Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-14393-2020
https://doi.org/10.5194/acp-20-14393-2020
Research article
 | 
27 Nov 2020
Research article |  | 27 Nov 2020

Direct contribution of ammonia to α-pinene secondary organic aerosol formation

Liqing Hao, Eetu Kari, Ari Leskinen, Douglas R. Worsnop, and Annele Virtanen

Related authors

Isothermal evaporation of α-pinene secondary organic aerosol particles formed under low NOx and high NOx conditions
Zijun Li, Angela Buchholz, Luis M. F. Barreira, Arttu Ylisirniö, Liqing Hao, Iida Pullinen, Siegfried Schobesberger, and Annele Virtanen
Atmos. Chem. Phys., 23, 203–220, https://doi.org/10.5194/acp-23-203-2023,https://doi.org/10.5194/acp-23-203-2023, 2023
Short summary
Aerosol–stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations
Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 12417–12441, https://doi.org/10.5194/acp-22-12417-2022,https://doi.org/10.5194/acp-22-12417-2022, 2022
Short summary
Evolution of volatility and composition in sesquiterpene-mixed and α-pinene secondary organic aerosol particles during isothermal evaporation
Zijun Li, Angela Buchholz, Arttu Ylisirniö, Luis Barreira, Liqing Hao, Siegfried Schobesberger, Taina Yli-Juuti, and Annele Virtanen
Atmos. Chem. Phys., 21, 18283–18302, https://doi.org/10.5194/acp-21-18283-2021,https://doi.org/10.5194/acp-21-18283-2021, 2021
Short summary
The seasonal cycle of ice-nucleating particles linked to the abundance of biogenic aerosol in boreal forests
Julia Schneider, Kristina Höhler, Paavo Heikkilä, Jorma Keskinen, Barbara Bertozzi, Pia Bogert, Tobias Schorr, Nsikanabasi Silas Umo, Franziska Vogel, Zoé Brasseur, Yusheng Wu, Simo Hakala, Jonathan Duplissy, Dmitri Moisseev, Markku Kulmala, Michael P. Adams, Benjamin J. Murray, Kimmo Korhonen, Liqing Hao, Erik S. Thomson, Dimitri Castarède, Thomas Leisner, Tuukka Petäjä, and Ottmar Möhler
Atmos. Chem. Phys., 21, 3899–3918, https://doi.org/10.5194/acp-21-3899-2021,https://doi.org/10.5194/acp-21-3899-2021, 2021
Short summary
Comparison of dimension reduction techniques in the analysis of mass spectrometry data
Sini Isokääntä, Eetu Kari, Angela Buchholz, Liqing Hao, Siegfried Schobesberger, Annele Virtanen, and Santtu Mikkonen
Atmos. Meas. Tech., 13, 2995–3022, https://doi.org/10.5194/amt-13-2995-2020,https://doi.org/10.5194/amt-13-2995-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Formation and loss of light absorbance by phenolic aqueous SOA by OH and an organic triplet excited state
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024,https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary
Technical Note: A technique to convert NO2 to NO2 with S(IV) and its application to measuring nitrate photolysis
Aaron Lieberman, Julietta Picco, Murat Onder, and Cort Anastasio
Atmos. Chem. Phys., 24, 4411–4419, https://doi.org/10.5194/acp-24-4411-2024,https://doi.org/10.5194/acp-24-4411-2024, 2024
Short summary
Distribution, chemical, and molecular composition of high and low molecular weight humic-like substances in ambient aerosols
Xingjun Fan, Ao Cheng, Xufang Yu, Tao Cao, Dan Chen, Wenchao Ji, Yongbing Cai, Fande Meng, Jianzhong Song, and Ping'an Peng
Atmos. Chem. Phys., 24, 3769–3783, https://doi.org/10.5194/acp-24-3769-2024,https://doi.org/10.5194/acp-24-3769-2024, 2024
Short summary
Desorption lifetimes and activation energies influencing gas–surface interactions and multiphase chemical kinetics
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024,https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Molecular analysis of secondary organic aerosol and brown carbon from the oxidation of indole
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024,https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary

Cited articles

Alfarra, R.: Insights Into Atmospheric Organic Aerosols Using An Aerosol Mass Spectrometer, PhD thesis, University of Manchester, 2004. 
Babar, Z. B., Park, J., and Lim, H.: Influence of NH3 on secondary organic aerosols from the ozonolysis and photooxidation of a-pinene in a flow reactor, Atmos. Environ., 164, 71–84, 2017. 
Barsanti, K. C., McMurry, P. H., and Smith, J. N.: The potential contribution of organic salts to new particle growth, Atmos. Chem. Phys., 9, 2949–2957, https://doi.org/10.5194/acp-9-2949-2009, 2009. 
Battye, W., Aneja, V. P., and Roelle, P. A.: Evaluation and improvement of ammonia emission inventories, Atmos. Environ., 37, 3873–3883, 2003. 
Becker, B. and Davidson, A. W.: the systems formic acid-ammonia and propionic acid-ammonia, J. Am. Chem. Soc., 85, 57–159, https://doi.org/10.1021/ja00885a010, 1963. 
Download
Short summary
Our work presents the observational results of secondary organic aerosol (SOA) formation in the presence of ammonia. The particle-phase ammonium was continuously produced even after SOA formation had ceased. The gas-phase organic acids were observed to contribute to the formed particle-phase ammonium salts. This study suggests that the presence of ammonia may change the mass and chemical composition of large-size SOA particles and can potentially alter the aerosol impact on climate change.
Altmetrics
Final-revised paper
Preprint