Articles | Volume 19, issue 9
Atmos. Chem. Phys., 19, 6535–6549, 2019
https://doi.org/10.5194/acp-19-6535-2019
Atmos. Chem. Phys., 19, 6535–6549, 2019
https://doi.org/10.5194/acp-19-6535-2019

Research article 17 May 2019

Research article | 17 May 2019

A numerical process study on the rapid transport of stratospheric air down to the surface over western North America and the Tibetan Plateau

Bojan Škerlak et al.

Related authors

Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments
Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021,https://doi.org/10.5194/acp-21-13425-2021, 2021
Short summary
Integration-based Extraction and Visualization of Jet Stream Cores
Lukas Bösiger, Michael Sprenger, Maxi Böttcher, Hanna Joos, and Tobias Günther
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-240,https://doi.org/10.5194/gmd-2021-240, 2021
Preprint under review for GMD
Short summary
Atmospheric Blocking and Weather Extremes over the Euro-Atlantic Sector – A Review
Lisa-Ann Kautz, Olivia Martius, Stephan Pfahl, Joaquim G. Pinto, Alexandre M. Ramos, Pedro M. Sousa, and Tim Woollings
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-56,https://doi.org/10.5194/wcd-2021-56, 2021
Preprint under review for WCD
Short summary
Lagrangian formation pathways of moist anomalies in the trade-wind region during the dry season: two case studies from EUREC4A
Leonie Villiger, Heini Wernli, Maxi Boettcher, Martin Hagen, and Franziska Aemisegger
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-42,https://doi.org/10.5194/wcd-2021-42, 2021
Preprint under review for WCD
Short summary
The three-dimensional life cycles of potential vorticity cutoffs: a global and selected regional climatologies in ERA-Interim (1979–2018)
Raphael Portmann, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 507–534, https://doi.org/10.5194/wcd-2-507-2021,https://doi.org/10.5194/wcd-2-507-2021, 2021
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021,https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: optimization of mitigation actions based on large-eddy simulations
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021,https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Measurement report: Effect of wind shear on PM10 concentration vertical structure in the urban boundary layer in a complex terrain
Piotr Sekuła, Anita Bokwa, Jakub Bartyzel, Bogdan Bochenek, Łukasz Chmura, Michał Gałkowski, and Mirosław Zimnoch
Atmos. Chem. Phys., 21, 12113–12139, https://doi.org/10.5194/acp-21-12113-2021,https://doi.org/10.5194/acp-21-12113-2021, 2021
Short summary
The effect of forced change and unforced variability in heat waves, temperature extremes, and associated population risk in a CO2-warmed world
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021,https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
Convective self–aggregation in a mean flow
Hyunju Jung, Ann Kristin Naumann, and Bjorn Stevens
Atmos. Chem. Phys., 21, 10337–10345, https://doi.org/10.5194/acp-21-10337-2021,https://doi.org/10.5194/acp-21-10337-2021, 2021
Short summary

Cited articles

Akritidis, D., Zanis, P., Pytharoulis, I., Mavrakis, A., and Karacostas, T.: A deep stratospheric intrusion event down to the earth's surface of the megacity of Athens, Meteorol. Atmos. Phys., 109, 9–18, 2010. 
Akritidis, D., Katragkou, E., Zanis, P., Pytharoulis, I., Melas, D., Flemming, J., Inness, A., Clark, H., Plu, M., and Eskes, H.: A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: analysis and evaluation, Atmos. Chem. Phys., 18, 15515==15534, https://doi.org/10.5194/acp-18-15515-2018, 2018. 
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., and Raschendorfer, M.: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. 
Beekmann, M., Ancellet, G., Blonsky, S., De Muer, D., Ebel, A., Elbern, H., Hendricks, J., Kowol, J., Mancier, C., Sladkovic, R., Smit, H. G. J., Speth, P., Trickl, T., and Van Haver, P.: Regional and global tropopause fold occurrence and related ozone flux across the tropopause, J. Atmos. Chem., 28, 29–44, 1997. 
Bott, A.: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes, Mon. Weather Rev., 117, 1006–1015, 1989. 
Download
Short summary
Upper-level fronts are often associated with the rapid transport of stratospheric air to the lower troposphere, leading to significantly enhanced ozone concentrations. This paper considers the multi-scale nature that is needed to bring stratospheric air down to the surface. The final transport step to the surface can be related to frontal zones and the associated vertical winds or to near-horizontal tracer transport followed by entrainment into a growing planetary boundary layer.
Altmetrics
Final-revised paper
Preprint