Articles | Volume 19, issue 9
Research article
17 May 2019
Research article |  | 17 May 2019

A numerical process study on the rapid transport of stratospheric air down to the surface over western North America and the Tibetan Plateau

Bojan Škerlak, Stephan Pfahl, Michael Sprenger, and Heini Wernli

Related authors

How relevant are frequency changes of weather regimes for understanding climate change signals in surface precipitation in the North Atlantic-European sector? – a conceptual analysis with CESM1 large ensemble simulations
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Matthias Röthlisberger, and Heini Wernli
EGUsphere,,, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Changes in snow avalanche activity in response to climate warming in the Swiss Alps
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
EGUsphere,,, 2024
Short summary
Warm conveyor belt characteristics and impacts along the life cycle of extratropical cyclones: case studies and climatological analysis based on ERA5
Katharina Heitmann, Michael Sprenger, Hanin Binder, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 5, 537–557,,, 2024
Short summary
Characteristics and dynamics of extreme winters in the Barents Sea in a changing climate
Katharina Hartmuth, Heini Wernli, and Lukas Papritz
EGUsphere,,, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
A Lagrangian framework for detecting and characterizing the descent of foehn from Alpine to local scales
Lukas Jansing, Lukas Papritz, and Michael Sprenger
Weather Clim. Dynam., 5, 463–489,,, 2024
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Role of the Indian Ocean basin mode in driving the interdecadal variations of summer precipitation over the East Asian monsoon boundary zone
Jing Wang, Yanju Liu, Fei Cheng, Chengyu Song, Qiaoping Li, Yihui Ding, and Xiangde Xu
Atmos. Chem. Phys., 24, 5099–5115,,, 2024
Short summary
Extreme ozone episodes in a major Mediterranean urban area
Jordi Massagué, Eduardo Torre-Pascual, Cristina Carnerero, Miguel Escudero, Andrés Alastuey, Marco Pandolfi, Xavier Querol, and Gotzon Gangoiti
Atmos. Chem. Phys., 24, 4827–4850,,, 2024
Short summary
Wintertime extreme warming events in the high Arctic: characteristics, drivers, trends, and the role of atmospheric rivers
Weiming Ma, Hailong Wang, Gang Chen, Yun Qian, Ian Baxter, Yiling Huo, and Mark W. Seefeldt
Atmos. Chem. Phys., 24, 4451–4472,,, 2024
Short summary
Influence of lower-tropospheric moisture on local soil moisture–precipitation feedback over the US Southern Great Plains
Gaoyun Wang, Rong Fu, Yizhou Zhuang, Paul A. Dirmeyer, Joseph A. Santanello, Guiling Wang, Kun Yang, and Kaighin McColl
Atmos. Chem. Phys., 24, 3857–3868,,, 2024
Short summary
The Lagrangian Atmospheric Radionuclide Transport Model (ARTM) – sensitivity studies and evaluation using airborne measurements of power plant emissions
Robert Hanfland, Dominik Brunner, Christiane Voigt, Alina Fiehn, Anke Roiger, and Margit Pattantyús-Ábrahám
Atmos. Chem. Phys., 24, 2511–2534,,, 2024
Short summary

Cited articles

Akritidis, D., Zanis, P., Pytharoulis, I., Mavrakis, A., and Karacostas, T.: A deep stratospheric intrusion event down to the earth's surface of the megacity of Athens, Meteorol. Atmos. Phys., 109, 9–18, 2010. 
Akritidis, D., Katragkou, E., Zanis, P., Pytharoulis, I., Melas, D., Flemming, J., Inness, A., Clark, H., Plu, M., and Eskes, H.: A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: analysis and evaluation, Atmos. Chem. Phys., 18, 15515==15534,, 2018. 
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., and Raschendorfer, M.: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887–3905,, 2011. 
Beekmann, M., Ancellet, G., Blonsky, S., De Muer, D., Ebel, A., Elbern, H., Hendricks, J., Kowol, J., Mancier, C., Sladkovic, R., Smit, H. G. J., Speth, P., Trickl, T., and Van Haver, P.: Regional and global tropopause fold occurrence and related ozone flux across the tropopause, J. Atmos. Chem., 28, 29–44, 1997. 
Bott, A.: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes, Mon. Weather Rev., 117, 1006–1015, 1989. 
Short summary
Upper-level fronts are often associated with the rapid transport of stratospheric air to the lower troposphere, leading to significantly enhanced ozone concentrations. This paper considers the multi-scale nature that is needed to bring stratospheric air down to the surface. The final transport step to the surface can be related to frontal zones and the associated vertical winds or to near-horizontal tracer transport followed by entrainment into a growing planetary boundary layer.
Final-revised paper