Gierens, Giacomo Labbri, Alexander Myagkov, Nils Risse, and Jan H. Schween
Earth Syst. Sci. Data, 14, 33–55, https://doi.org/10.5194/essd-14-33-2022, https://doi.org/10.5194/essd-14-33-2022, 2022
Short summary
Short summary
This publication describes the unprecedented high-resolution cloud and precipitation dataset collected by two radars deployed on the Maria S. Merian research vessel. The ship operated in the west Atlantic Ocean during the measurement campaign called EUREC4A, between 19 January and 19 February 2020. The data collected are crucial to investigate clouds and precipitation and understand how they form and change over the ocean, where it is so difficult to measure them.
Hélène Bresson, Annette Rinke, Mario Mech, Daniel Reinert, Vera Schemann, Kerstin Ebell, Marion Maturilli, Carolina Viceto, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022, https://doi.org/10.5194/acp-22-173-2022, 2022
Short summary
Short summary
Arctic warming is pronounced, and one factor in this is the poleward atmospheric transport of heat and moisture. This study assesses the 4D structure of an Arctic moisture intrusion event which occurred in June 2017. For the first time, high-resolution pan-Arctic ICON simulations are performed and compared with global models, reanalysis, and observations. Results show the added value of high resolution in the event representation and the impact of the intrusion on the surface energy fluxes.
Ramon Campos Braga, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, Bruna A. Holanda, Tina Jurkat-Witschas, Ovid O. Krüger, Oliver Lauer, Luiz A. T. Machado, Christopher Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Manfred Wendisch, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 17513–17528, https://doi.org/10.5194/acp-21-17513-2021, https://doi.org/10.5194/acp-21-17513-2021, 2021
Short summary
Short summary
Interactions of aerosol particles with clouds represent a large uncertainty in estimates of climate change. Properties of aerosol particles control their ability to act as cloud condensation nuclei. Using aerosol measurements in the Amazon, we performed model studies to compare predicted and measured cloud droplet number concentrations at cloud bases. Our results confirm previous estimates of particle hygroscopicity in this region.
Heike Konow, Florian Ewald, Geet George, Marek Jacob, Marcus Klingebiel, Tobias Kölling, Anna E. Luebke, Theresa Mieslinger, Veronika Pörtge, Jule Radtke, Michael Schäfer, Hauke Schulz, Raphaela Vogel, Martin Wirth, Sandrine Bony, Susanne Crewell, André Ehrlich, Linda Forster, Andreas Giez, Felix Gödde, Silke Groß, Manuel Gutleben, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Theresa Lang, Bernhard Mayer, Mario Mech, Marc Prange, Sabrina Schnitt, Jessica Vial, Andreas Walbröl, Manfred Wendisch, Kevin Wolf, Tobias Zinner, Martin Zöger, Felix Ament, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 5545–5563, https://doi.org/10.5194/essd-13-5545-2021, https://doi.org/10.5194/essd-13-5545-2021, 2021
Short summary
Short summary
The German research aircraft HALO took part in the research campaign EUREC4A in January and February 2020. The focus area was the tropical Atlantic east of the island of Barbados. We describe the characteristics of the 15 research flights, provide auxiliary information, derive combined cloud mask products from all instruments that observe clouds on board the aircraft, and provide code examples that help new users of the data to get started.
Ramon Campos Braga, Daniel Rosenfeld, Ovid O. Krüger, Barbara Ervens, Bruna A. Holanda, Manfred Wendisch, Trismono Krisna, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 14079–14088, https://doi.org/10.5194/acp-21-14079-2021, https://doi.org/10.5194/acp-21-14079-2021, 2021
Short summary
Short summary
Quantifying the precipitation within clouds is crucial for our understanding of the Earth's hydrological cycle. Using in situ measurements of cloud and rain properties over the Amazon Basin and Atlantic Ocean, we show here a linear relationship between the effective radius (re) and precipitation water content near the tops of convective clouds for different pollution states and temperature levels. Our results emphasize the role of re to determine both initiation and amount of precipitation.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Linlu Mei, Vladimir Rozanov, Evelyn Jäkel, Xiao Cheng, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021, https://doi.org/10.5194/tc-15-2781-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 2 of two companion papers and shows the results and validation. The paper performs the new retrieval algorithm on the Sea and Land
Surface Temperature Radiometer (SLSTR) instrument and compares the retrieved snow properties with ground-based measurements, aircraft measurements and other satellite products.
Ulrike Egerer, André Ehrlich, Matthias Gottschalk, Hannes Griesche, Roel A. J. Neggers, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 21, 6347–6364, https://doi.org/10.5194/acp-21-6347-2021, https://doi.org/10.5194/acp-21-6347-2021, 2021
Short summary
Short summary
This paper describes a case study of a three-day period with a persistent humidity inversion above a mixed-phase cloud layer in the Arctic. It is based on measurements with a tethered balloon, complemented with results from a dedicated high-resolution large-eddy simulation. Both methods show that the humidity layer acts to provide moisture to the cloud layer through downward turbulent transport. This supply of additional moisture can contribute to the persistence of Arctic clouds.
Johannes Stapf, André Ehrlich, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-279, https://doi.org/10.5194/acp-2021-279, 2021
Preprint withdrawn
Short summary
Short summary
Airborne observations of the surface radiative energy budget in the marginal sea ice zone (the region between open ocean and closed sea ice) are presented. Atmospheric thermodynamic profiles and surface properties change on small spatial scales in this area and influence the impact of clouds on the radiative energy budget. The radiation budget over sea ice is compared to available studies in the Arctic and the influence of cold air outbreaks and warm air intrusions is illustrated.
Evelyn Jäkel, Tim Carlsen, André Ehrlich, Manfred Wendisch, Michael Schäfer, Sophie Rosenburg, Konstantina Nakoudi, Marco Zanatta, Gerit Birnbaum, Veit Helm, Andreas Herber, Larysa Istomina, Linlu Mei, and Anika Rohde
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-14, https://doi.org/10.5194/tc-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Different approaches to retrieve the optical-equivalent snow grain size using satellite, airborne, and ground-based observations were evaluated and compared to modeled data. The study is focused on low Sun and partly rough surface conditions encountered North of Greenland in March/April 2018. We proposed an adjusted airborne retrieval method to reduce the retrieval uncertainty.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Marek Jacob, Pavlos Kollias, Felix Ament, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 5757–5777, https://doi.org/10.5194/gmd-13-5757-2020, https://doi.org/10.5194/gmd-13-5757-2020, 2020
Short summary
Short summary
We compare clouds in different cloud-resolving atmosphere simulations with airborne remote sensing observations. The focus is on warm shallow clouds in the Atlantic trade wind region. Those clouds are climatologically important but challenging for climate models. We use forward operators to apply instrument-specific thresholds for cloud detection to model outputs. In this comparison, the higher-resolution model better reproduces the layered cloud structure.
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Veit Helm, Evelyn Jäkel, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 14, 3959–3978, https://doi.org/10.5194/tc-14-3959-2020, https://doi.org/10.5194/tc-14-3959-2020, 2020
Short summary
Short summary
The angular reflection of solar radiation by snow surfaces is particularly anisotropic and highly variable. We measured the angular reflection from an aircraft using a digital camera in Antarctica in 2013/14 and studied its variability: the anisotropy increases with a lower Sun but decreases for rougher surfaces and larger snow grains. The applied methodology allows for a direct comparison with satellite observations, which generally underestimated the anisotropy measured within this study.
Jan Kretzschmar, Johannes Stapf, Daniel Klocke, Manfred Wendisch, and Johannes Quaas
Atmos. Chem. Phys., 20, 13145–13165, https://doi.org/10.5194/acp-20-13145-2020, https://doi.org/10.5194/acp-20-13145-2020, 2020
Short summary
Short summary
This study compares simulations with the ICON model at the kilometer scale to airborne radiation and cloud microphysics observations that have been derived during the ACLOUD aircraft campaign around Svalbard, Norway, in May/June 2017. We find an overestimated surface warming effect of clouds compared to the observations in our setup. This bias was reduced by considering subgrid-scale vertical motion in the activation of cloud condensation nuclei in the two-moment microphysical scheme used.
Li Li, Zhengqiang Li, Wenyuan Chang, Yang Ou, Philippe Goloub, Chengzhe Li, Kaitao Li, Qiaoyun Hu, Jianping Wang, and Manfred Wendisch
Atmos. Chem. Phys., 20, 10845–10864, https://doi.org/10.5194/acp-20-10845-2020, https://doi.org/10.5194/acp-20-10845-2020, 2020
Short summary
Short summary
Dust Aerosol Observation-Kashi (DAO-K) campaign was conducted near the Taklimakan Desert in April 2019 to obtain comprehensive aerosol, atmosphere, and surface parameters. Estimations of aerosol solar radiative forcing by a radiative transfer (RT) model were improved based on the measured aerosol parameters, additionally considering atmospheric profiles and diurnal variations of surface albedo. RT simulations agree well with simultaneous irradiance observations, even in dust-polluted conditions.
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020, https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Short summary
The Passive and Active Microwave TRAnsfer tool (PAMTRA) is a public domain software package written in Python and Fortran for the simulation of microwave remote sensing observations. PAMTRA models the interaction of radiation with gases, clouds, precipitation, and the surface using either in situ observations or model output as input parameters. The wide range of applications is demonstrated for passive (radiometer) and active (radar) instruments on ground, airborne, and satellite platforms.
Johannes Stapf, André Ehrlich, Evelyn Jäkel, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 20, 9895–9914, https://doi.org/10.5194/acp-20-9895-2020, https://doi.org/10.5194/acp-20-9895-2020, 2020
Tobias Donth, Evelyn Jäkel, André Ehrlich, Bernd Heinold, Jacob Schacht, Andreas Herber, Marco Zanatta, and Manfred Wendisch
Atmos. Chem. Phys., 20, 8139–8156, https://doi.org/10.5194/acp-20-8139-2020, https://doi.org/10.5194/acp-20-8139-2020, 2020
Short summary
Short summary
Solar radiative effects of Arctic black carbon (BC) particles (suspended in the atmosphere and in the surface snowpack) were quantified under cloudless and cloudy conditions. An atmospheric and a snow radiative transfer model were coupled to account for radiative interactions between both compartments. It was found that (i) the warming effect of BC in the snowpack overcompensates for the atmospheric BC cooling effect, and (ii) clouds tend to reduce the atmospheric BC cooling and snow BC warming.
Montserrat Costa-Surós, Odran Sourdeval, Claudia Acquistapace, Holger Baars, Cintia Carbajal Henken, Christa Genz, Jonas Hesemann, Cristofer Jimenez, Marcel König, Jan Kretzschmar, Nils Madenach, Catrin I. Meyer, Roland Schrödner, Patric Seifert, Fabian Senf, Matthias Brueck, Guido Cioni, Jan Frederik Engels, Kerstin Fieg, Ksenia Gorges, Rieke Heinze, Pavan Kumar Siligam, Ulrike Burkhardt, Susanne Crewell, Corinna Hoose, Axel Seifert, Ina Tegen, and Johannes Quaas
Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020, https://doi.org/10.5194/acp-20-5657-2020, 2020
Short summary
Short summary
The impact of anthropogenic aerosols on clouds is a key uncertainty in climate change. This study analyses large-domain simulations with a new high-resolution model to investigate the differences in clouds between 1985 and 2013 comparing multiple observational datasets. The differences in aerosol and in cloud droplet concentrations are clearly detectable. For other quantities, the detection and attribution proved difficult, despite a substantial impact on the Earth's energy budget.
Bruna A. Holanda, Mira L. Pöhlker, David Walter, Jorge Saturno, Matthias Sörgel, Jeannine Ditas, Florian Ditas, Christiane Schulz, Marco Aurélio Franco, Qiaoqiao Wang, Tobias Donth, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Joel Brito, Yafang Cheng, Maximilian Dollner, Johannes W. Kaiser, Thomas Klimach, Christoph Knote, Ovid O. Krüger, Daniel Fütterer, Jošt V. Lavrič, Nan Ma, Luiz A. T. Machado, Jing Ming, Fernando G. Morais, Hauke Paulsen, Daniel Sauer, Hans Schlager, Johannes Schneider, Hang Su, Bernadett Weinzierl, Adrian Walser, Manfred Wendisch, Helmut Ziereis, Martin Zöger, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 20, 4757–4785, https://doi.org/10.5194/acp-20-4757-2020, https://doi.org/10.5194/acp-20-4757-2020, 2020
Short summary
Short summary
Biomass burning smoke from African savanna and grassland is transported across the South Atlantic Ocean in defined layers within the free troposphere. The combination of in situ aircraft and ground-based measurements aided by satellite observations showed that these layers are transported into the Amazon Basin during the early dry season. The influx of aged smoke, enriched in black carbon and cloud condensation nuclei, has important implications for the Amazonian aerosol and cloud cycling.
Maria P. Cadeddu, Virendra P. Ghate, and Mario Mech
Atmos. Meas. Tech., 13, 1485–1499, https://doi.org/10.5194/amt-13-1485-2020, https://doi.org/10.5194/amt-13-1485-2020, 2020
Short summary
Short summary
A combination of ground-based active and passive observations is used to partition cloud and precipitation liquid water path in precipitating stratocumulous clouds. Results show that neglecting scattering effects from drizzle drops leads to 8–15 % overestimation of the liquid amount in the cloud. In closed-cell systems only ~20 % of the available drizzle in the cloud falls below the cloud base, compared to ~40 % in open-cell systems.
Tobias Marke, Ulrich Löhnert, Vera Schemann, Jan H. Schween, and Susanne Crewell
Atmos. Chem. Phys., 20, 1723–1736, https://doi.org/10.5194/acp-20-1723-2020, https://doi.org/10.5194/acp-20-1723-2020, 2020
Short summary
Short summary
In this study, land surface and atmosphere interactions are addressed using ground-based remote sensing, satellite products, and high-resolution large-eddy simulations. The focus is on water vapor transport from the surface into the atmosphere. Patterns found in long-term observations can be linked to properties of the surrounding land surface. The simulation results suggest that a different distribution of land use types has implications for boundary layer characteristics and clouds.
Fan Mei, Jian Wang, Jennifer M. Comstock, Ralf Weigel, Martina Krämer, Christoph Mahnke, John E. Shilling, Johannes Schneider, Christiane Schulz, Charles N. Long, Manfred Wendisch, Luiz A. T. Machado, Beat Schmid, Trismono Krisna, Mikhail Pekour, John Hubbe, Andreas Giez, Bernadett Weinzierl, Martin Zoeger, Mira L. Pöhlker, Hans Schlager, Micael A. Cecchini, Meinrat O. Andreae, Scot T. Martin, Suzane S. de Sá, Jiwen Fan, Jason Tomlinson, Stephen Springston, Ulrich Pöschl, Paulo Artaxo, Christopher Pöhlker, Thomas Klimach, Andreas Minikin, Armin Afchine, and Stephan Borrmann
Atmos. Meas. Tech., 13, 661–684, https://doi.org/10.5194/amt-13-661-2020, https://doi.org/10.5194/amt-13-661-2020, 2020
Short summary
Short summary
In 2014, the US DOE G1 aircraft and the German HALO aircraft overflew the Amazon basin to study how aerosols influence cloud cycles under a clean condition and around a tropical megacity. This paper describes how to meaningfully compare similar measurements from two research aircraft and identify the potential measurement issue. We also discuss the uncertainty range for each measurement for further usage in model evaluation and satellite data validation.
Pascal Polonik, Christoph Knote, Tobias Zinner, Florian Ewald, Tobias Kölling, Bernhard Mayer, Meinrat O. Andreae, Tina Jurkat-Witschas, Thomas Klimach, Christoph Mahnke, Sergej Molleker, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Ralf Weigel, and Manfred Wendisch
Atmos. Chem. Phys., 20, 1591–1605, https://doi.org/10.5194/acp-20-1591-2020, https://doi.org/10.5194/acp-20-1591-2020, 2020
Short summary
Short summary
A realistic representation of cloud–aerosol interactions is central to accurate climate projections. Here we combine observations collected during the ACRIDICON-CHUVA campaign with chemistry-transport simulations to evaluate the model’s ability to represent the indirect effects of biomass burning aerosol on cloud microphysics. We find an upper limit for the model sensitivity on cloud condensation nuclei concentrations well below the levels reached during the burning season in the Amazon Basin.
Christine Pohl, Larysa Istomina, Steffen Tietsche, Evelyn Jäkel, Johannes Stapf, Gunnar Spreen, and Georg Heygster
The Cryosphere, 14, 165–182, https://doi.org/10.5194/tc-14-165-2020, https://doi.org/10.5194/tc-14-165-2020, 2020
Short summary
Short summary
A spectral to broadband conversion is developed empirically that can be used in combination with the Melt Pond Detector algorithm to derive broadband albedo (300–3000 nm) of Arctic sea ice from MERIS data. It is validated and shows better performance compared to existing conversion methods. A comparison of MERIS broadband albedo with respective values from ERA5 reanalysis suggests a revision of the albedo values used in ERA5. MERIS albedo might be useful for improving albedo representation.
Vera Schemann and Kerstin Ebell
Atmos. Chem. Phys., 20, 475–485, https://doi.org/10.5194/acp-20-475-2020, https://doi.org/10.5194/acp-20-475-2020, 2020
Short summary
Short summary
In this study, we apply a high-resolution model at the observation supersite Ny-Ålesund (Svalbard) to evaluate mixed-phase clouds. These clouds are a potential driver for the stronger warming in the Arctic compared to the global mean, but their representation in climate models is typically rather poor due to complex microphysical processes. The presented combination of high-resolution modeling and long-term state-of-the-art observations can lead to improved process understanding.
André Ehrlich, Manfred Wendisch, Christof Lüpkes, Matthias Buschmann, Heiko Bozem, Dmitri Chechin, Hans-Christian Clemen, Régis Dupuy, Olliver Eppers, Jörg Hartmann, Andreas Herber, Evelyn Jäkel, Emma Järvinen, Olivier Jourdan, Udo Kästner, Leif-Leonard Kliesch, Franziska Köllner, Mario Mech, Stephan Mertes, Roland Neuber, Elena Ruiz-Donoso, Martin Schnaiter, Johannes Schneider, Johannes Stapf, and Marco Zanatta
Earth Syst. Sci. Data, 11, 1853–1881, https://doi.org/10.5194/essd-11-1853-2019, https://doi.org/10.5194/essd-11-1853-2019, 2019
Short summary
Short summary
During the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. The data set combines remote sensing and in situ measurement of cloud, aerosol, and trace gas properties, as well as turbulent and radiative fluxes, which will be used to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification.
Mario Mech, Leif-Leonard Kliesch, Andreas Anhäuser, Thomas Rose, Pavlos Kollias, and Susanne Crewell
Atmos. Meas. Tech., 12, 5019–5037, https://doi.org/10.5194/amt-12-5019-2019, https://doi.org/10.5194/amt-12-5019-2019, 2019
Short summary
Short summary
An improved understanding of Arctic mixed-phase clouds and their contribution to Arctic warming can be achieved by observations from airborne platforms with remote sensing instruments. Such an instrument is MiRAC combining active and passive techniques to gain information on the distribution of clouds, the occurrence of precipitation, and the amount of liquid and ice within the cloud. Operated during a campaign in Arctic summer, it could observe lower clouds often not seen by spaceborne radars.
Jacob Schacht, Bernd Heinold, Johannes Quaas, John Backman, Ribu Cherian, Andre Ehrlich, Andreas Herber, Wan Ting Katty Huang, Yutaka Kondo, Andreas Massling, P. R. Sinha, Bernadett Weinzierl, Marco Zanatta, and Ina Tegen
Atmos. Chem. Phys., 19, 11159–11183, https://doi.org/10.5194/acp-19-11159-2019, https://doi.org/10.5194/acp-19-11159-2019, 2019
Short summary
Short summary
The Arctic is warming faster than the rest of Earth. Black carbon (BC) aerosol contributes to this Arctic amplification by direct and indirect aerosol radiative effects while distributed in air or deposited on snow and ice. The aerosol-climate model ECHAM-HAM is used to estimate direct aerosol radiative effect (DRE). Airborne and near-surface BC measurements are used to evaluate the model and give an uncertainty range for the burden and DRE of Arctic BC caused by different emission inventories.
Ulrike Egerer, Matthias Gottschalk, Holger Siebert, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 12, 4019–4038, https://doi.org/10.5194/amt-12-4019-2019, https://doi.org/10.5194/amt-12-4019-2019, 2019
Short summary
Short summary
In this study, we introduce the new tethered balloon system BELUGA, which includes different modular instrument packages for measuring turbulence and radiation in the atmospheric boundary layer. BELUGA was deployed in an Arctic field campaign in 2017, providing details of boundary layer processes in combination with low-level clouds. Those processes are still not fully understood and in situ measurements in the Arctic improve our understanding of the Arctic response in terms of global warming.
Heike Konow, Marek Jacob, Felix Ament, Susanne Crewell, Florian Ewald, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Mario Mech, and Bjorn Stevens
Earth Syst. Sci. Data, 11, 921–934, https://doi.org/10.5194/essd-11-921-2019, https://doi.org/10.5194/essd-11-921-2019, 2019
Short summary
Short summary
High-resolution measurements of maritime clouds are relatively scarce. Airborne cloud radar, microwave radiometer and dropsonde observations are used to expand these data. The measurements are unified into one data set to enable easy joint analyses of several or all instruments together to gain insight into cloud properties and atmospheric state. The data set contains measurements from four campaigns between December 2013 and October 2016 over the tropical and midlatitude Atlantic.
Evelyn Jäkel, Johannes Stapf, Manfred Wendisch, Marcel Nicolaus, Wolfgang Dorn, and Annette Rinke
The Cryosphere, 13, 1695–1708, https://doi.org/10.5194/tc-13-1695-2019, https://doi.org/10.5194/tc-13-1695-2019, 2019
Short summary
Short summary
The sea ice surface albedo parameterization of a coupled regional climate model was validated against aircraft measurements performed in May–June 2017 north of Svalbard. The albedo parameterization was run offline from the model using the measured parameters surface temperature and snow depth to calculate the surface albedo and the individual fractions of the ice surface subtypes. An adjustment of the variables and additionally accounting for cloud cover reduced the root-mean-squared error.
Marek Jacob, Felix Ament, Manuel Gutleben, Heike Konow, Mario Mech, Martin Wirth, and Susanne Crewell
Atmos. Meas. Tech., 12, 3237–3254, https://doi.org/10.5194/amt-12-3237-2019, https://doi.org/10.5194/amt-12-3237-2019, 2019
Short summary
Short summary
Tropical clouds are a key climate component but are still not fully understood. Therefore, we analyze airborne remote sensing measurements that were taken in the dry and wet seasons over the Atlantic east of Barbados. From these we derive sub-kilometer resolution data of vertically integrated atmospheric water vapor and liquid water. Results show that although the humidity is lower in the dry season, clouds are more frequent, contain more water, and produce more rain than in the wet season.
Christoph Böhm, Odran Sourdeval, Johannes Mülmenstädt, Johannes Quaas, and Susanne Crewell
Atmos. Meas. Tech., 12, 1841–1860, https://doi.org/10.5194/amt-12-1841-2019, https://doi.org/10.5194/amt-12-1841-2019, 2019
Short summary
Short summary
The cloud base height (CBH) is important for air traffic, for describing the energy budget of the Earth and for other applications. Ground-based CBH measurements are only available for individual sites and mostly limited to land. Satellites are a powerful tool for global coverage. While the cloud top height is derived operationally, the derivation of CBH from space is more difficult as the clouds hide their base. Here, we present a method to retrieve the CBH from multi-angle satellite data.
Kevin Wolf, André Ehrlich, Marek Jacob, Susanne Crewell, Martin Wirth, and Manfred Wendisch
Atmos. Meas. Tech., 12, 1635–1658, https://doi.org/10.5194/amt-12-1635-2019, https://doi.org/10.5194/amt-12-1635-2019, 2019
Short summary
Short summary
Using passive spectral solar radiation and active lidar, radar, and microwave measurements with HALO during NARVAL-II, the cloud droplet number concentration of shallow trade wind cumulus is estimated. With stepwise inclusion of the different instruments into the retrieval, the benefits of the synergetic approach based on artificial measurements and two cloud cases are demonstrated. Significant improvement with the synergetic method compared to the solar-radiation-only method is reported.
Tobias Zinner, Ulrich Schwarz, Tobias Kölling, Florian Ewald, Evelyn Jäkel, Bernhard Mayer, and Manfred Wendisch
Atmos. Meas. Tech., 12, 1167–1181, https://doi.org/10.5194/amt-12-1167-2019, https://doi.org/10.5194/amt-12-1167-2019, 2019
Erlend M. Knudsen, Bernd Heinold, Sandro Dahlke, Heiko Bozem, Susanne Crewell, Irina V. Gorodetskaya, Georg Heygster, Daniel Kunkel, Marion Maturilli, Mario Mech, Carolina Viceto, Annette Rinke, Holger Schmithüsen, André Ehrlich, Andreas Macke, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 18, 17995–18022, https://doi.org/10.5194/acp-18-17995-2018, https://doi.org/10.5194/acp-18-17995-2018, 2018
Short summary
Short summary
The paper describes the synoptic development during the ACLOUD/PASCAL airborne and ship-based field campaign near Svalbard in spring 2017. This development is presented using near-surface and upperair meteorological observations, satellite, and model data. We first present time series of these data, from which we identify and characterize three key periods. Finally, we put our observations in historical and regional contexts and compare our findings to other Arctic field campaigns.
Emma Järvinen, Olivier Jourdan, David Neubauer, Bin Yao, Chao Liu, Meinrat O. Andreae, Ulrike Lohmann, Manfred Wendisch, Greg M. McFarquhar, Thomas Leisner, and Martin Schnaiter
Atmos. Chem. Phys., 18, 15767–15781, https://doi.org/10.5194/acp-18-15767-2018, https://doi.org/10.5194/acp-18-15767-2018, 2018
Short summary
Short summary
Using light diffraction it is possible to detect microscopic features within ice particles that have not yet been fully characterized. Here, this technique was applied in airborne measurements, where it was found that majority of atmospheric ice particles have features that significantly change the way ice particles interact with solar light. The microscopic features make ice-containing clouds more reflective than previously thought, which could have consequences for predicting our climate.
Christiane Schulz, Johannes Schneider, Bruna Amorim Holanda, Oliver Appel, Anja Costa, Suzane S. de Sá, Volker Dreiling, Daniel Fütterer, Tina Jurkat-Witschas, Thomas Klimach, Christoph Knote, Martina Krämer, Scot T. Martin, Stephan Mertes, Mira L. Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Bernadett Weinzierl, Helmut Ziereis, Martin Zöger, Meinrat O. Andreae, Paulo Artaxo, Luiz A. T. Machado, Ulrich Pöschl, Manfred Wendisch, and Stephan Borrmann
Atmos. Chem. Phys., 18, 14979–15001, https://doi.org/10.5194/acp-18-14979-2018, https://doi.org/10.5194/acp-18-14979-2018, 2018
Short summary
Short summary
Aerosol chemical composition measurements in the tropical upper troposphere over the Amazon region show that 78 % of the aerosol in the upper troposphere consists of organic matter. Up to 20 % of the organic aerosol can be attributed to isoprene epoxydiol secondary organic aerosol (IEPOX-SOA). Furthermore, organic nitrates were identified, suggesting a connection to the IEPOX-SOA formation.
Michael Schäfer, Katharina Loewe, André Ehrlich, Corinna Hoose, and Manfred Wendisch
Atmos. Chem. Phys., 18, 13115–13133, https://doi.org/10.5194/acp-18-13115-2018, https://doi.org/10.5194/acp-18-13115-2018, 2018
Short summary
Short summary
Airborne observed horizontal fields of cloud optical thickness are compared with semi-idealized large eddy simulations of Arctic stratus. The comparison focuses on horizontal cloud inhomogeneities and directional features of the small-scale cloud structures. Using inhomogeneity parameters and autocorrelation analysis it is investigated, if the observed small-scale cloud inhomogeneities can be represented by the model. Forcings for cloud inhomogeneities are investigated in a sensitivity study.
Jorge Saturno, Florian Ditas, Marloes Penning de Vries, Bruna A. Holanda, Mira L. Pöhlker, Samara Carbone, David Walter, Nicole Bobrowski, Joel Brito, Xuguang Chi, Alexandra Gutmann, Isabella Hrabe de Angelis, Luiz A. T. Machado, Daniel Moran-Zuloaga, Julian Rüdiger, Johannes Schneider, Christiane Schulz, Qiaoqiao Wang, Manfred Wendisch, Paulo Artaxo, Thomas Wagner, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10391–10405, https://doi.org/10.5194/acp-18-10391-2018, https://doi.org/10.5194/acp-18-10391-2018, 2018
Short summary
Short summary
This study uses satellite observations to track volcanic emissions in eastern Congo and their subsequent transport across the Atlantic Ocean into the Amazon Basin. Aircraft and ground-based observations are used to characterize the influence of volcanogenic aerosol on the chemical and microphysical properties of Amazonian aerosols. Further, this work is an illustrative example of the conditions and dynamics driving the transatlantic transport of African emissions to South America.
Luiz A. T. Machado, Alan J. P. Calheiros, Thiago Biscaro, Scott Giangrande, Maria A. F. Silva Dias, Micael A. Cecchini, Rachel Albrecht, Meinrat O. Andreae, Wagner F. Araujo, Paulo Artaxo, Stephan Borrmann, Ramon Braga, Casey Burleyson, Cristiano W. Eichholz, Jiwen Fan, Zhe Feng, Gilberto F. Fisch, Michael P. Jensen, Scot T. Martin, Ulrich Pöschl, Christopher Pöhlker, Mira L. Pöhlker, Jean-François Ribaud, Daniel Rosenfeld, Jaci M. B. Saraiva, Courtney Schumacher, Ryan Thalman, David Walter, and Manfred Wendisch
Atmos. Chem. Phys., 18, 6461–6482, https://doi.org/10.5194/acp-18-6461-2018, https://doi.org/10.5194/acp-18-6461-2018, 2018
Short summary
Short summary
This overview discuss the main precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin. It presents a review of the knowledge acquired about cloud processes and rainfall formation in Amazonas. In addition, this study provides a characterization of the seasonal variation and rainfall sensitivities to topography, surface cover, and aerosol concentration. Airplane measurements were evaluated to characterize and contrast cloud microphysical properties.
Trismono C. Krisna, Manfred Wendisch, André Ehrlich, Evelyn Jäkel, Frank Werner, Ralf Weigel, Stephan Borrmann, Christoph Mahnke, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 4439–4462, https://doi.org/10.5194/acp-18-4439-2018, https://doi.org/10.5194/acp-18-4439-2018, 2018
Short summary
Short summary
The optical thickness and particle effective radius of a cirrus above liquid water clouds and a DCC topped by an anvil cirrus are retrieved based on SMART and MODIS radiance measurements. For the cirrus, retrieved particle effective radius are validated with corresponding in situ data using a vertical weighting method. This approach allows to assess the measurements, retrieval algorithms, and derived cloud products.
Meinrat O. Andreae, Armin Afchine, Rachel Albrecht, Bruna Amorim Holanda, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Micael A. Cecchini, Anja Costa, Maximilian Dollner, Daniel Fütterer, Emma Järvinen, Tina Jurkat, Thomas Klimach, Tobias Konemann, Christoph Knote, Martina Krämer, Trismono Krisna, Luiz A. T. Machado, Stephan Mertes, Andreas Minikin, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Daniel Sauer, Hans Schlager, Martin Schnaiter, Johannes Schneider, Christiane Schulz, Antonio Spanu, Vinicius B. Sperling, Christiane Voigt, Adrian Walser, Jian Wang, Bernadett Weinzierl, Manfred Wendisch, and Helmut Ziereis
Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, https://doi.org/10.5194/acp-18-921-2018, 2018
Short summary
Short summary
We made airborne measurements of aerosol particle concentrations and properties over the Amazon Basin. We found extremely high concentrations of very small particles in the region between 8 and 14 km altitude all across the basin, which had been recently formed by gas-to-particle conversion at these altitudes. This makes the upper troposphere a very important source region of atmospheric particles with significant implications for the Earth's climate system.
Micael A. Cecchini, Luiz A. T. Machado, Manfred Wendisch, Anja Costa, Martina Krämer, Meinrat O. Andreae, Armin Afchine, Rachel I. Albrecht, Paulo Artaxo, Stephan Borrmann, Daniel Fütterer, Thomas Klimach, Christoph Mahnke, Scot T. Martin, Andreas Minikin, Sergej Molleker, Lianet H. Pardo, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, and Bernadett Weinzierl
Atmos. Chem. Phys., 17, 14727–14746, https://doi.org/10.5194/acp-17-14727-2017, https://doi.org/10.5194/acp-17-14727-2017, 2017
Short summary
Short summary
This study introduces and explores the concept of gamma phase space. This space is able to represent all possible variations in the cloud droplet size distributions (DSDs). The methodology was applied to recent in situ aircraft measurements over the Amazon. It is shown that the phase space is able to represent several processes occurring in the clouds in a simple manner. The consequences for cloud studies, modeling, and the representation of the transition from warm to mixed phase are discussed.
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Ulrich Pöschl, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Lucas Grulich
Atmos. Chem. Phys., 17, 14433–14456, https://doi.org/10.5194/acp-17-14433-2017, https://doi.org/10.5194/acp-17-14433-2017, 2017
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Johannes Freitag, Georg Heygster, Larysa Istomina, Sepp Kipfstuhl, Anaïs Orsi, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 11, 2727–2741, https://doi.org/10.5194/tc-11-2727-2017, https://doi.org/10.5194/tc-11-2727-2017, 2017
Short summary
Short summary
The optical size of snow grains (ropt) affects the reflectivity of snow surfaces and thus the local surface energy budget in particular in polar regions. The temporal evolution of ropt retrieved from ground-based, airborne, and spaceborne remote sensing could reproduce optical in situ measurements for a 2-month period in central Antarctica (2013/14). The presented validation study provided a unique testbed for retrievals of ropt under Antarctic conditions where in situ data are scarce.
Anja Costa, Jessica Meyer, Armin Afchine, Anna Luebke, Gebhard Günther, James R. Dorsey, Martin W. Gallagher, Andre Ehrlich, Manfred Wendisch, Darrel Baumgardner, Heike Wex, and Martina Krämer
Atmos. Chem. Phys., 17, 12219–12238, https://doi.org/10.5194/acp-17-12219-2017, https://doi.org/10.5194/acp-17-12219-2017, 2017
Short summary
Short summary
The paper presents 38 h of in situ cloud spectrometer observations of microphysical cloud properties in the Arctic, midlatitudes and tropics. The clouds are classified via particle concentrations, size distributions, and – as a novelty – small particle aspherical fractions. Cloud-type profiles are given for different temperatures and locations. The results confine regions where different cloud transformation processes occurred and emphasise the importance of small particle shape detection.
Marcus Klingebiel, André Ehrlich, Fanny Finger, Timo Röschenthaler, Suad Jakirlić, Matthias Voigt, Stefan Müller, Rolf Maser, Manfred Wendisch, Peter Hoor, Peter Spichtinger, and Stephan Borrmann
Atmos. Meas. Tech., 10, 3485–3498, https://doi.org/10.5194/amt-10-3485-2017, https://doi.org/10.5194/amt-10-3485-2017, 2017
Short summary
Short summary
Microphysical and radiation measurements were collected with the unique AIRcraft TOwed Sensor Shuttle (AIRTOSS) – Learjet tandem platform. It is a combination of a Learjet 35A research aircraft and an instrumented aerodynamic bird, which can be detached from and retracted back to the aircraft during flight.
AIRTOSS and Learjet are equipped with radiative, cloud microphysical, trace gas,
and meteorological instruments to study cirrus clouds.
André Ehrlich, Eike Bierwirth, Larysa Istomina, and Manfred Wendisch
Atmos. Meas. Tech., 10, 3215–3230, https://doi.org/10.5194/amt-10-3215-2017, https://doi.org/10.5194/amt-10-3215-2017, 2017
Short summary
Short summary
In the Arctic, uncertainties in passive solar remote sensing of cloud properties arise from uncertainties in the assumed spectral surface albedo, mainly determined by the generally unknown effective snow grain size. Therefore, a retrieval method is presented that simultaneously derives liquid water cloud and snow surface parameters, including cloud optical thickness, droplet effective radius, and effective snow grain size. Airborne measurements were used to test the retrieval procedure.
Micael A. Cecchini, Luiz A. T. Machado, Meinrat O. Andreae, Scot T. Martin, Rachel I. Albrecht, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Daniel Fütterer, Tina Jurkat, Christoph Mahnke, Andreas Minikin, Sergej Molleker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Bernadett Weinzierl, and Manfred Wendisch
Atmos. Chem. Phys., 17, 10037–10050, https://doi.org/10.5194/acp-17-10037-2017, https://doi.org/10.5194/acp-17-10037-2017, 2017
Short summary
Short summary
We study the effects of aerosol particles and updraft speed on the warm phase of Amazonian clouds. We expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution and the effects on droplet size distribution (DSD) shape. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds.
Evelyn Jäkel, Manfred Wendisch, Trismono C. Krisna, Florian Ewald, Tobias Kölling, Tina Jurkat, Christiane Voigt, Micael A. Cecchini, Luiz A. T. Machado, Armin Afchine, Anja Costa, Martina Krämer, Meinrat O. Andreae, Ulrich Pöschl, Daniel Rosenfeld, and Tianle Yuan
Atmos. Chem. Phys., 17, 9049–9066, https://doi.org/10.5194/acp-17-9049-2017, https://doi.org/10.5194/acp-17-9049-2017, 2017
Short summary
Short summary
Vertical profiles of the cloud particle phase state in tropical deep convective clouds (DCCs) were investigated using airborne imaging spectrometer measurements during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian rainforest in September 2014. A phase discrimination retrieval was applied to observations of clouds formed in different aerosol conditions. The profiles were compared to in situ and satellite measurements.
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Mira L. Pöhlker, Thomas Klimach, Ulrich Pöschl, Christopher Pöhlker, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Paulo Artaxo
Atmos. Chem. Phys., 17, 7365–7386, https://doi.org/10.5194/acp-17-7365-2017, https://doi.org/10.5194/acp-17-7365-2017, 2017
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, https://doi.org/10.5194/acp-17-4887-2017, 2017
Short summary
Short summary
This article provides an overview of the instrumental setup and the main results obtained during the two HD(CP)2 Observational Prototype Experiments HOPE-Jülich and HOPE-Melpitz conducted in Germany in April–May and Sept 2013, respectively. Goal of the field experiments was to provide high-resolution observational datasets for both, improving the understaning of boundary layer and cloud processes, as well as for the evaluation of the new ICON model that is run at 156 m horizontal resolution.
Kevin Wolf, André Ehrlich, Tilman Hüneke, Klaus Pfeilsticker, Frank Werner, Martin Wirth, and Manfred Wendisch
Atmos. Chem. Phys., 17, 4283–4303, https://doi.org/10.5194/acp-17-4283-2017, https://doi.org/10.5194/acp-17-4283-2017, 2017
Short summary
Short summary
The potential of airborne radiance measurements in the sideward and nadir directions for cirrus remote sensing is investigated. Therefore radiative transfer simulations were used and the sensitivity of upward radiance with respect to optical thickness, effective radius, surface albedo, wavelength and viewing angle was studied. It was shown that sideward observations lead to more accurate retrieval results. Investigating a case study of ML-CIRRUS, these findings are confirmed.
Michael Schäfer, Eike Bierwirth, André Ehrlich, Evelyn Jäkel, Frank Werner, and Manfred Wendisch
Atmos. Chem. Phys., 17, 2359–2372, https://doi.org/10.5194/acp-17-2359-2017, https://doi.org/10.5194/acp-17-2359-2017, 2017
Short summary
Short summary
Cloud optical thickness fields, retrieved from solar spectral radiance measurements, are used to investigate the directional structure of horizontal cloud inhomogeneities with scalar one-dimensional inhomogeneity parameters, two-dimensional auto-correlation functions, and two-dimensional Fourier analysis. The investigations reveal that it is not sufficient to quantify horizontal cloud inhomogeneities by one-dimensional inhomogeneity parameters; two-dimensional parameters are necessary.
Heike Wex, Katrin Dieckmann, Greg C. Roberts, Thomas Conrath, Miguel A. Izaguirre, Susan Hartmann, Paul Herenz, Michael Schäfer, Florian Ditas, Tina Schmeissner, Silvia Henning, Birgit Wehner, Holger Siebert, and Frank Stratmann
Atmos. Chem. Phys., 16, 14107–14130, https://doi.org/10.5194/acp-16-14107-2016, https://doi.org/10.5194/acp-16-14107-2016, 2016
Short summary
Short summary
Aerosol arriving in the eastern Caribbean after passing the Atlantic is characterized, based on ground-based and airborne measurements. We describe the repetitive occurrence of three different types of air masses and relate them to their origin from either Africa or the Atlantic and also draw conclusions about the particle composition. The length of the data series is unprecedented. By a comparison with other studies, we also suggest that the organic fraction in the aerosol depends on season.
María Barrera-Verdejo, Susanne Crewell, Ulrich Löhnert, Emiliano Orlandi, and Paolo Di Girolamo
Atmos. Meas. Tech., 9, 4013–4028, https://doi.org/10.5194/amt-9-4013-2016, https://doi.org/10.5194/amt-9-4013-2016, 2016
Fanny Finger, Frank Werner, Marcus Klingebiel, André Ehrlich, Evelyn Jäkel, Matthias Voigt, Stephan Borrmann, Peter Spichtinger, and Manfred Wendisch
Atmos. Chem. Phys., 16, 7681–7693, https://doi.org/10.5194/acp-16-7681-2016, https://doi.org/10.5194/acp-16-7681-2016, 2016
Short summary
Short summary
Solar spectra of optical layer properties of cirrus have been derived from the first truly collocated airborne radiation measurements using an aircraft and a towed sensor platform. The measured layer properties differ slightly due to horizontal cirrus inhomogeneities and the influence of low-level water clouds. Applying a 1-D radiative transfer model sensitivity studies were performed. It was found that if a low-level cloud is not considered, the solar cooling of the cirrus is strongly overestimated.
S. T. Martin, P. Artaxo, L. A. T. Machado, A. O. Manzi, R. A. F. Souza, C. Schumacher, J. Wang, M. O. Andreae, H. M. J. Barbosa, J. Fan, G. Fisch, A. H. Goldstein, A. Guenther, J. L. Jimenez, U. Pöschl, M. A. Silva Dias, J. N. Smith, and M. Wendisch
Atmos. Chem. Phys., 16, 4785–4797, https://doi.org/10.5194/acp-16-4785-2016, https://doi.org/10.5194/acp-16-4785-2016, 2016
Short summary
Short summary
The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment took place in central Amazonia throughout 2014 and 2015. The experiment focused on the complex links among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other, especially when altered by urban pollution. This article serves as an introduction to the special issue of publications presenting findings of this experiment.
E. Jäkel, B. Mey, R. Levy, X. Gu, T. Yu, Z. Li, D. Althausen, B. Heese, and M. Wendisch
Atmos. Meas. Tech., 8, 5237–5249, https://doi.org/10.5194/amt-8-5237-2015, https://doi.org/10.5194/amt-8-5237-2015, 2015
A. Ehrlich and M. Wendisch
Atmos. Meas. Tech., 8, 3671–3684, https://doi.org/10.5194/amt-8-3671-2015, https://doi.org/10.5194/amt-8-3671-2015, 2015
M. Schäfer, E. Bierwirth, A. Ehrlich, E. Jäkel, and M. Wendisch
Atmos. Chem. Phys., 15, 8147–8163, https://doi.org/10.5194/acp-15-8147-2015, https://doi.org/10.5194/acp-15-8147-2015, 2015
M. Barrera-Verdejo, S. Crewell, U. Löhnert, E. Orlandi, and P. Di Girolamo
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-5467-2015, https://doi.org/10.5194/amtd-8-5467-2015, 2015
Revised manuscript not accepted
S. Steinke, S. Eikenberg, U. Löhnert, G. Dick, D. Klocke, P. Di Girolamo, and S. Crewell
Atmos. Chem. Phys., 15, 2675–2692, https://doi.org/10.5194/acp-15-2675-2015, https://doi.org/10.5194/acp-15-2675-2015, 2015
I. V. Gorodetskaya, S. Kneifel, M. Maahn, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig
The Cryosphere, 9, 285–304, https://doi.org/10.5194/tc-9-285-2015, https://doi.org/10.5194/tc-9-285-2015, 2015
Short summary
Short summary
Our paper presents a new cloud-precipitation-meteorological observatory established in the escarpment zone of Dronning Maud Land, East Antarctica. The site is characterised by bimodal cloud occurrence (clear sky or overcast) with liquid-containing clouds occurring 20% of the cloudy periods. Local surface mass balance strongly depends on rare intense snowfall events. A substantial part of the accumulated snow is removed by surface and drifting snow sublimation and wind-driven snow erosion.
M. Klingebiel, A. de Lozar, S. Molleker, R. Weigel, A. Roth, L. Schmidt, J. Meyer, A. Ehrlich, R. Neuber, M. Wendisch, and S. Borrmann
Atmos. Chem. Phys., 15, 617–631, https://doi.org/10.5194/acp-15-617-2015, https://doi.org/10.5194/acp-15-617-2015, 2015
M. Mech, E. Orlandi, S. Crewell, F. Ament, L. Hirsch, M. Hagen, G. Peters, and B. Stevens
Atmos. Meas. Tech., 7, 4539–4553, https://doi.org/10.5194/amt-7-4539-2014, https://doi.org/10.5194/amt-7-4539-2014, 2014
Short summary
Short summary
Here the High Altitude and LOng range research aircraft Microwave Package (HAMP) is introduced. The package consists
of three passive radiometer modules with 26 channels between 22
and 183 GHz and a 36 GHz Doppler cloud radar. The manuscript
describes the instrument specifications, the installation in the aircraft, and the operation. Furthermore, results from simulation
and retrieval studies, as well as measurements from a first test
campaign, are shown.
J. H. Schween, A. Hirsikko, U. Löhnert, and S. Crewell
Atmos. Meas. Tech., 7, 3685–3704, https://doi.org/10.5194/amt-7-3685-2014, https://doi.org/10.5194/amt-7-3685-2014, 2014
Short summary
Short summary
Two different methods for the determination of the mixing layer height (MLH) are investigated with a one-year data set from central Europe: (i) based on a significant gradient of backscatter and (ii) on the vertical velocity. The aerosol-based method shows significant over-estimation in the morning hours when the ML grows into the residual layer and late afternoon hours when turbulent mixing decays. This results in systematic over-estimation of average characteristcs as e.g. maximum MLH.
S. Henning, K. Dieckmann, K. Ignatius, M. Schäfer, P. Zedler, E. Harris, B. Sinha, D. van Pinxteren, S. Mertes, W. Birmili, M. Merkel, Z. Wu, A. Wiedensohler, H. Wex, H. Herrmann, and F. Stratmann
Atmos. Chem. Phys., 14, 7859–7868, https://doi.org/10.5194/acp-14-7859-2014, https://doi.org/10.5194/acp-14-7859-2014, 2014
M. Mielke, N. S. Zinoviev, K. Dethloff, A. Rinke, V. J. Kustov, A. P. Makshtas, V. T. Sokolov, R. Neuber, M. Maturilli, D. Klaus, D. Handorf, and J. Graeser
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-11855-2014, https://doi.org/10.5194/acpd-14-11855-2014, 2014
Revised manuscript has not been submitted
C. Fricke, A. Ehrlich, E. Jäkel, B. Bohn, M. Wirth, and M. Wendisch
Atmos. Chem. Phys., 14, 1943–1958, https://doi.org/10.5194/acp-14-1943-2014, https://doi.org/10.5194/acp-14-1943-2014, 2014
G. Maschwitz, U. Löhnert, S. Crewell, T. Rose, and D. D. Turner
Atmos. Meas. Tech., 6, 2641–2658, https://doi.org/10.5194/amt-6-2641-2013, https://doi.org/10.5194/amt-6-2641-2013, 2013
M. Schäfer, E. Bierwirth, A. Ehrlich, F. Heyner, and M. Wendisch
Atmos. Meas. Tech., 6, 1855–1868, https://doi.org/10.5194/amt-6-1855-2013, https://doi.org/10.5194/amt-6-1855-2013, 2013
E. Bierwirth, A. Ehrlich, M. Wendisch, J.-F. Gayet, C. Gourbeyre, R. Dupuy, A. Herber, R. Neuber, and A. Lampert
Atmos. Meas. Tech., 6, 1189–1200, https://doi.org/10.5194/amt-6-1189-2013, https://doi.org/10.5194/amt-6-1189-2013, 2013
V. Meunier, U. Löhnert, P. Kollias, and S. Crewell
Atmos. Meas. Tech., 6, 1171–1187, https://doi.org/10.5194/amt-6-1171-2013, https://doi.org/10.5194/amt-6-1171-2013, 2013
E. Jäkel, J. Walter, and M. Wendisch
Atmos. Meas. Tech., 6, 539–547, https://doi.org/10.5194/amt-6-539-2013, https://doi.org/10.5194/amt-6-539-2013, 2013
E. Jäkel, M. Wendisch, and B. Mayer
Atmos. Meas. Tech., 6, 527–537, https://doi.org/10.5194/amt-6-527-2013, https://doi.org/10.5194/amt-6-527-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Influence of cloud microphysics schemes on weather model predictions of heavy precipitation
Convective organization and 3D structure of tropical cloud systems deduced from synergistic A-Train observations and machine learning
Seasonal controls on isolated convective storm drafts, precipitation intensity, and life cycle as observed during GoAmazon2014/5
Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions
Surface-based observations of cold-air outbreak clouds during the COMBLE field campaign
Boundary layer moisture variability at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic observatory during marine conditions
Profile-based estimated inversion strength
Characteristics of supersaturation in midlatitude cirrus clouds and their adjacent cloud-free air
Establishment of an analytical model for remote sensing of typical stratocumulus cloud profiles under various precipitation and entrainment conditions
Satellite remote sensing of regional and seasonal Arctic cooling showing a multi-decadal trend towards brighter and more liquid clouds
Microphysical processes of super typhoon Lekima (2019) and their impacts on polarimetric radar remote sensing of precipitation
The impacts of dust aerosol and convective available potential energy on precipitation vertical structure in southeastern China as seen from multisource observations
Heavy snowfall event over the Swiss Alps: did wind shear impact secondary ice production?
On the global relationship between polarimetric radio occultation differential phase shift and ice water content
Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic
Natural marine cloud brightening in the Southern Ocean
Distinct regional meteorological influences on low-cloud albedo susceptibility over global marine stratocumulus regions
Diurnal cycles of cloud cover and its vertical distribution over the Tibetan Plateau revealed by satellite observations, reanalysis datasets, and CMIP6 outputs
Satellite observations of seasonality and long-term trends in cirrus cloud properties over Europe: investigation of possible aviation impacts
Ice crystal characterization in cirrus clouds III: retrieval of ice crystal shape and roughness from observations of halo displays
Technical note: Identification of two ice-nucleating regimes for dust-related cirrus clouds based on the relationship between number concentrations of ice-nucleating particles and ice crystals
Highly supercooled riming and unusual triple-frequency radar signatures over McMurdo Station, Antarctica
Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations
Observing short-timescale cloud development to constrain aerosol–cloud interactions
Exploring relations between cloud morphology, cloud phase, and cloud radiative properties in Southern Ocean's stratocumulus clouds
Observations of cold-cloud properties in the Norwegian Arctic using ground-based and spaceborne lidar
An evaluation of the liquid cloud droplet effective radius derived from MODIS, airborne remote sensing, and in situ measurements from CAMP2Ex
A Lagrangian analysis of pockets of open cells over the southeastern Pacific
The formation and composition of the Mount Everest plume in winter
New insights on the prevalence of drizzle in marine stratocumulus clouds based on a machine learning algorithm applied to radar Doppler spectra
Addressing the difficulties in quantifying droplet number response to aerosol from satellite observations
Optically thin clouds in the trades
Stability-dependent increases in liquid water with droplet number in the Arctic
Lightning activity in northern Europe during a stormy winter: disruptions of weather patterns originating in global climate phenomena
A climatology of open and closed mesoscale cellular convection over the Southern Ocean derived from Himawari-8 observations
Methodology to determine the coupling of continental clouds with surface and boundary layer height under cloudy conditions from lidar and meteorological data
Albedo susceptibility of northeastern Pacific stratocumulus: the role of covarying meteorological conditions
Opportunistic experiments to constrain aerosol effective radiative forcing
Environmental effects on aerosol–cloud interaction in non-precipitating marine boundary layer (MBL) clouds over the eastern North Atlantic
Hemispheric contrasts in ice formation in stratiform mixed-phase clouds: disentangling the role of aerosol and dynamics with ground-based remote sensing
Microphysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations
Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes
A climatology of trade-wind cumulus cold pools and their link to mesoscale cloud organization
Global evidence of aerosol-induced invigoration in marine cumulus clouds
Impacts of the Saharan air layer on the physical properties of the Atlantic tropical cyclone cloud systems: 2003–2019
Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: environmental conditions and the relevance to secondary ice production
Changes in cirrus cloud properties and occurrence over Europe during the COVID-19-caused air traffic reduction
A new conceptual model for adiabatic fog
Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens
Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO
Gregor Köcher, Tobias Zinner, and Christoph Knote
Atmos. Chem. Phys., 23, 6255–6269, https://doi.org/10.5194/acp-23-6255-2023, https://doi.org/10.5194/acp-23-6255-2023, 2023
Short summary
Short summary
Polarimetric radar observations of 30 d of convective precipitation events are used to statistically analyze 5 state-of-the-art microphysics schemes of varying complexity. The frequency and area of simulated heavy-precipitation events are in some cases significantly different from those observed, depending on the microphysics scheme. Analysis of simulated particle size distributions and reflectivities shows that some schemes have problems reproducing the correct particle size distributions.
Claudia J. Stubenrauch, Giulio Mandorli, and Elisabeth Lemaitre
Atmos. Chem. Phys., 23, 5867–5884, https://doi.org/10.5194/acp-23-5867-2023, https://doi.org/10.5194/acp-23-5867-2023, 2023
Short summary
Short summary
Organized convection leads to large convective cloud systems and intense rain and may change with a warming climate. Their complete 3D description, attained by machine learning techniques in combination with various satellite observations, together with a cloud system concept, link convection to anvil properties, while convective organization can be identified by the horizontal structure of intense rain.
Scott E. Giangrande, Thiago S. Biscaro, and John M. Peters
Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023, https://doi.org/10.5194/acp-23-5297-2023, 2023
Short summary
Short summary
Our study tracks thunderstorms observed during the wet and dry seasons of the Amazon Basin using weather radar. We couple this precipitation tracking with opportunistic overpasses of a wind profiler and other ground observations to add unique insights into the upwards and downwards air motions within these clouds at various stages in the storm life cycle. The results of a simple updraft model are provided to give physical explanations for observed seasonal differences.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Zackary Mages, Pavlos Kollias, Zeen Zhu, and Edward P. Luke
Atmos. Chem. Phys., 23, 3561–3574, https://doi.org/10.5194/acp-23-3561-2023, https://doi.org/10.5194/acp-23-3561-2023, 2023
Short summary
Short summary
Cold-air outbreaks (when cold air is advected over warm water and creates low-level convection) are a dominant cloud regime in the Arctic, and we capitalized on ground-based observations, which did not previously exist, from the COMBLE field campaign to study them. We characterized the extent and strength of the convection and turbulence and found evidence of secondary ice production. This information is useful for model intercomparison studies that will represent cold-air outbreak processes.
Maria P. Cadeddu, Virendra P. Ghate, David D. Turner, and Thomas E. Surleta
Atmos. Chem. Phys., 23, 3453–3470, https://doi.org/10.5194/acp-23-3453-2023, https://doi.org/10.5194/acp-23-3453-2023, 2023
Short summary
Short summary
We analyze the variability in marine boundary layer moisture at the Eastern North Atlantic site on a monthly and daily temporal scale and examine its fundamental role in the control of boundary layer cloudiness and precipitation. The study also highlights the complex interaction between large-scale and local processes controlling the boundary layer moisture and the importance of the mesoscale spatial distribution of vapor to support convection and precipitation.
Zhenquan Wang, Jian Yuan, Robert Wood, Yifan Chen, and Tiancheng Tong
Atmos. Chem. Phys., 23, 3247–3266, https://doi.org/10.5194/acp-23-3247-2023, https://doi.org/10.5194/acp-23-3247-2023, 2023
Short summary
Short summary
This study develops a novel profile-based algorithm based on the ERA5 to estimate the inversion strength in the planetary boundary layer better than the previous inversion index, which is a key low-cloud-controlling factor. This improved measure is more effective at representing the meteorological influence on low-cloud variations. It can better constrain the meteorological influence on low clouds to better isolate cloud responses to aerosols or to estimate low cloud feedbacks in climate models.
Georgios Dekoutsidis, Silke Groß, Martin Wirth, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 23, 3103–3117, https://doi.org/10.5194/acp-23-3103-2023, https://doi.org/10.5194/acp-23-3103-2023, 2023
Short summary
Short summary
Cirrus clouds affect Earth's atmosphere, deeming our study important. Here we use water vapor measurements by lidar and study the relative humidity (RHi) within and around midlatitude cirrus clouds. We find high supersaturations in the cloud-free air and within the clouds, especially near the cloud top. We study two cloud types with different formation processes. Finally, we conclude that the shape of the distribution of RHi can be used as an indicator of different cloud evolutionary stages.
Huazhe Shang, Souichiro Hioki, Guillaume Penide, Céline Cornet, Husi Letu, and Jérôme Riedi
Atmos. Chem. Phys., 23, 2729–2746, https://doi.org/10.5194/acp-23-2729-2023, https://doi.org/10.5194/acp-23-2729-2023, 2023
Short summary
Short summary
We find that cloud profiles can be divided into four prominent patterns, and the frequency of these four patterns is related to intensities of cloud-top entrainment and precipitation. Based on these analyses, we further propose a cloud profile parameterization scheme allowing us to represent these patterns. Our results shed light on how to facilitate the representation of cloud profiles and how to link them to cloud entrainment or precipitating status in future remote-sensing applications.
Luca Lelli, Marco Vountas, Narges Khosravi, and John Philipp Burrows
Atmos. Chem. Phys., 23, 2579–2611, https://doi.org/10.5194/acp-23-2579-2023, https://doi.org/10.5194/acp-23-2579-2023, 2023
Short summary
Short summary
Arctic amplification describes the recent period in which temperatures have been rising twice as fast as or more than the global average and sea ice and the Greenland ice shelf are approaching a tipping point. Hence, the Arctic ability to reflect solar energy decreases and absorption by the surface increases. Using 2 decades of complementary satellite data, we discover that clouds unexpectedly increase the pan-Arctic reflectance by increasing their liquid water content, thus cooling the Arctic.
Yabin Gou, Haonan Chen, Hong Zhu, and Lulin Xue
Atmos. Chem. Phys., 23, 2439–2463, https://doi.org/10.5194/acp-23-2439-2023, https://doi.org/10.5194/acp-23-2439-2023, 2023
Short summary
Short summary
This article investigates the complex precipitation microphysics associated with super typhoon Lekima using a host of in situ and remote sensing observations, including rain gauge and disdrometer data, as well as polarimetric radar observations. The impacts of precipitation microphysics on multi-source data consistency and radar precipitation estimation are quantified. It is concluded that the dynamical precipitation microphysical processes must be considered in radar precipitation estimation.
Hongxia Zhu, Rui Li, Shuping Yang, Chun Zhao, Zhe Jiang, and Chen Huang
Atmos. Chem. Phys., 23, 2421–2437, https://doi.org/10.5194/acp-23-2421-2023, https://doi.org/10.5194/acp-23-2421-2023, 2023
Short summary
Short summary
The impacts of atmospheric dust aerosols and cloud dynamic conditions on precipitation vertical development in southeastern China were studied using multiple satellite observations. It was found that the precipitating drops under dusty conditions grow faster in the middle layer but slower in the upper and lower layers compared with their pristine counterparts. Quantitative estimation of the sensitivity of the precipitation top temperature to the dust aerosol optical depth is also provided.
Zane Dedekind, Jacopo Grazioli, Philip H. Austin, and Ulrike Lohmann
Atmos. Chem. Phys., 23, 2345–2364, https://doi.org/10.5194/acp-23-2345-2023, https://doi.org/10.5194/acp-23-2345-2023, 2023
Short summary
Short summary
Simulations allowing ice particles to collide with one another producing more ice particles represented surface observations of ice particles accurately. An increase in ice particles formed through collisions was related to sharp changes in the wind direction and speed with height. Changes in wind speed and direction can therefore cause more enhanced collisions between ice particles and alter how fast and how much precipitation forms. Simulations were conducted with the atmospheric model COSMO.
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys., 23, 2199–2214, https://doi.org/10.5194/acp-23-2199-2023, https://doi.org/10.5194/acp-23-2199-2023, 2023
Short summary
Short summary
The results of comparing the polarimetric radio occultation observables and the ice water content retrieved from the CloudSat radar in a global and statistical way show a strong correlation between the geographical patterns of both quantities for a wide range of heights. This implies that horizontally oriented hydrometeors are systematically present through the whole globe and through all vertical levels, which could provide insights on the physical processes leading to precipitation.
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys., 23, 1941–1961, https://doi.org/10.5194/acp-23-1941-2023, https://doi.org/10.5194/acp-23-1941-2023, 2023
Short summary
Short summary
Differences in the microphysical properties of contrail cirrus and natural cirrus in a contrail outbreak situation during the ML-CIRRUS campaign over the North Atlantic flight corridor can be observed from in situ measurements. The cirrus radiative effect in the area of the outbreak, derived from satellite observation-based radiative transfer modeling, is warming in the early morning and cooling during the day.
Gerald G. Mace, Sally Benson, Ruhi Humphries, Peter M. Gombert, and Elizabeth Sterner
Atmos. Chem. Phys., 23, 1677–1685, https://doi.org/10.5194/acp-23-1677-2023, https://doi.org/10.5194/acp-23-1677-2023, 2023
Short summary
Short summary
The number of cloud droplets per unit volume is a significantly important property of clouds that controls their reflective properties. Computer models of the Earth's atmosphere and climate have low skill at predicting the reflective properties of Southern Ocean clouds. Here we investigate the properties of those clouds using satellite data and find that the cloud droplet number and cloud albedo in the Southern Ocean are related to the oceanic phytoplankton abundance near Antarctica.
Jianhao Zhang and Graham Feingold
Atmos. Chem. Phys., 23, 1073–1090, https://doi.org/10.5194/acp-23-1073-2023, https://doi.org/10.5194/acp-23-1073-2023, 2023
Short summary
Short summary
Using observations from space, we show maps of potential brightness changes in marine warm clouds in response to increases in cloud droplet concentrations. The environmental and aerosol conditions in which these clouds reside covary differently in each ocean basin, leading to distinct evolutions of cloud brightness changes. This work stresses the central importance of the covariability between meteorology and aerosol for scaling up the radiative response of cloud brightness changes.
Yuxin Zhao, Jiming Li, Lijie Zhang, Cong Deng, Yarong Li, Bida Jian, and Jianping Huang
Atmos. Chem. Phys., 23, 743–769, https://doi.org/10.5194/acp-23-743-2023, https://doi.org/10.5194/acp-23-743-2023, 2023
Short summary
Short summary
Diurnal variations of clouds play an important role in the radiative budget and precipitation. Based on satellite observations, reanalysis, and CMIP6 outputs, the diurnal variations in total cloud cover and cloud vertical distribution over the Tibetan Plateau are explored. The diurnal cycle of cirrus is a key focus and found to have different characteristics from those found in the tropics. The relationship between the diurnal cycle of cirrus and meteorological factors is also discussed.
Qiang Li and Silke Groß
Atmos. Chem. Phys., 22, 15963–15980, https://doi.org/10.5194/acp-22-15963-2022, https://doi.org/10.5194/acp-22-15963-2022, 2022
Short summary
Short summary
The IPCC report identified that cirrus clouds have a significant impact on the radiation balance comparable to the CO2 effects, which, however, is still hard to parameterize. The current study investigates the possible impact of aviation on cirrus properties based on the analysis of 10-year lidar measurements of CALIPSO. The results reveal that there is a significant positive trend in cirrus depolarization ratio in the last 10 years before COVID-19, which is strongly correlated with aviation.
Linda Forster and Bernhard Mayer
Atmos. Chem. Phys., 22, 15179–15205, https://doi.org/10.5194/acp-22-15179-2022, https://doi.org/10.5194/acp-22-15179-2022, 2022
Short summary
Short summary
We present a novel retrieval using ground-based imaging observations of halo displays together with radiative transfer simulations to help improve our understanding of ice crystal properties representative of cirrus clouds. Analysis of 4400 calibrated HaloCam images featuring a 22° halo revealed aggregates of hexagonal columns of 20 µm effective radius with a mixture of about 37 % smooth and 63% severely roughened surfaces as the best match in general.
Yun He, Zhenping Yin, Fuchao Liu, and Fan Yi
Atmos. Chem. Phys., 22, 13067–13085, https://doi.org/10.5194/acp-22-13067-2022, https://doi.org/10.5194/acp-22-13067-2022, 2022
Short summary
Short summary
A method is proposed to identify the sole presence of heterogeneous nucleation and competition between heterogeneous and homogeneous nucleation for dust-related cirrus clouds by characterizing the relationship between dust ice-nucleating particle concentration calculated from CALIOP using the POLIPHON method and in-cloud ice crystal number concentration from the DARDAR-Nice dataset. Two typical cirrus cases are shown as a demonstration, and the proposed method can be extended to a global scale.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Short summary
We present a statistical analysis of ice microphysical processes (IMP) in mid-latitude clouds. Combining various radar approaches, we find that the IMP active at −20 to −10 °C seems to be the main driver of ice particle size, shape and concentration. The strength of aggregation at −20 to −10 °C correlates with the increase in concentration and aspect ratio of locally formed ice particles. Despite ongoing aggregation, the concentration of ice particles stays enhanced until −4 °C.
Edward Gryspeerdt, Franziska Glassmeier, Graham Feingold, Fabian Hoffmann, and Rebecca J. Murray-Watson
Atmos. Chem. Phys., 22, 11727–11738, https://doi.org/10.5194/acp-22-11727-2022, https://doi.org/10.5194/acp-22-11727-2022, 2022
Short summary
Short summary
The response of clouds to changes in aerosol remains a large uncertainty in our understanding of the climate. Studies typically look at aerosol and cloud processes in snapshot images, measuring all properties at the same time. Here we use multiple images to characterise how cloud temporal development responds to aerosol. We find a reduction in liquid water path with increasing aerosol, party due to feedbacks. This suggests the aerosol impact on cloud water may be weaker than in previous studies.
Jessica Danker, Odran Sourdeval, Isabel L. McCoy, Robert Wood, and Anna Possner
Atmos. Chem. Phys., 22, 10247–10265, https://doi.org/10.5194/acp-22-10247-2022, https://doi.org/10.5194/acp-22-10247-2022, 2022
Short summary
Short summary
Using spaceborne lidar-radar retrievals, we show that seasonal changes in cloud phase outweigh changes in cloud-phase statistics across cloud morphologies at given cloud-top temperatures. These results show that cloud morphology does not seem to pose a primary constraint on cloud-phase statistics in the Southern Ocean. Meanwhile, larger changes in in-cloud albedo across cloud morphologies are observed in supercooled liquid rather than mixed-phase stratocumuli.
Britta Schäfer, Tim Carlsen, Ingrid Hanssen, Michael Gausa, and Trude Storelvmo
Atmos. Chem. Phys., 22, 9537–9551, https://doi.org/10.5194/acp-22-9537-2022, https://doi.org/10.5194/acp-22-9537-2022, 2022
Short summary
Short summary
Cloud properties are important for the surface radiation budget. This study presents cold-cloud observations based on lidar measurements from the Norwegian Arctic between 2011 and 2017. Using statistical assessments and case studies, we give an overview of the macro- and microphysical properties of these clouds and demonstrate the capabilities of long-term cloud observations in the Norwegian Arctic from the ground-based lidar at Andenes.
Dongwei Fu, Larry Di Girolamo, Robert M. Rauber, Greg M. McFarquhar, Stephen W. Nesbitt, Jesse Loveridge, Yulan Hong, Bastiaan van Diedenhoven, Brian Cairns, Mikhail D. Alexandrov, Paul Lawson, Sarah Woods, Simone Tanelli, Sebastian Schmidt, Chris Hostetler, and Amy Jo Scarino
Atmos. Chem. Phys., 22, 8259–8285, https://doi.org/10.5194/acp-22-8259-2022, https://doi.org/10.5194/acp-22-8259-2022, 2022
Short summary
Short summary
Satellite-retrieved cloud microphysics are widely used in climate research because of their central role in water and energy cycles. Here, we provide the first detailed investigation of retrieved cloud drop sizes from in situ and various satellite and airborne remote sensing techniques applied to real cumulus cloud fields. We conclude that the most widely used passive remote sensing method employed in climate research produces high biases of 6–8 µm (60 %–80 %) caused by 3-D radiative effects.
Kevin M. Smalley, Matthew D. Lebsock, Ryan Eastman, Mark Smalley, and Mikael K. Witte
Atmos. Chem. Phys., 22, 8197–8219, https://doi.org/10.5194/acp-22-8197-2022, https://doi.org/10.5194/acp-22-8197-2022, 2022
Short summary
Short summary
We use geostationary satellite observations to track pockets of open-cell (POC) stratocumulus and analyze how precipitation, cloud microphysics, and the environment change. Precipitation becomes more intense, corresponding to increasing effective radius and decreasing number concentrations, while the environment remains relatively unchanged. This implies that changes in cloud microphysics are more important than the environment to POC development.
Edward E. Hindman and Scott Lindstrom
Atmos. Chem. Phys., 22, 7995–8008, https://doi.org/10.5194/acp-22-7995-2022, https://doi.org/10.5194/acp-22-7995-2022, 2022
Short summary
Short summary
Winds buffeting the Mt. Everest massif often produce plumes. This systematic study identified plumes from daily observations of real-time, on-line images from a geosynchronous meteorological satellite. The corresponding meteorological data were used with a cloud-forming model to show the plumes were composed, depending on the temperature, of droplets, crystals or both. They were not composed of resuspended snow, which is a common belief. We estimated the plumes may produce significant snowfall.
Zeen Zhu, Pavlos Kollias, Edward Luke, and Fan Yang
Atmos. Chem. Phys., 22, 7405–7416, https://doi.org/10.5194/acp-22-7405-2022, https://doi.org/10.5194/acp-22-7405-2022, 2022
Short summary
Short summary
Drizzle (small rain droplets) is an important component of warm clouds; however, its existence is poorly understood. In this study, we capitalized on a machine-learning algorithm to develop a drizzle detection method. We applied this algorithm to investigate drizzle occurrence and found out that drizzle is far more ubiquitous than previously thought. This study demonstrates the ubiquitous nature of drizzle in clouds and will improve understanding of the associated microphysical process.
Hailing Jia, Johannes Quaas, Edward Gryspeerdt, Christoph Böhm, and Odran Sourdeval
Atmos. Chem. Phys., 22, 7353–7372, https://doi.org/10.5194/acp-22-7353-2022, https://doi.org/10.5194/acp-22-7353-2022, 2022
Short summary
Short summary
Aerosol–cloud interaction is the most uncertain component of the anthropogenic forcing of the climate. By combining satellite and reanalysis data, we show that the strength of the Twomey effect (S) increases remarkably with vertical velocity. Both the confounding effect of aerosol–precipitation interaction and the lack of vertical co-location between aerosol and cloud are found to overestimate S, whereas the retrieval biases in aerosol and cloud appear to underestimate S.
Theresa Mieslinger, Bjorn Stevens, Tobias Kölling, Manfred Brath, Martin Wirth, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 6879–6898, https://doi.org/10.5194/acp-22-6879-2022, https://doi.org/10.5194/acp-22-6879-2022, 2022
Short summary
Short summary
The trades are home to a plethora of small cumulus clouds that are often barely visible to the human eye and difficult to detect with active and passive remote sensing methods. With the help of a new method and by means of high-resolution data we can detect small and particularly thin clouds. We find that optically thin clouds are a common phenomenon in the trades, covering a large area and influencing the radiative effect of clouds if they are undetected and contaminate the cloud-free signal.
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 22, 5743–5756, https://doi.org/10.5194/acp-22-5743-2022, https://doi.org/10.5194/acp-22-5743-2022, 2022
Short summary
Short summary
Clouds are important to the Arctic surface energy budget, but the impact of aerosols on their properties is largely uncertain. This work shows that the response of liquid water path to cloud droplet number increases is strongly dependent on lower tropospheric stability (LTS), with weaker cooling effects in polluted clouds and at high LTS. LTS is projected to decrease in a warmer Arctic, reducing the cooling effect of aerosols and producing a positive, aerosol-dependent cloud feedback.
Ivana Kolmašová, Ondřej Santolík, and Kateřina Rosická
Atmos. Chem. Phys., 22, 3379–3389, https://doi.org/10.5194/acp-22-3379-2022, https://doi.org/10.5194/acp-22-3379-2022, 2022
Short summary
Short summary
The 2014–2015 winter brought an enormous number of lightning strokes to northern Europe, about 4 times more than their long-term median over the last decade. This unusual production of lightning, concentrated above the ocean and along the western coastal areas, was probably due to a combination of large-scale climatic events like El Niño and the North Atlantic Oscillation, causing increased sea surface temperatures and updraft strengths, which acted as additional thundercloud-charging drivers.
Francisco Lang, Luis Ackermann, Yi Huang, Son C. H. Truong, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys., 22, 2135–2152, https://doi.org/10.5194/acp-22-2135-2022, https://doi.org/10.5194/acp-22-2135-2022, 2022
Short summary
Short summary
Marine low-level clouds cover vast areas of the Southern Ocean, and they are essential to the Earth system energy balance. We use 3 years of satellite observations to group low-level clouds by their spatial structure using a pattern-recognizing program. We studied two primary cloud type patterns, i.e. open and closed clouds. Open clouds are uniformly distributed over the storm track, while closed clouds are most predominant in the southeastern Indian Ocean. Closed clouds exhibit a daily cycle.
Tianning Su, Youtong Zheng, and Zhanqing Li
Atmos. Chem. Phys., 22, 1453–1466, https://doi.org/10.5194/acp-22-1453-2022, https://doi.org/10.5194/acp-22-1453-2022, 2022
Short summary
Short summary
To enrich our understanding of coupling of continental clouds, we developed a novel methodology to determine cloud coupling state from a lidar and a suite of surface meteorological instruments. This method is built upon advancement in our understanding of fundamental boundary layer processes and clouds. As the first remote sensing method for determining the coupling state of low clouds over land, this methodology paves a solid ground for further investigating the coupled land–atmosphere system.
Jianhao Zhang, Xiaoli Zhou, Tom Goren, and Graham Feingold
Atmos. Chem. Phys., 22, 861–880, https://doi.org/10.5194/acp-22-861-2022, https://doi.org/10.5194/acp-22-861-2022, 2022
Short summary
Short summary
Oceanic liquid-form clouds are effective sunlight reflectors. Their brightness is highly sensitive to changes in the amount of aerosol particles in the atmosphere and the state of the atmosphere they reside in. This study quantifies this sensitivity using long-term satellite observations and finds an overall cloud brightening (a cooling effect) potential and an essential role of the covarying meteorological conditions in governing this sensitivity for northeastern Pacific stratocumulus.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Xiaojian Zheng, Baike Xi, Xiquan Dong, Peng Wu, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 22, 335–354, https://doi.org/10.5194/acp-22-335-2022, https://doi.org/10.5194/acp-22-335-2022, 2022
Short summary
Short summary
This study uses ground-based observations to investigate the physical processes in the aerosol–cloud interactions in non-precipitating marine boundary layer clouds, over the eastern North Atlantic Ocean. Results show that the cloud responses to the aerosols are diminished with limited water vapor supply, while they are enhanced with increasing water vapor availability. The clouds are found to be most sensitive to the aerosols under sufficient water vapor and strong boundary layer turbulence.
Martin Radenz, Johannes Bühl, Patric Seifert, Holger Baars, Ronny Engelmann, Boris Barja González, Rodanthi-Elisabeth Mamouri, Félix Zamorano, and Albert Ansmann
Atmos. Chem. Phys., 21, 17969–17994, https://doi.org/10.5194/acp-21-17969-2021, https://doi.org/10.5194/acp-21-17969-2021, 2021
Short summary
Short summary
This study brings together long-term ground-based remote-sensing observations of mixed-phase clouds at three key locations of aerosol–cloud interactions in the Northern and Southern Hemisphere midlatitudes. The findings contribute several new aspects on the nature of the excess of supercooled liquid clouds in the Southern Hemisphere, such as a long-term lidar-based estimate of ice-nucleating particle profiles as well as the effects of boundary layer coupling and gravity waves on ice formation.
Yang Yi, Fan Yi, Fuchao Liu, Yunpeng Zhang, Changming Yu, and Yun He
Atmos. Chem. Phys., 21, 17649–17664, https://doi.org/10.5194/acp-21-17649-2021, https://doi.org/10.5194/acp-21-17649-2021, 2021
Short summary
Short summary
Our lidar observations reveal the complete microphysical process of hydrometeors falling from mid-level stratiform clouds. We find that the surface rainfall begins as supercooled mixed-phase hydrometeors fall out of a liquid parent cloud base. We find also that the collision–coalescence growth of precipitating raindrops and subsequent spontaneous breakup always occur around 0.6 km altitude during surface rainfalls. Our findings provide new insights into stratiform precipitation formation.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Raphaela Vogel, Heike Konow, Hauke Schulz, and Paquita Zuidema
Atmos. Chem. Phys., 21, 16609–16630, https://doi.org/10.5194/acp-21-16609-2021, https://doi.org/10.5194/acp-21-16609-2021, 2021
Short summary
Short summary
The shallow cumulus clouds that populate the trade-wind regions can produce substantial amounts of rain. Before reaching the surface, part of the rain can evaporate and form pools of cold air that spread at the surface as density currents. We use 10 years of data from Barbados to show that such cold pools occur on 3 out of 4 d, that cold-pool periods are 90 % cloudier relative to the average winter conditions, and that they are connected to specific patterns of mesoscale cloud organization.
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 21, 15103–15114, https://doi.org/10.5194/acp-21-15103-2021, https://doi.org/10.5194/acp-21-15103-2021, 2021
Short summary
Short summary
When aerosols enter the atmosphere, they interact with the clouds above in what we term aerosol–cloud interactions and lead to a series of reactions which delay the onset of rain. This delay may lead to increased rain rates, or invigoration, when the cloud eventually rains. We show that aerosol leads to invigoration in certain environments. The strength of the invigoration depends on how large the cloud is, which suggests that it is highly tied to the organization of the cloud system.
Hao Luo and Yong Han
Atmos. Chem. Phys., 21, 15171–15184, https://doi.org/10.5194/acp-21-15171-2021, https://doi.org/10.5194/acp-21-15171-2021, 2021
Short summary
Short summary
The various feedbacks of Atlantic tropical cyclones (TCs) to the Saharan air layer (SAL) are determined by the combined effects of dry air masses, the dust aerosols as ice nuclei, and dynamic, thermodynamic, and moisture conditions. The specific influence mechanisms of SAL on the three intensities of TCs (tropical depression, tropical storm, and hurricane) are different. The conclusions are beneficial to our recognition of the physical process and evolution of TCs in the Atlantic region.
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021, https://doi.org/10.5194/acp-21-14671-2021, 2021
Short summary
Short summary
In natural clouds, ice-nucleating particles are expected to be rare above –10 °C. In the current paper, we found that the formation of ice columns is frequent in stratiform clouds and is associated with increased precipitation intensity and liquid water path. In single-layer shallow clouds, the production of ice columns was attributed to secondary ice production, despite the rime-splintering process not being expected to take place in such clouds.
Qiang Li and Silke Groß
Atmos. Chem. Phys., 21, 14573–14590, https://doi.org/10.5194/acp-21-14573-2021, https://doi.org/10.5194/acp-21-14573-2021, 2021
Short summary
Short summary
Aircraft emit exhaust gases and particles directly into the atmosphere, which may contribute to climate change. We present a significant reduction in the occurrence rate and particle linear depolarization ratio of cirrus clouds based on the analysis of measurements with the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite during COVID-19 when air traffic was significantly reduced. The findings imply that these clouds formed with less influence from aviation.
Felipe Toledo, Martial Haeffelin, Eivind Wærsted, and Jean-Charles Dupont
Atmos. Chem. Phys., 21, 13099–13117, https://doi.org/10.5194/acp-21-13099-2021, https://doi.org/10.5194/acp-21-13099-2021, 2021
Short summary
Short summary
The article presents a new conceptual model to describe the temporal evolution of continental fog layers, developed based on 7 years of fog measurements performed at the SIRTA observatory, France. This new paradigm relates the visibility reduction caused by fog to its vertical thickness and liquid water path and provides diagnostic variables that could substantially improve the reliability of fog dissipation nowcasting at a local scale, based on real-time profiling observation.
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021, https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Short summary
A part of continental shallow convective cumulus (Cu) was shown to share properties such as organization and formation over vegetated areas, thus named green Cu. Mechanisms behind the formed patterns are not understood. We use different metrics and an empirical orthogonal function (EOF) to decompose the dataset and quantify organization factors (cloud streets and gravity waves). We show that clouds form a highly organized grid structure over hundreds of kilometers at the field lifetime.
Xin Lu, Feiyue Mao, Daniel Rosenfeld, Yannian Zhu, Zengxin Pan, and Wei Gong
Atmos. Chem. Phys., 21, 11979–12003, https://doi.org/10.5194/acp-21-11979-2021, https://doi.org/10.5194/acp-21-11979-2021, 2021
Short summary
Short summary
In this paper, a novel method for retrieving cloud base height and geometric thickness is developed and applied to produce a global climatology of boundary layer clouds with a high accuracy. The retrieval is based on the 333 m resolution low-level cloud distribution as obtained from the CALIPSO lidar data. The main part of the study describes the variability of cloud vertical geometrical properties in space, season, and time of the day. Resultant new insights are presented.
Cited articles
Baum, B., Yang, P., Heymsfield, A. J., Bansemer, A., Cole, B. H., Merrelli, A.,
Schmitt, C., and Wang, C.: Ice cloud single/scattering property models with
the full phase matrix at wavelengths from 0.2 to 100 µm, J. Quant.
Spectrosc. Ra., 146, 123–139,
https://doi.org/10.1016/j.jqsrt.2014.02.029, 2014. a
Baum, B. A., Heymsfield, A. J., Yang, P., and Bedka, S. T.: Bulk scattering
properties for the remote sensing of ice clouds. Part I: Microphysical data
and models, J. Appl. Meteorol., 44, 1885–1895, https://doi.org/10.1175/JAM2308.1, 2005. a
Bierwirth, E., Ehrlich, A., Wendisch, M., Gayet, J.-F., Gourbeyre, C., Dupuy, R., Herber, A., Neuber, R., and Lampert, A.: Optical thickness and effective radius of Arctic boundary-layer clouds retrieved from airborne nadir and imaging spectrometry, Atmos. Meas. Tech., 6, 1189–1200, https://doi.org/10.5194/amt-6-1189-2013, 2013. a, b
Chylek, P. and Borel, C.: Mixed phase cloud water/ice structure from high
spatial resolution satellite data, Geophys. Res. Lett., 31, L14104,
https://doi.org/10.1029/2004GL020428, 2004. a
de Boer, G., Eloranta, E. W., and Shupe, M. D.: Arctic mixed-phase stratiform
cloud properties from multiple years of surface-based measurements at two
high-latitude locations, J. Atmos. Sci., 66, 2874–2887,
https://doi.org/10.1175/2009JAS3029.1, 2009. a
Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G., Giorgetta,
M., and Brdar, S.: Large eddy simulation using the general circulation model
ICON, J. Adv. Model. Earth Sy., 7, 963–986, https://doi.org/10.1002/2015MS000431,
2015. a
Egerer, U., Gottschalk, M., Siebert, H., Ehrlich, A., and Wendisch, M.: The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer, Atmos. Meas. Tech., 12, 4019–4038, https://doi.org/10.5194/amt-12-4019-2019, 2019. a
Ehrlich, A.: The impact of ice crystals on radiative forcing and remote
sensing of Arctic boundary-layer mixed-phase clouds, PhD thesis, Johannes
Gutenberg University Mainz, Germany, 2009. a
Ehrlich, A., Bierwirth, E., Wendisch, M., Gayet, J.-F., Mioche, G., Lampert, A., and Heintzenberg, J.: Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches, Atmos. Chem. Phys., 8, 7493–7505, https://doi.org/10.5194/acp-8-7493-2008, 2008a. a, b
Ehrlich, A., Wendisch, M., Bierwirth, E., Herber, A., and Schwarzenböck,
A.: Ice crystal shape effects on solar radiative properties of Arctic
mixed-phase clouds – Dependence on microphysical properties, Atmos. Res.,
88, 266–276, 2008b. a
Ehrlich, A., Wendisch, M., Bierwirth, E., Gayet, J.-F., Mioche, G., Lampert, A., and Mayer, B.: Evidence of ice crystals at cloud top of Arctic boundary-layer mixed-phase clouds derived from airborne remote sensing, Atmos. Chem. Phys., 9, 9401–9416, https://doi.org/10.5194/acp-9-9401-2009, 2009. a, b, c
Ehrlich, A., Wendisch, M., Lüpkes, C., Buschmann, M., Bozem, H., Chechin, D., Clemen, H.-C., Dupuy, R., Eppers, O., Hartmann, J., Herber, A., Jäkel, E., Järvinen, E., Jourdan, O., Kästner, U., Kliesch, L.-L., Köllner, F., Mech, M., Mertes, S., Neuber, R., Ruiz-Donoso, E., Schnaiter, M., Schneider, J., Stapf, J., and Zanatta, M.: A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data, 11, 1853–1881, https://doi.org/10.5194/essd-11-1853-2019, 2019. a, b, c
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, 2016. a
Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton,
T. W., Kaye, P. H., Hirst, E., and Greenaway, R.: Simultaneous radar and
aircraft observations of mixed-phase cloud at the 100 m scale, Q. J. Roy.
Meteor. Soc., 130, 1877–1904, https://doi.org/10.1256/qj.03.102, 2004. a
Fletcher, J., Mason, S., and Jakob, C.: The Climatology, Meteorology, and
Boundary Layer Structure of Marine Cold Air Outbreaks in Both Hemispheres, J.
Climate, 29, 1999–2014, https://doi.org/10.1175/JCLI-D-15-0268.1, 2016. a, b
Gerber, H., Frick, G., Malinowski, S. P., Brenguier, J.-L., and Burnet, F.:
Holes and Entrainment in Stratocumulus, J. Atmos. Sci., 62, 443–459,
https://doi.org/10.1175/JAS-3399.1, 2005. a, b
Gerber, H., Frick, G., Malinowski, S. P., Jonsson, H., Khelif, D., and Krueger,
S. K.: Entrainment rates and microphysics in POST stratocumulus, J. Geophys.
Res.-Atmos., 118, 12,094–12,109, https://doi.org/10.1002/jgrd.50878, 2013. a
Gierens, R., Kneifel, S., Shupe, M. D., Ebell, K., Maturilli, M., and Löhnert, U.: Low-level mixed-phase clouds in a complex Arctic environment, Atmos. Chem. Phys., 20, 3459–3481, https://doi.org/10.5194/acp-20-3459-2020, 2020. a, b
Gregory, D., Morcrette, J.-J., Jakob, C., Beljaars, A. C. M., and Stockdale,
T.: Revision of convection, radiation and cloud schemes in the ECMWF
integrated forecasting system, Q. J. Roy. Meteor. Soc., 126, 1685–1710,
https://doi.org/10.1002/qj.49712656607, 2010. a
Heinze, R., Dipankar, A., Henken, C. C., Moseley, C., Sourdeval, O.,
Trömel, S., Xie, X., Adamidis, P., Ament, F., Baars, H., Barthlott, C.,
Behrendt, A., Blahak, U., Bley, S., Brdar, S., Brueck, M., Crewell, S.,
Deneke, H., Girolamo, P. D., Evaristo, R., Fischer, J., Frank, C.,
Friederichs, P., Göcke, T., Gorges, K., Hande, L., Hanke, M., Hansen, A.,
Hege, H., Hoose, C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel, S.,
Knippertz, P., Kuhn, A., Laar, T. v., Macke, A., Maurer, V., Mayer, B.,
Meyer, C. I., Muppa, S. K., Neggers, R. A. J., Orlandi, E., Pantillon, F.,
Pospichal, B., Röber, N., Scheck, L., Seifert, A., Seifert, P., Senf, F.,
Siligam, P., Simmer, C., Steinke, S., Stevens, B., Wapler, K., Weniger, M.,
Wulfmeyer, V., Zängl, G., Zhang, D., and Quaas, J.: Large-eddy
simulations over Germany using ICON: a comprehensive evaluation, Q. J. Roy.
Meteor. Soc., 143, 69–100, https://doi.org/10.1002/qj.2947, 2017. a
Hogan, R. J. and O'Conner, E.: Facilitating cloud radar and lidar algorithms:
the Cloudnet Instrument Synergy/Target Categorization Product, Dept. of
Meteorol. Univ of Reading, UK,
available at: http://www.met.reading.ac.uk/~swrhgnrj/publications/categorization.pdf (last access: 5 March 2020),
2004. a
Horváth, A., Seethala, C., and Deneke, H.: View angle dependence of MODIS
liquid water path retrievals in warm oceanic clouds, J. Geophys. Res.-Atmos.,
119, 8304–8328, https://doi.org/10.1002/2013JD021355, 2014. a
Jäkel, E., Walter, J., and Wendisch, M.: Thermodynamic phase retrieval of convective clouds: impact of sensor viewing geometry and vertical distribution of cloud properties, Atmos. Meas. Tech., 6, 539–547, https://doi.org/10.5194/amt-6-539-2013, 2013. a
Jäkel, E., Ehrlich, A., Schäfer, M., and Wendisch, M.:
Aircraft measurements of spectral solar up- and downward irradiances in the
Arctic during the ACLOUD campaign 2017, PANGAEA, https://doi.org/10.1594/PANGAEA.899177, 2019. a
Kalesse, H., de Boer, G., Solomon, A., Oue, M., Ahlgrimm, M., Zhang, D., Shupe,
M. D., Luke, E., and Protat, A.: Understanding Rapid Changes in Phase
Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds:
An Arctic Case Study, Mon. Weather Rev., 144, 4805–4826,
https://doi.org/10.1175/MWR-D-16-0155.1, 2016. a
Kaur, R. and Ganju, A.: Cloud classification in NOAA AVHRR imageries using
spectral and textural features, J. Ind. Soc. Remote
Sens., 36, 167–174, https://doi.org/10.1007/s12524-008-0017-z, 2008. a
Klein, S. A., McCoy, R. B., Morrison, H., Ackerman, A. S., Avramov, A.,
de Boer, G., Chen, M., Cole, J. N. S., Del Genio, A. D., Falk, M., Foster,
M. J., Fridlind, A., Golaz, J.-C., Hashino, T., Harrington, J. Y., Hoose, C.,
Khairoutdinov, M. F., Larson, V. E., Liu, X., Luo, Y., McFarquhar, G. M.,
Menon, S., Neggers, R. A. J., Park, S., Poellot, M. R., Schmidt, J. M.,
Sednev, I., Shipway, B. J., Shupe, M. D., Spangenbery, D. A., Sud, Y. C.,
Turner, D. D., Veron, D. E., von Salzen, K., Walker, G. K., Wang, Z., Wolf,
A. B., Xie, S., Xu, K.-M., Yang, F., and Zhang, G.: Intercomparison of model
simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic
Cloud Experiment. I: Single-layer cloud, Q. J. Roy. Meteor. Soc., 135,
979–1002, https://doi.org/10.1002/qj.416, 2009. a
Kliesch, L.-L. and Mech, M.: Airborne radar reflectivity and brightness
temperature measurements with POLAR 5 during ACLOUD in May and June 2017, PANGAEA,
https://doi.org/10.1594/PANGAEA.899565, 2019. a
Knudsen, E. M., Heinold, B., Dahlke, S., Bozem, H., Crewell, S., Gorodetskaya, I. V., Heygster, G., Kunkel, D., Maturilli, M., Mech, M., Viceto, C., Rinke, A., Schmithüsen, H., Ehrlich, A., Macke, A., Lüpkes, C., and Wendisch, M.: Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017, Atmos. Chem. Phys., 18, 17995–18022, https://doi.org/10.5194/acp-18-17995-2018, 2018. a
Kokhanovsky, A.: Optical properties of terrestrial clouds, Earth-Sci. Rev., 64,
189–241, https://doi.org/10.1016/S0012-8252(03)00042-4, 2004. a
Kollias, P., Miller, M. A., Luke, E. P., Johnson, K. L., Clothiaux, E. E.,
Moran, K. P., Widener, K. B., and Albrecht, B. A.: The Atmospheric Radiation
Measurement Program Cloud Profiling Radars: Second-Generation Sampling
Strategies, Processing, and Cloud Data Products, J. Atmos.
Ocean. Tech., 24, 1199–1214, https://doi.org/10.1175/JTECH2033.1, 2007. a
Korolev, A.: Limitations of the Wegener-Bergeron-Findeisen mechanism in the
evolution of mixed-phase clouds, J. Atmos. Sci., 64, 3372–3375,
https://doi.org/10.1175/JAS4035.1, 2007. a
Korolev, A. and Field, P. R.: The effect of dynamics on mixed-phase clouds:
Theoretical considerations, J. Atmos. Sci., 65, 66–86,
https://doi.org/10.1175/2007JAS2355.1, 2008. a
Korolev, A. and Isaac, G. A.: Relative humidity in liquid, mixed-phase, and ice
clouds, J. Atmos. Sci., 63, 2865–2880, https://doi.org/10.1175/JAS3784.1, 2006. a, b
Korolev, A., Mcfarquhar, G., R. Field, P., Franklin, C., Lawson, P., Wang, Z.,
Williams, E., J. Abel, S., Axisa, D., Borrmann, S., Crosier, J., Fugal, J.,
Krämer, M., Lohmann, U., Schlenczek, O., and Wendisch, M.: Ice Formation
and Evolution in Clouds and Precipitation: Measurement and Modeling
Challenges. Chapter 5: Mixed-phase clouds: progress and challenges., AMS
Meteorological Monographs, pp. 5.1–5.50, 2017. a
Kostka, P. M., Weissmann, M., Buras, R., Mayer, B., and Stiller, O.:
Observation Operator for Visible and Near-Infrared Satellite Reflectances, J.
Atmos. Ocean. Tech., 31, 1216–1233, https://doi.org/10.1175/JTECH-D-13-00116.1, 2014. a
Langenbach, A., Baumgarten, G., Fiedler, J., Lübken, F.-J., von Savigny, C., and Zalach, J.: Year-round stratospheric aerosol backscatter ratios calculated from lidar measurements above northern Norway, Atmos. Meas. Tech., 12, 4065–4076, https://doi.org/10.5194/amt-12-4065-2019, 2019. a
Lawson, R. P., Jensen, E., Mitchell, D. L., Baker, B., Mo, Q. X., and Pilson,
B.: Microphysical and radiative properties of tropical clouds investigated in
TC4 and NAMMA, J. Geophys. Res., 115, D00J08, https://doi.org/10.1029/2009JD013017,
2010. a, b
Li, J., Menzel, W. P., Yang, Z., Frey, R. A., and Ackerman, S. A.:
High-Spatial-Resolution Surface and Cloud-Type Classification from MODIS
Multispectral Band Measurements, J. Appl. Meteorol., 42,
204–226, https://doi.org/10.1175/1520-0450(2003)042<0204:HSRSAC>2.0.CO;2, 2003. a
Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evaluation of Seven
Different Atmospheric Reanalysis Products in the Arctic, J. Climate,
27, 2588–2606, https://doi.org/10.1175/JCLI-D-13-00014.1, 2014. a
Loewe, K., Ekman, A. M. L., Paukert, M., Sedlar, J., Tjernström, M., and Hoose, C.: Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS), Atmos. Chem. Phys., 17, 6693–6704, https://doi.org/10.5194/acp-17-6693-2017, 2017. a
Lucy, L. B.: An iterative technique for the rectification of observed
distributions, Astron. J., 79, 745, https://doi.org/10.1086/111605, 1974. a
Luo, Y. L., Xu, K. M., Morrison, H., McFarquhar, G. M., Wang, Z., and Zhang,
G.: Multi-layer arctic mixed-phase clouds simulated by a cloud-resolving
model: Comparison with ARM observations and sensitivity experiments, J.
Geophys. Res., 113, D12208, https://doi.org/10.1029/2007JD009563, 2008. a
Maahn, M., Löhnert, U., Kollias, P., Jackson, R. C., and McFarquhar, G. M.:
Developing and Evaluating Ice Cloud Parameterizations for Forward Modeling of
Radar Moments Using in situ Aircraft Observations, J. Atmos. Ocean. Tech.,
32, 880–903, https://doi.org/10.1175/JTECH-D-14-00112.1, 2015. a
Marchand, R. T., Ackermann, T. P., and Moroney, C.: An assessment of Multiangle
Imaging Spectroradiometer (MISR) stereoderived cloud top heights and cloud
top winds using groundbased radar, lidar, and microwave radiometers, J.
Geophys. Res., 112, D06204, https://doi.org/10.1029/2006JD007091, 2007. a
Marshak, A., Platnick, S., Varnai, T., Wen, G. Y., and Cahalan, R. F.: Impact
of three-dimensional radiative effects on satellite retrievals of cloud
droplet sizes, J. Geophys. Res., 111, D09207, https://doi.org/10.1029/2005JD006686, 2006. a
Martin, G. M., Johnson, D. W., and Spice, A.: The measurement and
parameterization of effective radius of droplets in warm stratocumulus, J.
Atmos. Sci., 51, 1823–1842,
https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2, 1994. a
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005. a
McFarquhar, G. M., Zhang, G., Poellot, M. R., Kok, G. L., Mccoy, R., Tooman,
T., Fridlind, A., and Heymsfield, A. J.: Ice properties of single-layer
stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1.
Observations, J. Geophys. Res., 112, D24201, https://doi.org/10.1029/2007JD008633,
2007. a, b
McGill, M. J., Li, L., Hart, W. D., Heymsfield, G. M., Hlavka, D. L., Racette,
P. E., Tian, L., Vaughan, M. A., and Winker, D. M.: Combined lidar-radar
remote sensing: Initial results from CRYSTAL-FACE, J. Geophys. Res., 109,
D07203, https://doi.org/10.1029/2003JD004030, 2004. a
Mech, M., Kliesch, L.-L., Anhäuser, A., Rose, T., Kollias, P., and Crewell, S.: Microwave Radar/radiometer for Arctic Clouds (MiRAC): first insights from the ACLOUD campaign, Atmos. Meas. Tech., 12, 5019–5037, https://doi.org/10.5194/amt-12-5019-2019, 2019. a, b, c
Mellado, J. P.: Cloud-Top Entrainment in Stratocumulus Clouds, Annu. Rev. Fluid
Mech., 49, 145–69, https://doi.org/10.1146/annurev-fluid-010816-060231, 2017. a
Miller, S. D., Noh, Y.-J., and Heidinger, A. K.: Liquid-top mixed-phase cloud
detection from shortwave-infrared satellite radiometer observations: A
physical basis, J. Geophys. Res., 119, 8245–8267,
https://doi.org/10.1002/2013JD021262, 2014. a
Mioche, G., Jourdan, O., Ceccaldi, M., and Delanoë, J.: Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: a study based on spaceborne active remote sensing, Atmos. Chem. Phys., 15, 2445–2461, https://doi.org/10.5194/acp-15-2445-2015, 2015. a, b, c
Mioche, G., Jourdan, O., Delanoë, J., Gourbeyre, C., Febvre, G., Dupuy, R., Monier, M., Szczap, F., Schwarzenboeck, A., and Gayet, J.-F.: Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas, Atmos. Chem. Phys., 17, 12845–12869, https://doi.org/10.5194/acp-17-12845-2017, 2017. a, b, c, d
Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and
Sulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat. Geosci.,
5, 11–17, https://doi.org/10.1038/NGEO1332, 2012. a, b, c
Nakajima, T. and King, M.: Determination of the optical thickness and
effective particle radius of clouds from reflected solar radiation
measurements. Part I: Theory, J. Atmos. Sci., 47, 1878–1893,
https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990. a
Neggers, R. A. J., Chylik, J., Egerer, U., Griesche, H., Schemann, V., Seifert,
P., Siebert, H., and Macke, A.: Local and Remote Controls on Arctic
Mixed-Layer Evolution, J. Adv. Model. Earth Sy., 11, 2214–2237,
https://doi.org/10.1029/2019MS001671, 2019. a
Neuber, R., Schmidt, L. V., Ritter, C., and Mech, M.: Cloud top
altitudes observed with airborne lidar during the ACLOUD campaign, PANGAEA,
https://doi.org/10.1594/PANGAEA.899962, 2019. a
Nomokonova, T., Ebell, K., Löhnert, U., Maturilli, M., Ritter, C., and O'Connor, E.: Statistics on clouds and their relation to thermodynamic conditions at Ny-Ålesund using ground-based sensor synergy, Atmos. Chem. Phys., 19, 4105–4126, https://doi.org/10.5194/acp-19-4105-2019, 2019. a, b
Pilewskie, P. and Twomey, S.: Discrimination of ice from water in clouds by
optical remote sensing, Atmos. Res., 21, 113–122,
https://doi.org/10.1016/0169-8095(87)90002-0, 1987. a
Pithan, F., Svensson, G., Caballero, R., Chechin, D., Cronin, T. W., Ekman, A.
M. L., Neggers, R., Shupe, M. D., Solomon, A., Tjernström, M., and
Wendisch, M.: Role of air-mass transformations in exchange between the
Arctic and mid-latitudes, Nat. Geosci., 11, 805–812,
https://doi.org/10.1038/s41561-018-0234-1, 2018. a, b, c
Platnick, S.: Vertical photon transport in cloud remote sensing problems, J.
Geophys. Res., 105, 22919–22935, https://doi.org/10.1029/2000JD900333, 2000. a, b
Pu, R.: Hyperspectral remote sensing: Fundamentals and practices,
https://doi.org/10.1201/9781315120607, 2017. a
Richardson, W. H.: Bayesian-Based Iterative Method of Image Restoration, J.
Opt. Soc. Am., 62, 55–59, https://doi.org/10.1364/JOSA.62.000055, 1972. a
Riedi, J., Marchant, B., Platnick, S., Baum, B. A., Thieuleux, F., Oudard, C., Parol, F., Nicolas, J.-M., and Dubuisson, P.: Cloud thermodynamic phase inferred from merged POLDER and MODIS data, Atmos. Chem. Phys., 10, 11851–11865, https://doi.org/10.5194/acp-10-11851-2010, 2010. a
Roesler, E. L., Posselt, D. J., and Rood, R. B.: Using large eddy simulations
to reveal the size, strength, and phase of updraft and downdraft cores of an
Arctic mixed-phase stratocumulus cloud, J. Geophys. Res.-Atmos., 122,
4378–4400, https://doi.org/10.1002/2016JD026055, 2017. a, b
Ruiz-Donoso, E., Ehrlich, A., Schäfer, M., Jäkel, E., and
Wendisch, M.: Spectral solar cloud top radiance measured by airborne
spectral imaging during the ACLOUD campaign in 2017, PANGAEA,
https://doi.org/10.1594/PANGAEA.902150, 2019. a
Schäfer, M., Bierwirth, E., Ehrlich, A., Heyner, F., and Wendisch, M.: Retrieval of cirrus optical thickness and assessment of ice crystal shape from ground-based imaging spectrometry, Atmos. Meas. Tech., 6, 1855–1868, https://doi.org/10.5194/amt-6-1855-2013, 2013. a, b, c
Schäfer, M., Bierwirth, E., Ehrlich, A., Jäkel, E., Werner, F., and Wendisch, M.: Directional, horizontal inhomogeneities of cloud optical thickness fields retrieved from ground-based and airbornespectral imaging, Atmos. Chem. Phys., 17, 2359–2372, https://doi.org/10.5194/acp-17-2359-2017, 2017. a
Schäfer, M., Loewe, K., Ehrlich, A., Hoose, C., and Wendisch, M.: Simulated and observed horizontal inhomogeneities of optical thickness of Arctic stratus, Atmos. Chem. Phys., 18, 13115–13133, https://doi.org/10.5194/acp-18-13115-2018, 2018. a, b
Schemann, V. and Ebell, K.: Simulation of mixed-phase clouds with the ICON large-eddy model in the complex Arctic environment around Ny-Ålesund, Atmos. Chem. Phys., 20, 475–485, https://doi.org/10.5194/acp-20-475-2020, 2020. a
Schnaiter, M. and Järvinen, E.: SID-3 1Hz size distribution of cloud
particles during the ACLOUD campaign in 2017, PANGAEA, https://doi.org/10.1594/PANGAEA.900261,
2019. a
Sedlar, J. and Tjernström, M.: Clouds, warm air, and a climate cooling signal
over the summer Arctic, Geophys. Res. Lett., 44, 1095–1103,
https://doi.org/10.1002/2016GL071959, 2017. a, b, c
Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics
parameterization for mixed-phase clouds. Part 1: Model description,
Meteorol. Atmos. Phys., 92, 45–66, https://doi.org/10.1007/s00703-005-0112-4, 2006. a, b
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011. a
Shettle, E.: Models of aerosols, clouds, and precipitation for atmospheric
propagation studies, AGARD Conf. Proce., 1, 1990. a
Shupe, M. D.: A ground-based multisensor cloud phase classifier, Geophys. Res.
Lett., 34, L22809, https://doi.org/10.1029/2007GL031008, 2007. a
Shupe, M. D.: Clouds at Arctic atmospheric observatories. Part II:
Thermodynamic phase characteristics, J. Appl. Meteorol. Clim., 50,
645–661, https://doi.org/10.1175/2010JAMC2468.1, 2011. a, b
Shupe, M. D., Uttal, T., and Matrosov, S. Y.: Arctic cloud microphysics
retrievals from surface-based remote sensors at SHEBA, J. Appl. Meteor.,
44, 1544–1562, https://doi.org/10.1175/JAM2297.1, 2005. a
Shupe, M. D., Matrosov, S. Y., and Uttal, T.: Arctic mixed-phase cloud
properties derived from surface-based sensors at SHEBA, J. Atmos. Sci., 63,
697–711, https://doi.org/10.1175/JAS3659.1, 2006. a, b, c, d
Shupe, M. D., Kollias, P., Persson, P. O. G., and McFarquhar, G. M.: Vertical
motions in Arctic mixed-phase stratiform clouds, J. Atmos. Sci., 65,
1304–1322, https://doi.org/10.1175/2007JAS2479.1, 2008. a, b
Stachlewska, I. S., Neuber, R., Lampert, A., Ritter, C., and Wehrle, G.: AMALi – the Airborne Mobile Aerosol Lidar for Arctic research, Atmos. Chem. Phys., 10, 2947–2963, https://doi.org/10.5194/acp-10-2947-2010, 2010. a, b
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Laszlo, I.: DISORT, a
General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative
Transfer in Scattering and Emitting Layered Media: Documentation of
Methodology, Tech. rep., Dept. of Physics and Engineering Physics, Stevens
Institute of Technology, Hoboken, NJ 07030, 2000. a
Stephens, G., Vane, D., Boain, R., Mace, G., Sassen, K., Wang, Z., Illingworth,
A., O'Connor, E., Rossow, W., Durden, S., Miller, S., Austin, R., Benedetti,
A., Mitrescu, C., and the CloudSat Science Team: The CloudSat mission and
the A-train, B. Am. Meteorol. Soc., 83, 1771–1790,
https://doi.org/10.1175/BAMS-83-12-1771, 2002. a
Tan, I. and Storelvmo, T.: Sensitivity Study on the Influence of Cloud
Microphysical Parameters on Mixed-Phase Cloud Thermodynamic Phase
Partitioning in CAM5, J. Atmos. Sci., 73, 709–728,
https://doi.org/10.1175/JAS-D-15-0152.1, 2016. a
Tan, I. and Storelvmo, T.: Evidence of Strong Contributions From Mixed-Phase
Clouds to Arctic Climate Change, Geophys. Res. Lett., 46,
2894–2902, https://doi.org/10.1029/2018GL081871, 2019. a
Thompson, D. R., McCubbin, I., Gao, B. C., Green, R. O., Matthews, A. A., Mei,
F., Meyer, K. G., Platnick, S., Schmid, B., Tomlinson, J., and Wilcox, E.:
Measuring cloud thermodynamic phase with shortwave infrared imaging
spectroscopy, J. Geophys. Res.-Atmos., 121, 9174–9190,
https://doi.org/10.1002/2016JD024999, 2016. a, b
Thompson, D. R., Kahn, B. H., Green, R. O., Chien, S. A., Middleton, E. M., and Tran, D. Q.: Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005–2015, Atmos. Meas. Tech., 11, 1019–1030, https://doi.org/10.5194/amt-11-1019-2018, 2018. a
Tjernström, M., Shupe, M. D., Brooks, I. M., Persson, P. O. G., Prytherch, J.,
Salisbury, D. J., Sedlar, J., Achtert, P., Brooks, B. J., Johnston, P. E.,
Sotiropoulou, G., and Wolfe, D.: Warm-air advection, air mass transformation
and fog causes rapid ice melt, Geophys. Res. Lett., 42, 5594–5602,
https://doi.org/10.1002/2015GL064373, 2015. a
Vochezer, P., Järvinen, E., Wagner, R., Kupiszewski, P., Leisner, T., and Schnaiter, M.: In situ characterization of mixed phase clouds using the Small Ice Detector and the Particle Phase Discriminator, Atmos. Meas. Tech., 9, 159–177, https://doi.org/10.5194/amt-9-159-2016, 2016. a
Wang, S., Zheng, X., and Jiang, Q.: Strongly sheared stratocumulus convection: an observationally based large-eddy simulation study, Atmos. Chem. Phys., 12, 5223–5235, https://doi.org/10.5194/acp-12-5223-2012, 2012. a
Wendisch, M., Müller, D., Schell, D., and Heintzenberg, J.: An airborne
spectral albedometer with active horizontal stabilization, J. Atmos. Ocean.
Tech., 18, 1856–1866,
https://doi.org/10.1175/1520-0426(2001)018<1856:AASAWA>2.0.CO;2, 2001. a
Wendisch, M., Brückner, M., Burrows, J. P., Crewell, S., Dethloff, K., Ebell,
K., Lüpkes, C., Macke, A., Notholt, J., Quaas, J., Rinke, A., and Tegen,
I.: Understanding causes and effects of rapid warming in the Arctic, Eos, 98, 22–26,
https://doi.org/10.1029/2017EO064803, 2017. a
Wendisch, M., Macke, A., Ehrlich, A., Lüpkes, C., Mech, M., Chechin, D.,
Dethloff, K., Velasco, C. B., Bozem, H., Brückner, M., Clemen, H.-C.,
Crewell, S., Donth, T., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R.,
Engler, C., Eppers, O., Gehrmann, M., Gong, X., Gottschalk, M., Gourbeyre,
C., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A.,
Herrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., Jäkel, E.,
Järvinen, E., Jourdan, O., Kästner, U., Kecorius, S., Knudsen, E. M.,
Köllner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M., Mei, L.,
Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T., Notholt,
J., Palm, M., van Pinxteren, M., Quaas, J., Richter, P., Ruiz-Donoso, E.,
Schäfer, M., Schmieder, K., Schnaiter, M., Schneider, J., Schwarzenböck,
A., Seifert, P., Shupe, M. D., Siebert, H., Spreen, G., Stapf, J., Stratmann,
F., Vogl, T., Welti, A., Wex, H., Wiedensohler, A., Zanatta, M., and
Zeppenfeld, S.: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform
Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic
Amplification, B. Am. Meteorol. Soc., 100, 841–871,
https://doi.org/10.1175/BAMS-D-18-0072.1, 2019.
a, b
Werner, F., Siebert, H., Pilewskie, P., Schmeissner, T., Shaw, R. A., and
Wendisch, M.: New airborne retrieval approach for trade wind cumulus
properties under overlying cirrus, J. Geophys. Res.-Atmos., 118, 3634–3649,
https://doi.org/10.1002/jgrd.50334, 2013. a
Werner, F., Ditas, F., Siebert, H., Simmel, M., Wehner, B., Pilewskie, P.,
Schmeissner, T., Shaw, R. A., Hartmann, S., Wex, H., Roberts, G. C., and
Wendisch, M.: Twomey effect observed from collocated microphysical and remote
sensing measurements over shallow cumulus, J. Geophys. Res., 119, 1534–1545,
https://doi.org/10.1002/2013JD020131, 2014. a
Wesche, C., Steinhage, D., and Nixdorf, U.: Polar aircraft Polar5 and Polar6
operated by the Alfred Wegener Institute, J. Large-Scale Res. Facilities, 2,
A87, https://doi.org/10.17815/jlsrf-2-153, 2016. a
Woods, C., Caballero, R., and Svensson, G.: Large-scale circulation associated
with moisture intrusions into the Arctic during winter, Geophys. Res. Lett.,
40, 4717–4721, https://doi.org/10.1002/grl.50912, 2013. a, b
Yang, P., Liou, K. N., Wyser, K., and Mitchell, D.: Parameterization of the
scattering and absorption properties of individual ice crystals, J. Geophys.
Res., 105, 4.699–4.718, https://doi.org/10.1029/1999JD900755, 2000. a
Zhou, L., Liu, Q., Liu, D., Xie, L., Qi, L., and Liu, X.: Validation of MODIS
liquid water path for oceanic nonraining warm clouds: Implications on the
vertical profile of cloud water content, J. Geophys. Res.-Atmos., 121,
4855–4876, https://doi.org/10.1002/2015JD024499, 2016. a
Zinner, T. and Mayer, B.: Remote sensing of stratocumulus clouds: Uncertainties
and biases due to inhomogeneity, J. Geophys. Res.-Atmos., 111, D14209, https://doi.org/10.1029/2005JD006955, 2006. a
Zinner, T., Mayer, B., and Schröder, M.: Determination of 3D cloud
structures from high resolution radiance data, J. Geophys. Res., 111, D08204,
https://doi.org/10.1029/2005JD006062, 2006. a
Short summary
Mixed-phase clouds, formed of water droplets and ice crystals, appear frequently in Arctic regions. Characterizing the distribution of liquid water and ice inside the cloud appropriately is important because it influences the cloud's impact on the surface temperature. In this study, we combined images of the cloud top with measurements inside the cloud to analyze in detail the 3D spatial distribution of liquid and ice in two mixed-phase clouds occurring under different meteorological scenarios.
Mixed-phase clouds, formed of water droplets and ice crystals, appear frequently in Arctic...
Altmetrics
Final-revised paper
Preprint