Articles | Volume 16, issue 5
https://doi.org/10.5194/acp-16-3631-2016
https://doi.org/10.5194/acp-16-3631-2016
Research article
 | 
17 Mar 2016
Research article |  | 17 Mar 2016

Variational data assimilation for the optimized ozone initial state and the short-time forecasting

Soon-Young Park, Dong-Hyeok Kim, Soon-Hwan Lee, and Hwa Woon Lee

Related authors

Implementation of an ensemble Kalman filter in the Community Multiscale Air Quality model (CMAQ model v5.1) for data assimilation of ground-level PM2.5
Soon-Young Park, Uzzal Kumar Dash, Jinhyeok Yu, Keiya Yumimoto, Itsushi Uno, and Chul Han Song
Geosci. Model Dev., 15, 2773–2790, https://doi.org/10.5194/gmd-15-2773-2022,https://doi.org/10.5194/gmd-15-2773-2022, 2022
Short summary
Development of Korean Air Quality Prediction System version 1 (KAQPS v1) with focuses on practical issues
Kyunghwa Lee, Jinhyeok Yu, Sojin Lee, Mieun Park, Hun Hong, Soon Young Park, Myungje Choi, Jhoon Kim, Younha Kim, Jung-Hun Woo, Sang-Woo Kim, and Chul H. Song
Geosci. Model Dev., 13, 1055–1073, https://doi.org/10.5194/gmd-13-1055-2020,https://doi.org/10.5194/gmd-13-1055-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Observational and model evidence for a prominent stratospheric influence on variability in tropospheric nitrous oxide
Cynthia D. Nevison, Qing Liang, Paul A. Newman, Britton B. Stephens, Geoff Dutton, Xin Lan, Roisin Commane, Yenny Gonzalez, and Eric Kort
Atmos. Chem. Phys., 24, 10513–10529, https://doi.org/10.5194/acp-24-10513-2024,https://doi.org/10.5194/acp-24-10513-2024, 2024
Short summary
Estimation of Canada's methane emissions: inverse modelling analysis using the Environment and Climate Change Canada (ECCC) measurement network
Misa Ishizawa, Douglas Chan, Doug Worthy, Elton Chan, Felix Vogel, Joe R. Melton, and Vivek K. Arora
Atmos. Chem. Phys., 24, 10013–10038, https://doi.org/10.5194/acp-24-10013-2024,https://doi.org/10.5194/acp-24-10013-2024, 2024
Short summary
Spatiotemporal source apportionment of ozone pollution over the Greater Bay Area
Yiang Chen, Xingcheng Lu, and Jimmy C. H. Fung
Atmos. Chem. Phys., 24, 8847–8864, https://doi.org/10.5194/acp-24-8847-2024,https://doi.org/10.5194/acp-24-8847-2024, 2024
Short summary
Potential of 14C-based vs. ΔCO-based ΔffCO2 observations to estimate urban fossil fuel CO2 (ffCO2) emissions
Fabian Maier, Christian Rödenbeck, Ingeborg Levin, Christoph Gerbig, Maksym Gachkivskyi, and Samuel Hammer
Atmos. Chem. Phys., 24, 8183–8203, https://doi.org/10.5194/acp-24-8183-2024,https://doi.org/10.5194/acp-24-8183-2024, 2024
Short summary
On the uncertainty of anthropogenic aromatic volatile organic compound emissions: model evaluation and sensitivity analysis
Kevin Oliveira, Marc Guevara, Oriol Jorba, Hervé Petetin, Dene Bowdalo, Carles Tena, Gilbert Montané Pinto, Franco López, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7137–7177, https://doi.org/10.5194/acp-24-7137-2024,https://doi.org/10.5194/acp-24-7137-2024, 2024
Short summary

Cited articles

Balgovind, R., Dalcher, A., Ghil, M., and Kalnay, E.: A Stochastic-Dynamic Model for the Spatial Structure of Forecast Error Statistics, Mon. Weather Rev., 111, 701–722, https://doi.org/10.1175/1520-0493(1983)111<0701:Asdmft>2.0.Co;2, 1983.
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015.
Boisgontier, H., Mallet, V., Berroir, J. P., Bocquet, M., Herlin, I., and Sportisse, B.: Satellite data assimilation for air quality forecast, Simul. Model. Pract. Th., 16, 1541–1545, https://doi.org/10.1016/j.simpat.2008.01.008, 2008.
Byun, D. W. and Ching, J. K. S.: Science algorithms of the EPA models-3 Community Multiscale Air Quality (CMAQ) modeling system, EPA/600/R-99/030, US EPA, Research Triangle Park, USA, 1999.
Carmichael, G. R., Sandu, A., Chai, T., Daescu, D. N., Constantinescu, E. M., and Tang, Y.: Predicting air quality: Improvements through advanced methods to integrate models and measurements, J. Comput. Phys., 227, 3540–3571, https://doi.org/10.1016/j.jcp.2007.02.024, 2008.
Download
Short summary
In order to improve the predictability of air quality, we optimize initial ozone state throughout the 4D-Var data assimilation. Previously developed code for the data assimilation has been modified to consider background error in matrix form, and various numerical tests are conducted. A surface observational assimilation is conducted and the statistical results for the 12 h assimilation periods show a 49.4 % decrease in RMSE and a 59.9 % increase in IOA.
Altmetrics
Final-revised paper
Preprint