Preprints
https://doi.org/10.5194/acp-2017-433
https://doi.org/10.5194/acp-2017-433
15 Jun 2017
 | 15 Jun 2017
Status: this preprint was under review for the journal ACP but the revision was not accepted.

Influence of NO2 on secondary organic aerosol formation from ozonolysis of limonene

Changjin Hu, Qiao Ma, Zhi Liu, Yue Cheng, Liqing Hao, Nana Wei, Yanbo Gai, Xiaoxiao Lin, Xuejun Gu, Weixiong Zhao, Mingqiang Huang, Zhenya Wang, and Weijun Zhang

Abstract. Limonene has a strong tendency to undergo ozonolysis to form semi-volatile and low-volatility compounds that contribute to secondary organic aerosols (SOAs) both outdoors and indoors. The influence of NO2 on SOA formation from ozonolysis of limonene has been evaluated using chamber experiments and the Master Chemical Mechanism (MCM) coupled with a gas-particle partitioning model in this work. A series of 21 indoor chamber experiments were carried out with or without NO2 under different [O3]0 / [VOC]0 ratios, and these experimental data were compared with the model simulations. Agreement in SOA yields was observed between the experimental observations and model simulations under varying conditions. Generally, SOA mass yields are positively dependent on [O3]0 / [VOC]0 without the presence of NO2. However, the introduction of NO2 leads to a more complicated change in SOA yield, which is shown to be related to initial [O3] / [VOC] ratios. When [O3]0 / [VOC]0 > 2, the introduction of NO2 results in an increase of SOA yield in the range of NO2 studied in this work; whereas a weak negative effect was found for SOA formation according to the introduction of ~ 250 ppbv NO2 under [O3]0 / [VOC]0 < 2 conditions. It was suggested that the effect of NO2 on SOA formation yields from limonene ozonolysis is related to the competition between O3- and NO3-initiated oxidation of limonene as well as the competition between RO2 + HO2 and RO2 + NO2 (or NO3). Analysis of aerosol chemical composition with Fourier-transform infrared spectroscopy (FTIR) and modeling further confirmed that the formation of peroxy acyl nitrates (PANs) and organic nitrates plays an important role in aerosol particle formation from limonene ozonolysis at the presence of NO2. The findings here indicate that accurately constraining SOA yields from NO3 oxidation is essential to evaluate the influence of NO2 on SOA formation in some real atmosphere, for example, regions with both biogenic and anthropogenic influences.

Changjin Hu, Qiao Ma, Zhi Liu, Yue Cheng, Liqing Hao, Nana Wei, Yanbo Gai, Xiaoxiao Lin, Xuejun Gu, Weixiong Zhao, Mingqiang Huang, Zhenya Wang, and Weijun Zhang
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Changjin Hu, Qiao Ma, Zhi Liu, Yue Cheng, Liqing Hao, Nana Wei, Yanbo Gai, Xiaoxiao Lin, Xuejun Gu, Weixiong Zhao, Mingqiang Huang, Zhenya Wang, and Weijun Zhang
Changjin Hu, Qiao Ma, Zhi Liu, Yue Cheng, Liqing Hao, Nana Wei, Yanbo Gai, Xiaoxiao Lin, Xuejun Gu, Weixiong Zhao, Mingqiang Huang, Zhenya Wang, and Weijun Zhang

Viewed

Total article views: 1,722 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,273 399 50 1,722 249 37 52
  • HTML: 1,273
  • PDF: 399
  • XML: 50
  • Total: 1,722
  • Supplement: 249
  • BibTeX: 37
  • EndNote: 52
Views and downloads (calculated since 15 Jun 2017)
Cumulative views and downloads (calculated since 15 Jun 2017)

Viewed (geographical distribution)

Total article views: 1,719 (including HTML, PDF, and XML) Thereof 1,716 with geography defined and 3 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 27 Mar 2024
Download
Short summary
The effect of NO2 on SOA formation from oxidation of limonene is found to be related to the competition between O3- and NO3-initiated oxidation as well as the competition between RO2 + HO2 and RO2 + NO2 (or NO3) following the initial ozonolysis, and organic nitrates is believed to play an important role in aerosol particle formation. It is suggested that SOA formation in the regions with substantial anthropogenic-biogenic interactions should be evaluated more systematically than before.
Altmetrics