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Abstract. In this study, we apply the four-dimensional vari-

ational (4D-Var) data assimilation to optimize initial ozone

state and to improve the predictability of air quality. The

numerical modeling systems used for simulations of atmo-

spheric condition and chemical formation are the Weather

Research and Forecasting (WRF) model and the Community

Multiscale Air Quality (CMAQ) model. The study area cov-

ers the capital region of South Korea, where the surface mea-

surement sites are relatively evenly distributed.

The 4D-Var code previously developed for the CMAQ

model is modified to consider background error in matrix

form, and various numerical tests are conducted. The results

are evaluated with an idealized covariance function for the

appropriateness of the modified codes. The background error

is then constructed using the NMC method with long-term

modeling results, and the characteristics of the spatial cor-

relation scale related to local circulation are analyzed. The

background error is applied in the 4D-Var research, and a

surface observational assimilation is conducted to optimize

the initial concentration of ozone. The statistical results for

the 12-hour assimilation periods and the 120 observatory

sites show a 49.4 % decrease in the root mean squared er-

ror (RMSE), and a 59.9 % increase in the index of agreement

(IOA). The temporal variation of spatial distribution of the

analysis increments indicates that the optimized initial state

of ozone concentration is transported to inland areas by the

clockwise-rotating local circulation during the assimilation

windows.

To investigate the predictability of ozone concentration af-

ter the assimilation window, a short-time forecasting is car-

ried out. The ratios of the RMSE (root mean squared error)

with assimilation versus that without assimilation are 8 and

13 % for the +24 and +12 h, respectively. Such a significant

improvement in the forecast accuracy is obtained solely by

using the optimized initial state. The potential improvement

in ozone prediction for both the daytime and nighttime with

application of data assimilation is also presented.

1 Introduction

Data assimilation provides a consistent representation of the

physical state such as the atmosphere by blending imper-

fect model predictions and noisy observations. As a tech-

nique that applies observational information to numerical

models with the aim of increasing model predictability, data

assimilation is actively used in numerical weather prediction

(NWP) and ocean modeling studies (Daley, 1991; Courtier

et al., 1998; Rabier et al., 2000; Kalnay, 2003; Navon, 2009;

Evensen, 2007). With more chemical observations available

in recent years, including the satellite data, data assimila-

tion is expected to make more contributions to weather fore-

casting and further improve the predictability of air quality.

When the data assimilation technique is used in an air quality

model, it not only improves the initial concentration distribu-

tion of pollutants, but also optimizes the emissions. In addi-

tion to the boundary inflow concentration (Carmichael et al.,

2008), emission is also one crucial factor in the numerical

prediction of various air pollutants. Several data assimilation

techniques have been developed. The four-dimensional vari-

ational (4D-Var) data assimilation requires an adjoint model

for use in non-linear numerical models. This represents an
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applied area in the use of adjoint sensitivity (Elbern and

Schmidt, 2001; Penenko et al., 2002; Sandu et al., 2005;

Hakami et al., 2007).

Research using the adjoint model in air quality models

started in the mid-1990s. The adjoint models used in and be-

fore the year 2000 are well described in the review paper of

Wang et al. (2001). Sandu and Chai (2011) and Carmichael

et al. (2008) presented subsequent research, and described

many areas in which the adjoint method has been applied.

More recently, more comprehensive reviews including cou-

pled chemistry meteorology models were well-addressed by

Bocquet et al. (2015).

Elbern et al. (1997) were the first to assimilate tropo-

spheric air quality data into the European air pollution disper-

sion model. They argued that back then the existing air qual-

ity data assimilation was limited solely to stratospheric ozone

data from satellite observations, which is far less than enough

for better air quality prediction. In their study, they performed

data assimilation using both data generated by the model and

various information from observations. The results indicated

that when using the model-generated data, the predictability

is improved not only for the chemical species directly related

with those used in the data assimilation, but also for those

not used in the data assimilation. In their following research,

Elbern and Schmidt (2001) applied 4D-Var to cases of high

summer ozone concentrations based on ground observations

over Europe, and ozone sonde observations from other loca-

tions. The results of 6 h data assimilation showed improved

predictability. In addition, they also examined the sensitiv-

ities of model simulation to data assimilation based on the

radius of the influenced area when data assimilation was per-

formed.

Chai et al. (2007) analyzed the effects of observations

from various observation systems, such as ground, civil avi-

ation, ship, ozone sonde, and lidar, on data assimilation.

The ICARTT (International Consortium for Atmospheric

Research on Transport and Transformation) data were ob-

tained and used in the above research. In particular, they

proposed a method to calculate background errors, which

had not been addressed in detail in the previous research,

and verified its performance in the interested modeling area.

Boisgontier et al. (2008) assimilated tropospheric ozone con-

centrations in their regional ozone prediction study prior to

the launch of the MetOp Satellite of European Organisation

for the Exploitation of Meteorological Satellites (EUMET-

SAT) Polar System (EPS) in October 2006. Although the

study performed data assimilation using the column ozone

data ranging over 0–6 km in the troposphere, they expected

that it would positively affect the accuracy of regional ozone

prediction. The chemical data assimilation has been con-

ducted using NO2 and HCHO from the satellite, SCanning

Imaging Absorption spectroMeter for Atmospheric CHar-

tographY (SCHIAMACHY), together with air quality ob-

servations at the ground level (Zhang et al., 2008). The ini-

tial fields with assimilated observations were improved com-

pared with that generated without data assimilation.

Gou and Sandu (2011) indicated that there differences

might exist in the gradient results between discrete and con-

tinuous adjoint in the process of developing an adjoint model

due to the high non-linearity in the advection equation of

the air quality model. As a result, they argued that the dis-

crete method is more accurate in the adjoint sensitivity study,

and that the continuous method is faster in minimizing the

cost function in the 4D-Var data assimilation. In their study

of the background pollutants affecting ground ozone con-

centrations in western America during the summer, Huang

et al. (2013) applied data assimilation not only to numeri-

cal simulations, but also to evaluation of the concentrations

associated with transport. Based on analysis of the ground-

observed ozone concentration, they suggested that the simu-

lated surface O3 error decreased by an average of 5 ppb and

the reduction can be up to a maximum of 17 ppb with ap-

plication of data assimilation. The estimated background O3

that was transported from the eastern Pacific Ocean is about

3 ppb higher due to the application of data assimilation.

Most of the previous studies for chemical data assimilation

have focused on a phenomena of meteorologically synop-

tic scale using satellite-based observation as well as ground-

based data. The transport of air pollution forced by a local

circulation such as land–sea breeze is poorly examined.

One of the important elements affecting results of data as-

similation in the 4D-Var process is the background errors of

the model (Talagrand and Courtier, 1987). Previous research

has treated the background errors as scalar quantities with

a Gaussian distribution, whereas there is a lack of research

applying them in a matrix form and considering the three-

dimensional covariance (Constantinescu et al., 2007; Singh

et al., 2011; Sliver et al., 2013).

In this study, the region centered in the capital area of

South Korea, where the ground observation sites are densely

distributed, is selected for the study of data assimilation. The

previously developed 4D-Var code has been modified to treat

background errors in matrix forms, and various numerical

tests have been conducted. The results are evaluated using

an idealized covariance function. The realistic background

errors are then obtained for the region around the capital of

South Korea using long-term modeling results. Characteris-

tics of the background errors generated in this study are an-

alyzed. Also, the predictability of high ozone concentration

was investigated by setting the initial ozone concentration as

control variables in the cost function for the 4D-Var data as-

similation.

Atmos. Chem. Phys., 16, 3631–3649, 2016 www.atmos-chem-phys.net/16/3631/2016/



S.-Y. Park et al.: Variational data assimilation for the optimized ozone initial state 3633

2 Methods

2.1 4D-Var data assimilation

The variational method solves the data assimilation problem

from an optimal control framework (Penenko and Obraztsov,

1976; Courtier and Talagrand, 1987; Le Dimet and Tala-

grand, 1986). We aim to find control variables that minimize

the difference between the model predictions and observa-

tions. In the frame of strongly constrained 4D-Var data as-

similation, the observational data at all times within the as-

similation window are simultaneously considered. The con-

trol variables become the initial concentration distribution c0,

and all results at future times are uniquely determined from

this in the model.

In the maximum likelihood approach, the 4D-Var data as-

similation gives the maximum a posteriori estimator of the

true initial concentration distribution, which is obtained by

minimizing the cost function:

J (c0)=
1

2

(
c0− c

b
0

)T

B−1
0

(
c0− c

b
0

)
+

1

2

∑F

k=1

(
H(ck)− cobs

k

)T

R−1
k

(
H(ck)− cobs

k

)
. (1)

Before data assimilation is performed, the current state that

best estimates the true state is called a priori or background

state cb0. The random background errors are assumed to be

unbiased and to have a normal distribution. B0 refers to the

background error covariance (BEC). The observed value at

time k is cobs
k . In general, the observational data are not accu-

rately represented at the model grids. Additionally, in some

cases, the observation instruments do not measure the meteo-

rological variables directly (e.g., weather radar and satellite).

Therefore, an observation operator H that converts a model

space to an observation space is required. The observation

error includes both measurement (instrument) error and rep-

resentativeness error. The representativeness error occurs be-

cause of the error included in the observation operator itself

and because the input data ofH are not exactly the true state.

Similar to the background error, the observation error is as-

sumed to be unbiased and have a normal distribution. It is

independent of other observation times, and usually is as-

sumed to be spatially uncorrelated. Under this assumption,

observation error covariance Rk becomes a diagonal matrix.

In addition, the observation error and background error are

assumed to be independent of each other. The interpretation

of this equation is that the deviation of initial concentration

c0 from the background field cb0 is weighted by the inverse

matrix of the background error covariance, whereas the dif-

ferences between the model predictions H(ck) and observa-

tions cobs
k during assimilation windows are weighted by the

inverse of error observation covariance matrix.

The 4D-Var analysis can be obtained by the initial con-

centration that minimizes Eq. (1) with respect to the model

equation.

ca0 = argminJ (c0) subjuct to ct =Mt0→t (c0)

t = 1, · · ·, F (2)

Here M represents the model solution operator and in-

cludes an atmospheric forcing, the emission rates, the chem-

ical kinetics, and all the other parameters. Furthermore, the

model provides analysis within the assimilation window us-

ing the optimal initial conditions: cat =Mt0→t

(
ca0
)
. For-

mally, a gradient-based optimization procedure is used to ob-

tain minimum value. Assuming a linear observation operator

Hk =H′(ct ), the gradient of Eq. (2) with respect to c0 is

∇c0
J (c0)= B−1

0

(
c0− c

b
0

)
+

∑F

k=1

(
∂ck

∂c0

)T

HT
kR−1

k (Hkck − c
obs
k ). (3)

In the gradient of 4D-Var cost function, (∂ck/∂c0)
T is a

transposed derivative of future states with respect to the ini-

tial concentration. At this point, the adjoint model is used and

through the solution of adjoint equation at t0, the gradient of

the cost function at the initial concentration is provided. The

gradient for the 4D-Var’s cost function can be effectively ob-

tained by forcing the adjoint model with observation incre-

ments and calculating it backwards. When the forward and

reverse adjoint models are performed, i.e.,
∑

in the Eq. (3)

is finished, it results in the problem of solving the following

equation:

∇c0
J (c0)= B−1

0

(
c0− c

b
0

)
+λ0 = 0. (4)

λ0 is the sensitivity of the cost function (Eq. 1) defined for

4D-Var with respect to the initial concentration c0. Since

B−1
0 , cb0, and λ0 values are known matrices and vectors, if

the value of c0 that satisfies Eq. (4) is found, it becomes

the analysis field ca0 . Solving the above equation is similar to

solving a linear-algebraic problem such as Ax = b, and the

solution can be obtained by various minimization algorithms

(e.g., steepest descent, conjugate gradient and quasi-Newton

methods).

2.2 Background error covariance

Accurate error covariances for background and observation

are important for the quality of data assimilation. A reason-

able analysis may deteriorate because of misunderstanding

of these covariances (Daescu, 2008). The background error

covariance (BEC) is of utmost importance, as it weights the

model error against the competing observation error, spreads

information from observations to the adjacent area, and influ-

ences several parameters such as temperature and wind fields

or chemical constituents (Elbern and Schmidt, 2001).

The adjoint code for CMAQ (CMAQ-ADJ) model was

implemented from the project H98 (University of Houston,
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Figure 1. The model domains (d27, d09, and d03) for WRF (Weather Research and Forecasting). The domain size of CMAQ (Community

Multiscale Air Quality) is mostly the same except that it has five grids fewer than WRF at lateral boundaries. The air quality monitoring sites

at ground level are marked by green blank circles. Blue filled circles and red filled triangles indicate the selected locations for the idealized

and realized background error covariance experiments, respectively. These experiments are conducted to investigate the diurnal variation of

ozone during the assimilation window. Administrative district in the areas of Seoul, Gyeonggi-do, Gangwon-do, Chungcheongnam-do, and

Chungcheongbuk-do is abbreviated to SU, GG, GW, CN, and CB, respectively, and also represented on the map.

2009) by Houston Advanced Research Center/Texas Environ

mental Research Consortium (HARC/TERC). The validation

and several numerical tests of this code are well described

in Hakami et al. (2007). Below is the defined cost function

in CMAQ-ADJ to optimize initial condition, which refers to

concentration at the initial time.

J (c0)=
1

2
(
σ b0

)2 (c0− c
b
0

)T(
c0− c

b
0

)
+

1

2
(
σ obs
k

)2∑N

k=1

(
Hkck − c

obs
k

)T (
Hkck − c

obs
k

)
(5)

This form only considers the model and observation errors as

its variance, i.e., a constant value of
(
σB0

)2
and

(
σ obs
k

)2
with

Gaussian distribution.
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Table 1. Configuration of WRF modeling system.

WRF d27 d09 d03

Horizontal grid 123× 130 72× 84 65× 68

Horizontal resolution 27 km 9 km 3 km

Vertical layers 33 layers (top: 50 hPa)

Physical options WSM5 scheme

Kain–Fritsch scheme

Noah LSM

Yonsei University PBL

RRTM Longwave

Dudhia Shortwave

Initial data NCEP FNL data

Time period 00:00 UTC 3 August–00:00 UTC 7 August 2008

Table 2. Configuration of CMAQ 4D-Var modeling system.

CMAQ d27 d09 d03

Meteorological input correspond to each WRF domain

Horizontal grid 118× 125 67× 79 60× 63

Horizontal resolution 27 km 9 km 3 km

Vertical layers 15 layers (top: 20 km)

Other options CB IV Chemical mechanism

PPM advection

Multiscale horizontal diffusion

Eddy vertical diffusion

RADM Cloud scheme

Emission data INTEX-B CAPSS CAPSS

Time Forward 00:00 UTC 3 August–00:00 UTC 7 August 2008 (4 days)

periods 4D-Var day time 00:00 UTC 5 August–12:00 UTC 5 August 2008 (12 h, analysis)

12:00 UTC 5 August–12:00 UTC 6 August 2008 (24 h, forecast)

nighttime 12:00 UTC 5 August–00:00 UTC 6 August 2008 (12 h, analysis)

00:00 UTC 6 August–00:00 UTC 7 August 2008 (24 h, forecast)

If a BEC is to be correctly adopted, a cost function should

be defined in the form of a matrix; this is denoted by the

first term on the right-hand side in Eq. (1). The background

part and its gradient of the cost function, written in Fortran

codes, have been revised in this study to make the matrix

operation possible. A numerical test is conducted to validate

the suitability and effects of the revised codes.

The methods for obtaining the BEC of a numerical model

are mainly divided into two types: an NMC method (Par-

rish and Derber, 1992) that defines the model error as the

difference between the forecasting results at different initial

times, and an ensemble method that uses a perturbed fore-

cast. Recently, Kucukkaraca and Fisher (2006) introduced a

technique for modeling a flow-dependent BEC. In Constan-

tinescu et al. (2007), an autoregressive model was proposed

for flow-dependent BEC in air quality data assimilation.

In this study, the BEC of the model is constructed by us-

ing the NMC method, which is the most intuitive and easily

applied method.

3 Experimental design

If the observatory sites are distributed unevenly, results of

data assimilation based on the variational theory will have

low reliability, and it is difficult to minimize the cost func-

tion (Courtier and Talagrand, 1987). For this reason, the

capital region of South Korea is selected for the present

data assimilation study because measurement sites are rel-

atively evenly distributed in this area. Figure 1 depicts the

study area (d03), i.e., the capital region of South Korea

along with the domain configuration for the other two nest-

ing domains of coarse resolution. A total of 120 observa-

tory sites are evenly distributed in the areas of Seoul (SU),

Gyeonggi-do (GG), Gangwon-do (GW), Chungcheongnam-

do (CN), and Chungcheongbuk-do (CB). The innermost do-

main, d03, is located in a geographical area with coasts to

the west and the topography gradually rises towards the east.

The Weather Research and Forecasting (WRF) model (Ska-

marock et al., 2008) is a mesoscale atmospheric model that

has been widely used to simulate a local circulation pat-

www.atmos-chem-phys.net/16/3631/2016/ Atmos. Chem. Phys., 16, 3631–3649, 2016
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Figure 2. Horizontal distributions of emission rate for domain d27 (top), d09 (middle), and d03 (bottom). The left and right panels are for

VOCs and NOx emission rates, respectively.

tern and provide the meteorological input data for the air

quality model. The chemical formation and transportation of

ozone is simulated by the Model-3 Community Multiscale

Air Quality (CMAQ) model (Byun and Ching, 1999). This

model simulates gas-phase chemistry using the carbon bond

IV (CB-IV) photochemical mechanisms (Grey et al., 1989).

To describe the chemical transformation, euler backward It-

erative (EBI) (Hertel et al., 1993) solver is implemented. The

advection is calculated by the piecewise-parabolic method

(PPM) (Colella and Woodward, 1984), which is based on the

finite volume subgrid definition of the advected scalar. The

vertical diffusion in the planetary boundary layer is calcu-

lated following the approach in the Regional Acid Deposition

Model, RADM (Chang et al., 1987), which is based on the

similarity theory. Detailed settings used for the atmospheric

and air quality model systems in the present study are pre-

sented in Tables 1 and 2, respectively. All time mentioned

in this paper except those in Table 2 are local standard time

(LST), which is 9 h earlier than the Coordinated Universal

Time (UTC).

The experiment without assimilation was conducted as a

forward run (FWD), which covers 4 days from 09:00 LST on

3 August to 09:00 LST on 7 August. In addition, data as-

similation (4DV) was performed within the 12 h time win-

dow from 09:00 to 21:00 LST on 5 August. Figure 2 illus-

trates the spatial distribution of the total NOx and VOCs

(volatile organic compounds) pollutants, which are out of the

24 emitted substances used in the CMAQ model. The domain

d27 is located in the East Asian monsoon region, which in-

cludes most of China and Japan. The Intercontinental Chem-

Atmos. Chem. Phys., 16, 3631–3649, 2016 www.atmos-chem-phys.net/16/3631/2016/
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ical Transport Experiment-Phase B (INTEX-B, Zhang et al.,

2009) 2006 data were used as emissions; high emissions are

mostly found over major cities of each country. The emis-

sions applied to domains d09 and d03 are extracted from the

CAPSS 2007 data (Lee et al., 2011).

The results of the WRF simulation for the synoptic pattern

of surface pressure during the study period are presented in

Fig. 3, along with the weather charts. The vector indicates

surface wind, and the values of the contours are the con-

centrations of O3. The model has successfully simulated the

North Pacific high-pressure system, and adequately describes

the local high-pressure system that developed in and around

the East Sea on 4 August, as well as the high-pressure sys-

tem that developed in and around the southwestern coastal

region on 5 August. A clockwise synoptic flow developed

because of the well-developed North Pacific high-pressure

system. As a result, the long-distance transport from the pol-

lution sources in China had little impact on the simulated

pollutants.

Figure 4 shows the horizontal distributions of simu-

lated ozone concentration and surface wind from 06:00 to

21:00 LST on 5 August at 3-hour intervals. At 06:00 LST, a

southeasterly to easterly wind developed along the western

coast, and the overall ozone concentration was low in this re-

gion. Accompanied with the increase in solar radiation after

sunrise, the ozone concentration began to increase, and an

onshore sea-breeze developed after 12:00 LST in the western

coast. This sea breeze lasted from 18:00 to 21:00 LST. After

sunset, the influence of the sea-breeze can be identified over

areas where the ozone concentration decreased due to NOx-

titration. Afterwards, the dominant wind direction changed

in a clockwise direction (figure omitted), and the local circu-

lation did not extend far enough beyond the GG region.

4 Results

4.1 Effects of an idealized BEC

Two simple yet popular covariance models are Gaussian and

Balgovind (Balgovind et al., 1983) functions expressed as

ω(r)= EXP

(
−
r2

2L2

)
, Gaussian (6)

ω(r)=
(

1+
r

L

)
EXP

(
−
r

L

)
, Balgovind. (7)

To examine the appropriation of modified code, the Balgo-

vind distribution expressed in Eq. (7) is selected for con-

structing the BEC that has the components of matrix form.

Figure 5 shows the distribution patterns for Gaussian and

Balgovind with respect to the distance between two grid

points (r) and the characteristic length or radius of influence

(L).

Table 3 summarizes a suite of numerical tests with and

without data assimilation. In the tests with application of

data assimilation, a matrix is constructed assuming that the

BEC of the model has the form of a Balgovind function.

The model domain is the innermost domain as illustrated in

Fig. 1. The FWD test is conducted without data assimilation,

and the other test is performed with data assimilation. The

two types of tests are named as EXP_A and EXP_B, respec-

tively.

EXP_A is a test that can be used to evaluate the character-

istics of the BEC based on a single observation experiment.

In this experiment, 100 ppb of O3 was incorporated as an ar-

bitrary value rather than actual observation data at the ini-

tial time at the center of the model domain. To emphatically

show the background part of the cost function, the value 8.00,

which is much larger than the basic value (0.08), is applied

to σ obs
k in Eq. (5). Using the function that sets the radius of

influence to be 2, 5, and 10, the data assimilation character-

istics for three BECs were examined.

In EXP_B, which is the second test, the effect of BEC used

in 4D-Var is examined. Real observation data are used in

EXP_B. The observation data include 12 h ozone concentra-

tion at 120 sites within the capital city regions. Two cases are

investigated in the EXP_B (Table 3): the XBE case only con-

siders variance that is not in a matrix form, and the OBE case

uses the BEC in the matrix form that adopts the Balgovind

function. In the XBE, two tests that take into consideration

the different weighting between σB0 and σ obs
k are conducted

separately. In XBE_r0.08, the observation data are assumed

to be accurate and σ obs
k is set to 0.08, which is the basic value

for this model. For XBE_r8.00, σ obs
k is set to 8.00, indicat-

ing that the results of the model are more important than the

observation. For OBE_r8.00, σ obs
k and L are set to 8.00 and

5, respectively. The result of OBE_r0.08 is not analyzed be-

cause it is similar to the result of XBE_r0.08.

Among the results of the EXP_A, horizontal distributions

of the analysis increment with respect to the radius of influ-

ence (L) are illustrated in Fig. 6. At the model grid point

(29, 31), where arbitrary observation data were applied, all

three tests showed an O3 increment of about 50.0 ppb. The

background concentration of O3 at the grid was 40.1 ppb, but

the value was up to about 90 ppb in the analysis when the

synthetic observation of 100 ppb was applied. However, as

the value of L increased, the O3 increment in the analysis

occurs at more surrounding grids. Particularly, the analysis

increments shown along the east–west cross section (Fig. 7)

are distinguished on the 2-D graph according to the L val-

ues. This result is attributed to the ideal function that is used,

in which the error covariance information is expanded to the

surrounding regions according to the L values. These results

indicate that the idealized BEC performs well in the revised

codes, and proper analysis increments can be achieved when

the spatial correlation is taken into account.

Figure 8 shows the daily changes in ozone concentra-

tion simulated by each experiment in the test EXP_B and

from observations at selected sites. Exact locations of these

www.atmos-chem-phys.net/16/3631/2016/ Atmos. Chem. Phys., 16, 3631–3649, 2016
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Figure 3. Synoptic weather charts (left) and simulated results (right) on 4 August (upper) and 5 August (lower). Filled contours and vectors

represent ozone concentration and winds, respectively.

sites are marked in Fig. 1. At the site GG01, the observed

(black solid line) concentration of ozone, which is higher

than 100 ppb, was not simulated in the FWD (blue solid line).

In XBE_r0.08 (green solid line), although the BEC is not

applied, the simulated O3 concentration is close to the ob-

servation in almost all the time slots. Comparing results of

the two experiments that applied 8.00 for σ obs
k , the effect

of BEC can be determined. In the case of XBE_r8.00 (red

dotted line), the simulated changes in O3 concentration are

similar to that simulated by the FWD because the weighted

value in the FWD is high. When the BEC is taken into con-

sideration for the same σ obs
k (OBE_r8.00), the result is sim-

ilar to that of XBE_r0.08. This result demonstrates the ef-

fect of the spreading analysis increment to its surrounding

region where the observation sites are densely distributed.

Although the weight of the observations is not set very high,

improvements in the field analysis by spatial correlation are

still achieved. At the GG07 site, this trend is quite signifi-

cant with the OBE_r8.00 test, giving a result similar to that

of XBE_r0.08. At the GG60 position, the model results are

significantly improved, but the nighttime ozone is still over-

estimated. However, at the GG28 site, which is located at a

Atmos. Chem. Phys., 16, 3631–3649, 2016 www.atmos-chem-phys.net/16/3631/2016/
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Figure 4. Diurnal variations of horizontal distribution of ozone (contour) and wind (vector) at 3-hour interval starting from 06:00 LST on

5 August.

Table 3. Experimental design for the idealized background error covariance test. The FWD case is conducted and the results are compared

with that of the 4D-Var run.

Assimilation Case Observation Radius of σB
0

σ obs
k

data Influence

Forward run FWD n/a n/a n/a n/a

4D-Var EXP_A L02 100 ppb at L= 02 BEC 8.00

run (single L05 (29, 31) L= 05 BEC 8.00

obs.) L10 L= 10 BEC 8.00

EXP_B XBE_r0.08 12 h O3 n/a 1.00 0.08

XBE_r8.00 at all 120 n/a 1.00 8.00

OBE_r8.00 sites L=05 BEC 8.00

www.atmos-chem-phys.net/16/3631/2016/ Atmos. Chem. Phys., 16, 3631–3649, 2016
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of radius of influence (L).

region where observation sites are sparsely distributed, the

BEC effect is barely observed. The results of XBE_r8.00 are

similar to those of OBE_r8.00, except after 18:00 LST. This

indicates that the effect of BEC, which considers the spatial

correlation, can be distinct mainly over regions where the ob-

servation sites are densely distributed.

4.2 Development of realistic BEC

The BEC is obtained using the NMC (National Meteorolog-

ical Center, now National Centers for Environmental Predic-

tion) approach (Parrish and Derber, 1992), which is based on

a real simulation for the realistic 4D-Var data assimilation

study.

Figure 9 describes the method to define the model error.

The error statistics for the CMAQ model is defined by the

differences between +48 and +24 h forecast:

εi = ci
+48 h− c

i
+24 h. (8)

The BEC matrix has 2 800 526 400 components for a 3-D

model with a number of grids Nx×Ny×Nz= 60× 63×

14= 52 920. To avoid storing the error covariance matrix ex-

plicitly, we assume B can be written as

B= X⊗Y⊗Z⊗C, (Chai et al., 2007) (9)

where X= [Nx×Nx], Y= [Ny×Ny], and Z= [Nz×Nz]

representing the error correlation in the three directions. C is

the error covariance matrix at a single grid point that refers to

the error variances and correlation between different species.

In this study, C is considered to be constant, which means

there is no correlation between the species.

It seems to be error-prone to invert ill-conditioned matri-

ces. Based on the property of Kronecker product, B−1 can be

expressed as

B−1
= (X⊗Y⊗Z)−1

= X−1
⊗Y−1

⊗Z−1. (10)

Singular value decomposition (SVD) is applied to B matrix.

For example, a general m× n matrix A can be written as

A= U6VT. (11)

For the symmetric matrices, such as X, Y, Z

A= U6UT. (12)

Then the inverse of A is easily calculated:

A−1
= U6−1UT. (13)

The accuracy of inverted BEC through these process has

been confirmed by an algebraic calculation such as B−1B= I

and by comparing the vector x between Bx = y and x =

B−1y.

The error correlations between the vertical layers of the

model are given in Fig. 10. Moving further away from a per-

tinent layer, the error correlation decreases. Judging from the

diagonalized structure of errors, the correlation was found to

be roughly a function of the physical distance between the

layers. Examining the vertical error correlations for the mag-

nitude of the boundary layer, high correlations can be found

up to the fourth layer for the correlations in the vicinity of

ground surface. This result indicates that an improvement in

the model simulation can be achieved in the neighboring lay-

ers by performing DA using the observation data of upper

layers that are located from the surface to the boundary layer.

In Fig. 11, the error correlations are plotted as a function of

distance between two layers. When the distribution of corre-

lations versus distance is fitted to a simple function, e
−
1z1.2

l1.2z ,

the vertical length scale is lz = 300 m. Although some high

values deviate from this function, generally low correlation

coefficients agree well with this function. The correlation

coefficients versus the horizontal distance are illustrated in

Fig. 12. On average, for both the north-south and east-west

directions, lh is identified to be 10 km, and a function e
−
1z1.0

l1.0z

fits well with the results. Particularly, the correlation coeffi-

cient for the east-west direction is somewhat higher than that

for the south-north direction. This is partly attributed to the

effect of middle latitude synoptic westerly and partly due to

the land-sea breeze that occurs frequently in August in the

capital city region, which produces circulation in the east-

west direction.

4.3 Validation time results

4D-Var experiments are performed in this study, using actual

observations with the distribution of the initial concentration

of O3 as the control variable. The observed hourly O3 con-

centrations at 120 sites located within the domain d03 are

used. In formula (1), c0 of ozone is considered as the con-

trol variable, and the BEC established in 4.2 is applied as the

model error (B−1
0 ). The representativeness error is not con-

sidered, because the observatory sites are manually placed
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Figure 6. Horizontal distribution of analysis increments at surface resulted from the single observation experiment (EXP_A) with respect to

radius of influence (L). Blue line in panel (b) stands for the location where the cross-sectional values of analysis increments are examined.

Table 4. Statistics of the model results.

Description Variable Statistic definition∗

Mean obs. O (1/N)
∑N
i=1Oi

Mean model M (1/N)
∑N
i=1Mi

Mean bias MB (1/N)
∑N
i=1(Mi −Oi)

Normalized mean bias NMB (%) (1/N)
∑N
i=1(Mi −Oi)/O × 100

root mean square error RMSE

√
(1/N)

∑N
i=1(Mi −Oi)

2

index of agreement IOA 1−

∑N
i=1(Mi−Oi )

2∑N
i=1(

∣∣Mi−O
∣∣+∣∣Oi−O∣∣)2

∗ M =modeled, O = observed.
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Figure 7. Cross-section of analysis increments along the blue line

in Fig. 6b as the radius of influence (L) values are increase.

on grids close to the measurement sites. The observation er-

ror R−1
k is a diagonal matrix that has same diagonal compo-

nents, which is 1 % of the observed concentration.

The observation results of the diurnal variation of O3 at

several sites during the 12-hour time window are shown in

Fig. 13, along with results of the FWD and 4DV experiments.

The sites are selected in accordance with the administrative

districts as shown in Fig. 1. The daytime high concentrations

of O3 above 100 ppb are not well simulated in the FWD,

whereas they are captured in the 4DV experiment. At almost

all the sites the high values of O3 concentration simulated

by the 4DV experiment are found to be close to the observa-

tional values. Looking at the results of the FWD, it is found

that the ozone concentration at GW04 and CB06 is above

80 ppb at 09:00 LST, while the 4DV significantly reduces the

www.atmos-chem-phys.net/16/3631/2016/ Atmos. Chem. Phys., 16, 3631–3649, 2016
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Figure 8. Diurnal variations of surface ozone from the results of

EXP_B at (a) GG01, (b) GG07, (c) GG60, and (d) GG28. Black and

blue solid lines indicate observation (OBS) and results of forward

run (FWD), respectively. XBE_r0.08 (green solid), XBE_r8.00 (red

dashed), and OBE_r8.00 (red solid) represent 4D-Var run results

with and without considering the background error in matrix form

where the observation error (σ obs
k
) is 0.08 and 8.00.
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Figure 9. Schematic illustration for the NMC approach to obtain

the background error covariance (BEC) matrix.

errors in the initial condition. However, 4DV cannot properly

simulate the high concentrations of O3 in the early afternoon

at some sites, for example at the site GG76, and the high

concentration of O3 at SU21 remains underestimated. These

problems are caused by uncertainties in ozone precursors that

exist in both the initial conditions and in the emissions. This

can probably be solved by changing the control variables and

optimizing the amounts of emissions and by improving initial

concentrations of the pollutants. In addition, the accuracy of

the simulation for the ozone concentration in Incheon areas

is directly affected by the pollutants coming from the Yellow

Sea. Hence it is necessary to optimize the boundary data.

The root mean square error (RMSE) and index of agree-

ment (IOA) of simulated results at each iteration step of 4D-

Var using observation data from all sites were calculated, and

the results are shown in Fig. 14 (the definitions of statistical

variables used in this research are listed in Table 4). Results
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Figure 10. Model error correlation coefficients between vertical

levels. The physical height of each level is indicated by the non-

uniform grid line only in the layer below 1553 m, which is the eight

layer of CMAQ.

Figure 11. Model error correlation coefficients between two layers,

as a function of1z (the distance between two levels). The fitted line

is R = e
−
1z1.2

l1.2z , where lz = 300 m.

at the starting point, i.e., iteration= 1, are the statistical re-

sults of the FWD results, where RMSE and IOA are 35.1 ppb

and 0.576, respectively. After approximately 20 iterations,

RMSE decreases to 20 ppb or less, and IOA increases to 0.9

or more. Thereafter, there are little changes in these statistical

variables, implying that the results of 4DV have converged.

Figure 15 gives the diurnal variations of the two statistical

variables. As the statistical results are derived from 120 ob-

servatory sites over a fixed period of time, they actually rep-

resent the errors and general agreement in spatial distribu-

tion of O3 concentration. The FWD results show a decrease

in RMSE and an increase in IOA until 11:00 LST, but a

rapid increase in RMSE and a decrease in IOA occur after

11:00 LST. This is caused by the inaccurate simulation of
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Figure 12. Model error correlation coefficients as a function of hor-

izontal distance 1x or 1y, which corresponds to east-west (revert

triangles) and north–south (blank circles) direction, respectively.

They can be fitted to R = e
−
1h1.0

l1.0
h , where lh = 10 km.

high ozone concentrations during the daytime. The value of

RMSE then decreases again after 16:00 LST, but large errors

of O3 concentration up to 30 ppb or more are still evident. In

contrast, in the 4DV results, the RMSE and IOA for the ini-

tial concentration of O3 are 2.9 ppb and 0.954 respectively,

suggesting that the errors in the initial state are significantly

reduced. Afterwards, IOA continues to decrease and reach

the value of 0.543 at 21:00 LST, but this value is still higher

than that in the FWD result (i.e., 0.363). The value of RMSE

increases at the beginning 2 h and is close to the FWD result,

but it never becomes larger than 20 ppb thereafter. In partic-

ular, the RMSE shows the maximum decrease of 27.4 ppb at

16:00 LST, which means that the accuracy of the simulation

for high daytime ozone concentration has been substantially

improved.

Table 5 shows the statistical results based on simulations

with the 12-hour assimilation periods and from the 120 ob-

servatory sites. The simulation result of the 4DV experiment

is 61.4 ppb, which is close to the average concentration of ob-

served ozone of 63.6 ppb. A 49.4 % decrease in RMSE and a

59.9 % increase in IOA in the results of the 4DV (i.e., the

difference between FWD and 4DV) demonstrate the great

improvement caused by data assimilation. Mean bias, nor-

malized by the average observed concentration (MMB), was

−21.2 % in FWD, and −3.4 % in 4DV. This result of NMB

implies that the tendency to underestimate daytime ozone is

mitigated by application of data assimilation.

To compare the spatial distribution of the simulated O3

with that of the observed concentrations, the 4DV results are

presented in Fig. 16. The concentrations of O3 at observatory

sites are indicated with colored circles using the same color

scales as the contours. At 09:00 LST, 4DV shows a homoge-

neous distribution, with concentrations of O3 in and around

Seoul to be almost zero. However, in eastern GG, GW, and

CB, where the observatory sites are sparsely distributed, the

Table 5. Statistics for the observed (OBS) and simulated (FWD and

4DV) results. The FWD indicates the simulation without data as-

similation. 4DV results are obtained by assimilating all observed

surface O3 with realized background error covariance matrix dur-

ing 12 h time windows.

Statistics FWD 4DV OBS

Mean (ppb) 50.1 61.4 63.6

RMSE (ppb) 35.1 17.8 –

IOA 0.576 0.921 –

MB (ppb) −13.5 −2.1 –

NMB (%) −21.2 −3.4 –

concentration of O3 decreases to zero only near the observa-

tory sites. For the high concentration of ozone, i.e., 100 ppb

or higher, which appears at 15:00 LST, the FWD results are

approximately 50–60 ppb in Seoul (Fig. 4), and the 4DV re-

sults are consistent with the observed concentrations. How-

ever, at 18:00 LST, the difference between FWD and 4DV re-

sults grows more remarkable. Low ozone concentration ap-

pears even in central Seoul and in southeastern GG in the

FWD concentration simulation at 21:00 LST, which is at-

tributed to excessive NOx titration. However, for the 4DV

results, the distribution of O3 concentration in Seoul areas

shows a pattern similar to that of the observations.

Figure 17 shows the difference between results of FWD

and 4DV (4DV results minus that of the FWD). These differ-

ences can be regarded as analysis increments and their effects

during assimilation windows. At 09:00 LST, the analysis in-

crements are negative in most of the area, but are positive

over some of the western coast area and the CN area, which is

affected by the clockwise circulation of the sea-breeze. These

analysis increments, which are also evident in the result of

the reanalysis of initial conditions, are transported to inland

areas by the local circulation. As a result, the differences be-

tween the FWD and 4DV experiments become larger, and the

areas of positive values become larger too, encompassing the

SU and GG areas. This process makes it possible to simulate

the high concentration of daytime ozone.

4.4 Predictability of ozone

The direct comparison with the observation data used dur-

ing the assimilation window has a limit in the verification

of results. Forecasts of FWD and 4DV with different initial

conditions after the time window (Table 2) are performed

in this part. Figure 18a depicts the temporal variation of

ozone concentration, which is obtained by averaging the re-

sults of all the observatory sites and those of corresponding

model grids during the 12-hour assimilation period and the

12-hour forecast. During the period for validation, the FWD

overestimates O3 in the morning and underestimates it af-

ter 12:00 LST while the 4DV shows a tendency that almost

conforms to that of the observations. The forecast is initial-
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Figure 13. Time variations of surface ozone concentration at selected sites whose specific locations are marked by red filled triangles in

Fig. 1 during daytime on 5 August. Black solid lines are observed results, and blue bashed and red solid lines indicate simulated results from

the FWD and 4DV, respectively.
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ized at 21:00 LST, on 5 August, and run for 24 h. The re-

sults of the first 12 h are plotted in the figure. Both experi-

ments show a tendency to forecast high levels of nighttime
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Figure 15. Diurnal variations of statistical results of IOA (dashed)

and RMSE (solid) during the assimilation time window. The results

with assimilation (4DV) are indicated by red and thick lines, and

those without assimilation (FWD) are the blue and thin lines.

ozone. However, while the FWD shows a rising tendency

after 21:00 LST, the 4DV gives a declining ozone tendency

and therefore provides a better forecast than the FWD. Fig-

ure 19b indicates the reduced forecast errors in the results

of the 4DV, along with the time variations of statistical vari-
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Figure 16. Horizontal distributions of surface ozone and its time variations. The plotted time is valid at (a) 09:00, (b) 10:00, (c) 12:00,

(d) 15:00, (e) 18:00, and (f) 21:00 LST on 5 August. Contour value stands for simulated results of 4DV experiment and the filled circles with

the same color scale as the contours indicate observed values.

ables, for the forecast period. At 21:00 LST, the 4DV error is

only 19.8 ppb, much smaller than that of the FWD. This is at-

tributed to the initial condition that is 10.0 ppb less than that

of FWD. After 21:00 LST, the effect of improved initial con-

dition diminishes gradually, although the RMSE in the 4DV

results is still smaller than that in the FWD results. To quanti-

tatively evaluate the overall improved predictability, the ratio

of the reduced RMSE in the 4DV to that in the FWD experi-

ments is calculated. Results indicate that the ratio is 8 % for

the +24 h, and 13 % for the +12 h. This improvement in the

forecast accuracy is achieved solely by using the assimilated

initial condition, and more improvements are therefore ex-

pected by further optimizing the number of parameters such

as emissions and boundary conditions.

The above result shows a forecast for the nighttime ozone

with application of the daytime data assimilation. However,

high concentrations of ozone that have harmful effects to hu-

man health are often found during daytime. Therefore, the

effects of the assimilation over a time window in the night-

time upon the forecast accuracy of daytime ozone concen-

tration are also carried out. The period for validation of data

assimilation is set to be 12 h, from 12:00 UTC on 5 August

to 00:00 UTC on 6 August (Table 2). The +12 h forecast pe-

riod for 4DV in Fig. 18a corresponds to that of the FWD

during the validation period in Fig. 18b. In the results with

assimilation of nighttime ozone, the estimated ozone concen-

tration approaches that of the observation, and the variation

tendency conforms to the observation. In the ensuing fore-

www.atmos-chem-phys.net/16/3631/2016/ Atmos. Chem. Phys., 16, 3631–3649, 2016
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Figure 17. The same as Fig. 16 except that the contour value is analysis increments (a) and its impact on daytime ozone.

Figure 18. Time variations of observed and forecast ozone concentration after (a) daytime and (b) nighttime assimilation. All 120 sites data

are averaged and its 3 standard errors also displayed with vertical bars. Triangle over blue dashed line, circle over red solid line, and dot over

black solid line stand for forward run (FWD), 4D-Var run (4DV), and observation (OBS) results, respectively.
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Figure 19. Time variations of RMSE (solid lines) and IOA (dashed

lines) for 24 h forecast after (a) daytime and (b) nighttime assimi-

lation. Red and blue lines indicate the statistical results for 4D-Var

run (4DV) and forward run (FWD), respectively. Hourly reduced

RMSE values are also marked along the axis of abscissas.

cast period, both of the experiments show a diurnal variation

in the simulated ozone, but the FWD results demonstrate de-

viations from the observation, which are caused by the over-

estimated initial concentration at 09:00 LST. In the morn-

ing, the maximum reduced RMSE (Fig. 19b) is 13.6 ppb,

and all the reductions of RMSEs are more than 10.0 ppb.

After 09:00 LST, the value of the reduced RMSE decreases.

The improvement in forecast accuracy, obtained by calculat-

ing the ratio of reduced errors, is 11 % for +24 h, and 17 %

for +12 h, indicating that the improvement achieved by the

nighttime assimilation is higher than that by the daytime as-

similation. However, the effects of the improved initial con-

dition by 4D-Var in the daytime ozone forecast cannot last

for more than 12 h.

Optimized ozone after data assimilation did not show a

significant change in the other chemical components (not

shown here). Ozone is a secondary produced pollutant, and

has no direct emission sources. Other components, especially

the precursors of ozone, are mostly dependent on its emis-

sion information. Our next study will be optimizing the ini-

tial condition for NOx and VOCs to improve the predictabil-

ity of O3. If the multivariate background error covariance is

well established, this optimization will be achieved although

the control variable is different from the observed variables.

5 Conclusions

In this study, we presented an approach that uses an adjoint

model in data assimilation. To incorporate observation data

in a numerical model, the 4D-Var that is designed to improve

predictability of ozone concentration is conducted by opti-

mization of the initial values. The model systems used in the

present study include WRF, CMAQ and CMAQ-ADJ.

The previously developed adjoin code for 4D-Var consid-

ers the background error of the model in the cost function

as a constant. In this study, the code is revised to reflect the

information of errors belonging to the actual subject areas.

Verification of the revised code is conducted. Two numerical

experiments are first performed by defining an ideal matrix

with the assumption that the background error has a Balgo-

vind function distribution. The results are verified. It is found

that synthetic observation information is effectively spread

over the neighboring areas.

In order to define the realistic model error, the NMC

method that is widely used in meteorological DA is adopted

in this study. The background error covariance is constructed

based on the 29 differences between 48 h forecasts and 24 h

forecasts, which are taken as the model error. The forecasts

are performed over August, with daily initialization and a

forecast period of 48 h. The vertical correlation of the model

results is constructed as a diagonal and symmetric matrix; the

length scale in the correlation analysis of vertical distance is

about 300 m, and the scale of length in the averaged east-west

and south-north correlation is about 10 km (the east-west cor-

relation is higher than the north-south correlation).

The generated background error of the model simulation is

applied in the 4D-Var research, and the surface observation

is incorporated by DA to optimize the initial concentration

of ozone. As a result of DA in a 12 h time window during

the daytime of 5 August, the 4DV experiment shows a diur-

nal variation of O3 concentration that conforms well to the

observation, while the experiment without DA (FWD) either

overestimates or underestimates the O3 concentration. In the

statistical result, the RMSE decreases by about 49.4 %, and

the IOA increases by 59.9 %, suggesting that the initial con-

ditions of ozone concentration are successfully improved by

application of DA. The analysis increments, which are the

extents of improvement of the initial conditions, spread along

the route of the sea breeze that blows in from Incheon dur-

ing the daytime and blows out during the evening, causing an

improvement in the statistical results for the calculation area

over 12 h. In addition, a potential improvement for the ozone

predictability is presented using the optimized initial condi-

tion after the time window. In particular, a larger improve-

ment in the predictability of daytime ozone concentration is

expected if DA is performed over the nighttime than in the

daytime.

Data assimilation has been playing an essential role in air

quality modeling study. For this reason, the following studies

need to be conducted for further operational applications of

data assimilation.

In addition to ground data, other observations such as the

data from ozone sonde, airplanes, and satellites, need to be

exploited.

In the case of long-range transport, the inflow boundary

condition needs to be optimized by considering it as a control

variable in 4D-Var data assimilation.

Instead of using the averaged values of BEC data (which

is used in the present research) to easily obtain the inverse

matrix, the error correlation with different length scales at

each grid should be considered. For this purpose, the pre-

conditioning procedure, which modifies the form of the cost

function, should be applied.
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When considering the error covariance used in the model-

ing study, it is possible to conduct DA research using obser-

vation variables that are different to the control variables.

The study proposes a method to improve predictability by

applying DA technology to air quality forecasts. Results of

the present study provide helpful information to policy mak-

ers in charge of emission regulation. With more information

related to a variety of air pollutants becoming available in

the future, for example data from the geostationary orbit en-

vironmental satellite that is planned to operate in 2018 (Lee

et al., 2010) and other observation systems, it is necessary to

handle vast amount of observation data for better chemical

weather forecasting (Carmichael et al., 2008). This study can

be considered to be a preliminary research in this aspect.
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