Research article
24 Apr 2013
Research article
| 24 Apr 2013
Droplet number uncertainties associated with CCN: an assessment using observations and a global model adjoint
R. H. Moore et al.
Related authors
Francesca Gallo, Kevin J. Sanchez, Bruce E. Anderson, Ryan Bennett, Matthew D. Brown, Ewan C. Crosbie, Chris Hostetler, Carolyn Jordan, Melissa Yang Martin, Claire E. Robinson, Lynn M. Russell, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Armin Wisthaler, Luke D. Ziemba, and Richard H. Moore
Atmos. Chem. Phys., 23, 1465–1490, https://doi.org/10.5194/acp-23-1465-2023, https://doi.org/10.5194/acp-23-1465-2023, 2023
Short summary
Short summary
We integrate in situ ship- and aircraft-based measurements of aerosol, trace gases, and meteorological parameters collected during the NASA North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) field campaigns in the western North Atlantic Ocean region. A comprehensive characterization of the vertical profiles of aerosol properties under different seasonal regimes is provided for improving the understanding of aerosol key processes and aerosol–cloud interactions in marine regions.
Pamela S. Rickly, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Glenn M. Wolfe, Ryan Bennett, Ilann Bourgeois, John D. Crounse, Jack E. Dibb, Joshua P. DiGangi, Glenn S. Diskin, Maximilian Dollner, Emily M. Gargulinski, Samuel R. Hall, Hannah S. Halliday, Thomas F. Hanisco, Reem A. Hannun, Jin Liao, Richard Moore, Benjamin A. Nault, John B. Nowak, Jeff Peischl, Claire E. Robinson, Thomas Ryerson, Kevin J. Sanchez, Manuel Schöberl, Amber J. Soja, Jason M. St. Clair, Kenneth L. Thornhill, Kirk Ullmann, Paul O. Wennberg, Bernadett Weinzierl, Elizabeth B. Wiggins, Edward L. Winstead, and Andrew W. Rollins
Atmos. Chem. Phys., 22, 15603–15620, https://doi.org/10.5194/acp-22-15603-2022, https://doi.org/10.5194/acp-22-15603-2022, 2022
Short summary
Short summary
Biomass burning sulfur dioxide (SO2) emission factors range from 0.27–1.1 g kg-1 C. Biomass burning SO2 can quickly form sulfate and organosulfur, but these pathways are dependent on liquid water content and pH. Hydroxymethanesulfonate (HMS) appears to be directly emitted from some fire sources but is not the sole contributor to the organosulfur signal. It is shown that HMS and organosulfur chemistry may be an important S(IV) reservoir with the fate dependent on the surrounding conditions.
Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 15449–15468, https://doi.org/10.5194/acp-22-15449-2022, https://doi.org/10.5194/acp-22-15449-2022, 2022
Short summary
Short summary
Correctly predicting aerosol surface area concentrations is important for determining the rate of heterogeneous reactions in chemical transport models. Here, we compare aircraft measurements of aerosol surface area with a regional model. In polluted air masses, we show that the model underpredicts aerosol surface area by a factor of 2. Despite this disagreement, the representation of heterogeneous chemistry still dominates the overall uncertainty in the loss rate of molecules such as N2O5.
Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang
Geosci. Model Dev., 15, 7977–7999, https://doi.org/10.5194/gmd-15-7977-2022, https://doi.org/10.5194/gmd-15-7977-2022, 2022
Short summary
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.
Hossein Dadashazar, Andrea F. Corral, Ewan Crosbie, Sanja Dmitrovic, Simon Kirschler, Kayla McCauley, Richard Moore, Claire Robinson, Joseph S. Schlosser, Michael Shook, K. Lee Thornhill, Christiane Voigt, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 13897–13913, https://doi.org/10.5194/acp-22-13897-2022, https://doi.org/10.5194/acp-22-13897-2022, 2022
Short summary
Short summary
Multi-season airborne data over the northwestern Atlantic show that organic mass fraction and the relative amount of oxygenated organics within that fraction are enhanced in droplet residual particles as compared to particles below and above cloud. In-cloud aqueous processing is shown to be a potential driver of this compositional shift in cloud. This implies that aerosol–cloud interactions in the region reduce aerosol hygroscopicity due to the jump in the organic : sulfate ratio in cloud.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Francesca Gallo, Janek Uin, Kevin J. Sanchez, Richard H. Moore, Jian Wang, Robert Wood, Fan Mei, Connor Flynn, Stephen Springston, Eduardo B. Azevedo, Chongai Kuang, and Allison C. Aiken
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-637, https://doi.org/10.5194/acp-2022-637, 2022
Preprint under review for ACP
Short summary
Short summary
This study provides a summary statistic of multiday aerosol plume transport events influences on aerosol physical properties and cloud condensation nuclei budget at the U.S. Department of Energy Atmospheric Radiation Measurement Facility in the Eastern North Atlantic (ENA). An algorithm that integrates aerosol properties is developed and applied to identify multiday aerosol transport events. The influence of the aerosol plumes on aerosol populations at ENA is successively assessed.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Edward Gryspeerdt, Daniel T. McCoy, Ewan Crosbie, Richard H. Moore, Graeme J. Nott, David Painemal, Jennifer Small-Griswold, Armin Sorooshian, and Luke Ziemba
Atmos. Meas. Tech., 15, 3875–3892, https://doi.org/10.5194/amt-15-3875-2022, https://doi.org/10.5194/amt-15-3875-2022, 2022
Short summary
Short summary
Droplet number concentration is a key property of clouds, influencing a variety of cloud processes. It is also used for estimating the cloud response to aerosols. The satellite retrieval depends on a number of assumptions – different sampling strategies are used to select cases where these assumptions are most likely to hold. Here we investigate the impact of these strategies on the agreement with in situ data, the droplet number climatology and estimates of the indirect radiative forcing.
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022, https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
Short summary
In this study we show that the vertical velocity dominantly impacts the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic in the winter and summer season, while the cloud condensation nuclei concentration, aerosol size distribution and chemical composition impact NC within a season. The observational data presented in this study can evaluate and improve the representation of aerosol–cloud interactions for a wide range of conditions.
Linghan Zeng, Jack Dibb, Eric Scheuer, Joseph M. Katich, Joshua P. Schwarz, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Carsten Warneke, Anne E. Perring, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Richard H. Moore, Elizabeth B. Wiggins, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Lu Xu, and Rodney J. Weber
Atmos. Chem. Phys., 22, 8009–8036, https://doi.org/10.5194/acp-22-8009-2022, https://doi.org/10.5194/acp-22-8009-2022, 2022
Short summary
Short summary
Wildfires emit aerosol particles containing brown carbon material that affects visibility and global climate and is toxic. Brown carbon is poorly characterized due to measurement limitations, and its evolution in the atmosphere is not well known. We report on aircraft measurements of brown carbon from large wildfires in the western United States. We compare two methods for measuring brown carbon and study the evolution of brown carbon in the smoke as it moved away from the burning regions.
Joel C. Corbin, Tobias Schripp, Bruce E. Anderson, Greg J. Smallwood, Patrick LeClercq, Ewan C. Crosbie, Steven Achterberg, Philip D. Whitefield, Richard C. Miake-Lye, Zhenhong Yu, Andrew Freedman, Max Trueblood, David Satterfield, Wenyan Liu, Patrick Oßwald, Claire Robinson, Michael A. Shook, Richard H. Moore, and Prem Lobo
Atmos. Meas. Tech., 15, 3223–3242, https://doi.org/10.5194/amt-15-3223-2022, https://doi.org/10.5194/amt-15-3223-2022, 2022
Short summary
Short summary
The combustion of sustainable aviation fuels in aircraft engines produces particulate matter (PM) emissions with different properties than conventional fuels due to changes in fuel composition. Consequently, the response of various diagnostic instruments to PM emissions may be impacted. We found no significant instrument biases in terms of particle mass, number, and size measurements for conventional and sustainable aviation fuel blends despite large differences in the magnitude of emissions.
Adam T. Ahern, Frank Erdesz, Nicholas L. Wagner, Charles A. Brock, Ming Lyu, Kyra Slovacek, Richard H. Moore, Elizabeth B. Wiggins, and Daniel M. Murphy
Atmos. Meas. Tech., 15, 1093–1105, https://doi.org/10.5194/amt-15-1093-2022, https://doi.org/10.5194/amt-15-1093-2022, 2022
Short summary
Short summary
Particles in the atmosphere play a significant role in climate change by scattering light back into space, reducing the amount of energy available to be absorbed by greenhouse gases. We built a new instrument to measure what direction light is scattered by particles, e.g., wildfire smoke. This is important because, depending on the angle of the sun, some particles scatter light into space (cooling the planet), but some light is also scattered towards the Earth (not cooling the planet).
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Tiziana Bräuer, Christiane Voigt, Daniel Sauer, Stefan Kaufmann, Valerian Hahn, Monika Scheibe, Hans Schlager, Felix Huber, Patrick Le Clercq, Richard H. Moore, and Bruce E. Anderson
Atmos. Chem. Phys., 21, 16817–16826, https://doi.org/10.5194/acp-21-16817-2021, https://doi.org/10.5194/acp-21-16817-2021, 2021
Short summary
Short summary
Over half of aviation climate impact is caused by contrails. Biofuels can reduce the ice crystal numbers in contrails and mitigate the climate impact. The experiment ECLIF II/NDMAX in 2018 assessed the effects of biofuels on contrails and aviation emissions. The NASA DC-8 aircraft performed measurements inside the contrail of the DLR A320. One reference fuel and two blends of the biofuel HEFA and kerosene are analysed. We find a max reduction of contrail ice numbers through biofuel use of 40 %.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Hossein Dadashazar, Majid Alipanah, Miguel Ricardo A. Hilario, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Andrew J. Peters, Amy Jo Scarino, Michael Shook, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Bo Zhang, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 16121–16141, https://doi.org/10.5194/acp-21-16121-2021, https://doi.org/10.5194/acp-21-16121-2021, 2021
Short summary
Short summary
This study investigates precipitation impacts on long-range transport of North American outflow over the western North Atlantic Ocean (WNAO). Results demonstrate that precipitation scavenging plays a significant role in modifying surface aerosol concentrations over the WNAO, especially in winter and spring due to large-scale scavenging processes. This study highlights how precipitation impacts surface aerosol properties with relevance for other marine regions vulnerable to continental outflow.
David Painemal, Douglas Spangenberg, William L. Smith Jr., Patrick Minnis, Brian Cairns, Richard H. Moore, Ewan Crosbie, Claire Robinson, Kenneth L. Thornhill, Edward L. Winstead, and Luke Ziemba
Atmos. Meas. Tech., 14, 6633–6646, https://doi.org/10.5194/amt-14-6633-2021, https://doi.org/10.5194/amt-14-6633-2021, 2021
Short summary
Short summary
Cloud properties derived from satellite sensors are critical for the global monitoring of climate. This study evaluates satellite-based cloud properties over the North Atlantic using airborne data collected during NAAMES. Satellite observations of droplet size and cloud optical depth tend to compare well with NAAMES data. The analysis indicates that the satellite pixel resolution and the specific viewing geometry need to be taken into account in research applications.
J. Brant Dodson, Patrick C. Taylor, Richard H. Moore, David H. Bromwich, Keith M. Hines, Kenneth L. Thornhill, Chelsea A. Corr, Bruce E. Anderson, Edward L. Winstead, and Joseph R. Bennett
Atmos. Chem. Phys., 21, 11563–11580, https://doi.org/10.5194/acp-21-11563-2021, https://doi.org/10.5194/acp-21-11563-2021, 2021
Short summary
Short summary
Aircraft in situ observations of low-level Beaufort Sea cloud properties and thermodynamics from the ARISE campaign are compared with the Arctic System Reanalysis (ASR) to better understand deficiencies in simulated clouds. ASR produces too little cloud water, which coincides with being too warm and dry. In addition, ASR struggles to produce cloud water even in favorable thermodynamic conditions. A random sampling experiment also shows the effects of the limited aircraft sampling on the results.
Hossein Dadashazar, David Painemal, Majid Alipanah, Michael Brunke, Seethala Chellappan, Andrea F. Corral, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Claire Robinson, Amy Jo Scarino, Michael Shook, Kenneth Sinclair, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Xubin Zeng, Luke Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 21, 10499–10526, https://doi.org/10.5194/acp-21-10499-2021, https://doi.org/10.5194/acp-21-10499-2021, 2021
Short summary
Short summary
This study investigates the seasonal cycle of cloud drop number concentration (Nd) over the western North Atlantic Ocean (WNAO) using multiple datasets. Reasons for the puzzling discrepancy between the seasonal cycles of Nd and aerosol concentration were identified. Results indicate that Nd is highest in winter (when aerosol proxy values are often lowest) due to conditions both linked to cold-air outbreaks and that promote greater droplet activation.
Richard H. Moore, Elizabeth B. Wiggins, Adam T. Ahern, Stephen Zimmerman, Lauren Montgomery, Pedro Campuzano Jost, Claire E. Robinson, Luke D. Ziemba, Edward L. Winstead, Bruce E. Anderson, Charles A. Brock, Matthew D. Brown, Gao Chen, Ewan C. Crosbie, Hongyu Guo, Jose L. Jimenez, Carolyn E. Jordan, Ming Lyu, Benjamin A. Nault, Nicholas E. Rothfuss, Kevin J. Sanchez, Melinda Schueneman, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Nicholas L. Wagner, and Jian Wang
Atmos. Meas. Tech., 14, 4517–4542, https://doi.org/10.5194/amt-14-4517-2021, https://doi.org/10.5194/amt-14-4517-2021, 2021
Short summary
Short summary
Atmospheric particles are everywhere and exist in a range of sizes, from a few nanometers to hundreds of microns. Because particle size determines the behavior of chemical and physical processes, accurately measuring particle sizes is an important and integral part of atmospheric field measurements! Here, we discuss the performance of two commonly used particle sizers and how changes in particle composition and optical properties may result in sizing uncertainties, which we quantify.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021, https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Short summary
North Atlantic Aerosols and Marine Ecosystems Study measurements combined with GEOS-Chem-TOMAS modeling suggest that several not-well-understood key factors control northwest Atlantic aerosol number and size. These synergetic and climate-relevant factors include particle formation near and above the marine boundary layer top, particle growth by marine secondary organic aerosol on descent, particle formation/growth related to dimethyl sulfide, sea spray aerosol, and ship emissions.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Charles H. Hudgins, Kenneth L. Thornhill, Gregory L. Schuster, Richard H. Moore, Ewan C. Crosbie, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 695–713, https://doi.org/10.5194/amt-14-695-2021, https://doi.org/10.5194/amt-14-695-2021, 2021
Short summary
Short summary
First field data from a custom-built in situ instrument measuring hyperspectral (300–700 nm, 0.8 nm resolution) ambient atmospheric aerosol extinction are presented. The advantage of this capability is that it can be directly linked to other in situ techniques that measure physical and chemical properties of atmospheric aerosols. Second-order polynomials provided a better fit to the data than traditional power law fits, yielding greater discrimination among distinct ambient aerosol populations.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Michael Novak, Antonio Mannino, Ewan C. Crosbie, Gregory L. Schuster, Richard H. Moore, Charles H. Hudgins, Kenneth L. Thornhill, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 715–736, https://doi.org/10.5194/amt-14-715-2021, https://doi.org/10.5194/amt-14-715-2021, 2021
Short summary
Short summary
In situ measurements of ambient atmospheric aerosol hyperspectral (300–700 nm) optical properties (extinction, total absorption, water- and methanol-soluble absorption) were observed around the Korean peninsula. Such in situ observations provide a direct link between ambient aerosol optical properties and their physicochemical properties. The benefit of hyperspectral measurements is evident as simple mathematical functions could not fully capture the observed spectral detail of ambient aerosols.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Georges Saliba, Chia-Li Chen, Savannah L. Lewis, Lynn M. Russell, Michael A. Shook, Ewan C. Crosbie, Luke D. Ziemba, Matthew D. Brown, Taylor J. Shingler, Claire E. Robinson, Elizabeth B. Wiggins, Kenneth L. Thornhill, Edward L. Winstead, Carolyn Jordan, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 21, 831–851, https://doi.org/10.5194/acp-21-831-2021, https://doi.org/10.5194/acp-21-831-2021, 2021
Short summary
Short summary
Models describing atmospheric airflow were combined with satellite measurements representative of marine phytoplankton and other meteorological variables. These combined variables were compared to measured aerosol to identify upwind influences on aerosol concentrations. Results indicate that phytoplankton production rates upwind impact the aerosol mass. Also, results suggest that the condensation of mass onto short-lived large sea spray particles may be a significant sink of aerosol mass.
Joel S. Schafer, Tom F. Eck, Brent N. Holben, Kenneth L. Thornhill, Luke D. Ziemba, Patricia Sawamura, Richard H. Moore, Ilya Slutsker, Bruce E. Anderson, Alexander Sinyuk, David M. Giles, Alexander Smirnov, Andreas J. Beyersdorf, and Edward L. Winstead
Atmos. Meas. Tech., 12, 5289–5301, https://doi.org/10.5194/amt-12-5289-2019, https://doi.org/10.5194/amt-12-5289-2019, 2019
Short summary
Short summary
Two independent datasets of column-integrated size distributions of atmospheric aerosols were compared during four 1-month regional campaigns from 2011 to 2014 in four US states. One set of measurements was from observations at multiple locations at the surface using retrievals from sun photometers, while the other relied on in situ aircraft sampling. These campaigns represent the most extensive comparison of AERONET size distributions with aircraft sampling of particle size on record.
Ewan Crosbie, Matthew D. Brown, Michael Shook, Luke Ziemba, Richard H. Moore, Taylor Shingler, Edward Winstead, K. Lee Thornhill, Claire Robinson, Alexander B. MacDonald, Hossein Dadashazar, Armin Sorooshian, Andreas Beyersdorf, Alexis Eugene, Jeffrey Collett Jr., Derek Straub, and Bruce Anderson
Atmos. Meas. Tech., 11, 5025–5048, https://doi.org/10.5194/amt-11-5025-2018, https://doi.org/10.5194/amt-11-5025-2018, 2018
Short summary
Short summary
A new aircraft-mounted probe for collecting samples of cloud water has been designed, fabricated, and extensively tested. Cloud drop composition provides valuable insight into atmospheric processes, but separating liquid samples from the airstream in a controlled way at flight speeds has proven difficult. The features of the design have been analysed with detailed numerical flow simulations and the new probe has demonstrated improved efficiency and performance through extensive flight testing.
Lauren M. Zamora, Ralph A. Kahn, Sabine Eckhardt, Allison McComiskey, Patricia Sawamura, Richard Moore, and Andreas Stohl
Atmos. Chem. Phys., 17, 7311–7332, https://doi.org/10.5194/acp-17-7311-2017, https://doi.org/10.5194/acp-17-7311-2017, 2017
Short summary
Short summary
Clouds have a major but uncertain effect on Arctic surface temperatures. Here, we used remote sensing observations to better understand aerosol effects on one type of Arctic cloud. By modifying a variety of cloud properties, aerosols in this type of cloud indirectly reduced the net warming effect of these clouds on the surface by ~ 10 % of the clean-background cloud effect, not including changes in cloud fraction. This work will improve our ability to predict future Arctic surface temperatures.
Patricia Sawamura, Richard H. Moore, Sharon P. Burton, Eduard Chemyakin, Detlef Müller, Alexei Kolgotin, Richard A. Ferrare, Chris A. Hostetler, Luke D. Ziemba, Andreas J. Beyersdorf, and Bruce E. Anderson
Atmos. Chem. Phys., 17, 7229–7243, https://doi.org/10.5194/acp-17-7229-2017, https://doi.org/10.5194/acp-17-7229-2017, 2017
Short summary
Short summary
We present a detailed evaluation of physical properties of aerosols, like aerosol number concentration and aerosol size, obtained from an advanced, airborne, multi-wavelength high-spectral-resolution lidar (HSRL-2) system. These lidar-retrieved physical properties were compared to airborne in situ measurements. Our findings highlight the advantages of advanced HSRL measurements and retrievals to help constrain the vertical distribution of aerosol volume or mass loading relevant for air quality.
Sharon P. Burton, Eduard Chemyakin, Xu Liu, Kirk Knobelspiesse, Snorre Stamnes, Patricia Sawamura, Richard H. Moore, Chris A. Hostetler, and Richard A. Ferrare
Atmos. Meas. Tech., 9, 5555–5574, https://doi.org/10.5194/amt-9-5555-2016, https://doi.org/10.5194/amt-9-5555-2016, 2016
Short summary
Short summary
Retrievals of aerosol microphysics exist for ground-based, airborne, and future space-borne lidar measurements. We investigate the information content of a lidar measurement system, using only a forward model but no explicit inversion. The simplified aerosol used here is applicable as a best case for all retrievals in the absence of additional constraints. We report (1) information content of the measurements; (2) uncertainties on the retrieved parameters; and (3) sources of compensating errors.
Patricia Sawamura, Richard H. Moore, Sharon P. Burton, Eduard Chemyakin, Detlef Müller, Alexei Kolgotin, Richard A. Ferrare, Chris A. Hostetler, Luke D. Ziemba, Andreas J. Beyersdorf, and Bruce E. Anderson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-380, https://doi.org/10.5194/acp-2016-380, 2016
Revised manuscript not accepted
A. J. Beyersdorf, L. D. Ziemba, G. Chen, C. A. Corr, J. H. Crawford, G. S. Diskin, R. H. Moore, K. L. Thornhill, E. L. Winstead, and B. E. Anderson
Atmos. Chem. Phys., 16, 1003–1015, https://doi.org/10.5194/acp-16-1003-2016, https://doi.org/10.5194/acp-16-1003-2016, 2016
Short summary
Short summary
Airborne measurements in Baltimore-Washington, DC allow for an understanding of the relationship between aerosol extinction which can be measured by satellites and aerosol mass used for air quality monitoring. Extinction was found to be driven to first order by aerosol loadings; however, humidity-driven aerosol hydration plays an important secondary role. Spatial and diurnal variability in aerosol composition were small, but day-to-day variability in aerosol hygroscopicity must be accounted for.
C. E. Jordan, B. E. Anderson, A. J. Beyersdorf, C. A. Corr, J. E. Dibb, M. E. Greenslade, R. F. Martin, R. H. Moore, E. Scheuer, M. A. Shook, K. L. Thornhill, D. Troop, E. L. Winstead, and L. D. Ziemba
Atmos. Meas. Tech., 8, 4755–4771, https://doi.org/10.5194/amt-8-4755-2015, https://doi.org/10.5194/amt-8-4755-2015, 2015
Short summary
Short summary
We describe a new instrument developed to observe ambient atmospheric aerosol extinction spectra from 300 to 700nm. Laboratory tests were performed to demonstrate that the instrument compares well with theoretical calculations over that spectral range, as well as with commercially available instrumentation measuring aerosol extinction at three visible wavelengths. The unique spectral data will be used to explore linkages between ambient aerosol optical properties, chemistry, and microphysics.
Y. Shinozuka, A. D. Clarke, A. Nenes, A. Jefferson, R. Wood, C. S. McNaughton, J. Ström, P. Tunved, J. Redemann, K. L. Thornhill, R. H. Moore, T. L. Lathem, J. J. Lin, and Y. J. Yoon
Atmos. Chem. Phys., 15, 7585–7604, https://doi.org/10.5194/acp-15-7585-2015, https://doi.org/10.5194/acp-15-7585-2015, 2015
S. Crumeyrolle, G. Chen, L. Ziemba, A. Beyersdorf, L. Thornhill, E. Winstead, R. H. Moore, M. A. Shook, C. Hudgins, and B. E. Anderson
Atmos. Chem. Phys., 14, 2139–2153, https://doi.org/10.5194/acp-14-2139-2014, https://doi.org/10.5194/acp-14-2139-2014, 2014
Francesca Gallo, Kevin J. Sanchez, Bruce E. Anderson, Ryan Bennett, Matthew D. Brown, Ewan C. Crosbie, Chris Hostetler, Carolyn Jordan, Melissa Yang Martin, Claire E. Robinson, Lynn M. Russell, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Armin Wisthaler, Luke D. Ziemba, and Richard H. Moore
Atmos. Chem. Phys., 23, 1465–1490, https://doi.org/10.5194/acp-23-1465-2023, https://doi.org/10.5194/acp-23-1465-2023, 2023
Short summary
Short summary
We integrate in situ ship- and aircraft-based measurements of aerosol, trace gases, and meteorological parameters collected during the NASA North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) field campaigns in the western North Atlantic Ocean region. A comprehensive characterization of the vertical profiles of aerosol properties under different seasonal regimes is provided for improving the understanding of aerosol key processes and aerosol–cloud interactions in marine regions.
Stylianos Kakavas, Spyros Pandis, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-815, https://doi.org/10.5194/acp-2022-815, 2023
Preprint under review for ACP
Short summary
Short summary
Water uptake from organic species in aerosol can affect the partitioning of semi-volatile inorganic compounds, but are not considered in global and chemical transport models. We address this with a version of the PM-CAMx model that considers such organic water effects and use it to carry out year-long aerosol simulations over the continental US. We show that such organic water impacts can have an important impact on dry PM1 levels when RH levels and PM1 concentrations are high.
Pamela S. Rickly, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Glenn M. Wolfe, Ryan Bennett, Ilann Bourgeois, John D. Crounse, Jack E. Dibb, Joshua P. DiGangi, Glenn S. Diskin, Maximilian Dollner, Emily M. Gargulinski, Samuel R. Hall, Hannah S. Halliday, Thomas F. Hanisco, Reem A. Hannun, Jin Liao, Richard Moore, Benjamin A. Nault, John B. Nowak, Jeff Peischl, Claire E. Robinson, Thomas Ryerson, Kevin J. Sanchez, Manuel Schöberl, Amber J. Soja, Jason M. St. Clair, Kenneth L. Thornhill, Kirk Ullmann, Paul O. Wennberg, Bernadett Weinzierl, Elizabeth B. Wiggins, Edward L. Winstead, and Andrew W. Rollins
Atmos. Chem. Phys., 22, 15603–15620, https://doi.org/10.5194/acp-22-15603-2022, https://doi.org/10.5194/acp-22-15603-2022, 2022
Short summary
Short summary
Biomass burning sulfur dioxide (SO2) emission factors range from 0.27–1.1 g kg-1 C. Biomass burning SO2 can quickly form sulfate and organosulfur, but these pathways are dependent on liquid water content and pH. Hydroxymethanesulfonate (HMS) appears to be directly emitted from some fire sources but is not the sole contributor to the organosulfur signal. It is shown that HMS and organosulfur chemistry may be an important S(IV) reservoir with the fate dependent on the surrounding conditions.
Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 15449–15468, https://doi.org/10.5194/acp-22-15449-2022, https://doi.org/10.5194/acp-22-15449-2022, 2022
Short summary
Short summary
Correctly predicting aerosol surface area concentrations is important for determining the rate of heterogeneous reactions in chemical transport models. Here, we compare aircraft measurements of aerosol surface area with a regional model. In polluted air masses, we show that the model underpredicts aerosol surface area by a factor of 2. Despite this disagreement, the representation of heterogeneous chemistry still dominates the overall uncertainty in the loss rate of molecules such as N2O5.
Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang
Geosci. Model Dev., 15, 7977–7999, https://doi.org/10.5194/gmd-15-7977-2022, https://doi.org/10.5194/gmd-15-7977-2022, 2022
Short summary
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.
Hossein Dadashazar, Andrea F. Corral, Ewan Crosbie, Sanja Dmitrovic, Simon Kirschler, Kayla McCauley, Richard Moore, Claire Robinson, Joseph S. Schlosser, Michael Shook, K. Lee Thornhill, Christiane Voigt, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 13897–13913, https://doi.org/10.5194/acp-22-13897-2022, https://doi.org/10.5194/acp-22-13897-2022, 2022
Short summary
Short summary
Multi-season airborne data over the northwestern Atlantic show that organic mass fraction and the relative amount of oxygenated organics within that fraction are enhanced in droplet residual particles as compared to particles below and above cloud. In-cloud aqueous processing is shown to be a potential driver of this compositional shift in cloud. This implies that aerosol–cloud interactions in the region reduce aerosol hygroscopicity due to the jump in the organic : sulfate ratio in cloud.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Amir Yazdani, Satoshi Takahama, John K. Kodros, Marco Paglione, Mauro Masiol, Stefania Squizzato, Kalliopi Florou, Christos Kaltsonoudis, Spiro D. Jorga, Spyros N. Pandis, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-658, https://doi.org/10.5194/acp-2022-658, 2022
Revised manuscript under review for ACP
Short summary
Short summary
Organic aerosols directly emitted from wood and pellet stove combustion are found to chemically transform (approximately 15–35 % by mass) under daytime aging conditions simulated in an environmental chamber. A new marker for lignin-like compounds is found to degrade at a different rate than previously identified biomass burning markers and can potentially provide indication of aging time in ambient samples.
Emily D. Lenhardt, Lan Gao, Jens Redemann, Feng Xu, Sharon P. Burton, Brian Cairns, Ian Chang, Richard A. Ferrare, Chris A. Hostetler, Pablo E. Saide, Calvin Howes, Yohei Shinozuka, Snorre Stamnes, Mary Kacarab, Amie Dobracki, Jenny Wong, Steffen Freitag, and Athanasios Nenes
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-262, https://doi.org/10.5194/amt-2022-262, 2022
Preprint under review for AMT
Short summary
Short summary
Small atmospheric particles, such as smoke from wildfires or pollutants from human activities, impact cloud properties, and clouds have a strong influence on climate change. To better understand the distributions of these particles, we develop relationships to derive their concentrations from remote sensing measurements from an instrument called a lidar. Our method is reliable for smoke particles, and similar steps can be taken to develop similar relationships for other particle types.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Francesca Gallo, Janek Uin, Kevin J. Sanchez, Richard H. Moore, Jian Wang, Robert Wood, Fan Mei, Connor Flynn, Stephen Springston, Eduardo B. Azevedo, Chongai Kuang, and Allison C. Aiken
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-637, https://doi.org/10.5194/acp-2022-637, 2022
Preprint under review for ACP
Short summary
Short summary
This study provides a summary statistic of multiday aerosol plume transport events influences on aerosol physical properties and cloud condensation nuclei budget at the U.S. Department of Energy Atmospheric Radiation Measurement Facility in the Eastern North Atlantic (ENA). An algorithm that integrates aerosol properties is developed and applied to identify multiday aerosol transport events. The influence of the aerosol plumes on aerosol populations at ENA is successively assessed.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Marios Chatziparaschos, Nikos Daskalakis, Stelios Myriokefalitakis, Nikos Kalivitis, Athanasios Nenes, Maria Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Medea Zanoli, Mihalis Vrekoussis, and Maria Kanakidou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-551, https://doi.org/10.5194/acp-2022-551, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Ice formation is enabled by Ice Nucleating Particles (INP) at higher temperatures than homogeneous formation and can profoundly affect the properties of clouds. Our global model results show that additionally to k-feldspar dust mineral that is globally the most important INP precursor, quartz, which is abundant in mineral dust, can be regionally significant, affecting different cloud level regimes (low-level clouds) than K-feldspar (mid-level clouds).
Caroline Dang, Michal Segal-Rozenhaimer, Haochi Che, Lu Zhang, Paola Formenti, Jonathan Taylor, Amie Dobracki, Sara Purdue, Pui-Shan Wong, Athanasios Nenes, Arthur Sedlacek III, Hugh Coe, Jens Redemann, Paquita Zuidema, Steven Howell, and James Haywood
Atmos. Chem. Phys., 22, 9389–9412, https://doi.org/10.5194/acp-22-9389-2022, https://doi.org/10.5194/acp-22-9389-2022, 2022
Short summary
Short summary
Transmission electron microscopy was used to analyze aged African smoke particles and how the smoke interacts with the marine atmosphere. We found that the volatility of organic aerosol increases with biomass burning plume age, that black carbon is often mixed with potassium salts and that the marine atmosphere can incorporate Na and Cl into smoke particles. Marine salts are more processed when mixed with smoke plumes, and there are interesting Cl-rich yet Na-absent marine particles.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Arthur J. Sedlacek III, Ernie R. Lewis, Amie Dobracki, Jenny P. S. Wong, Paola Formenti, Steven G. Howell, and Athanasios Nenes
Atmos. Chem. Phys., 22, 9199–9213, https://doi.org/10.5194/acp-22-9199-2022, https://doi.org/10.5194/acp-22-9199-2022, 2022
Short summary
Short summary
Widespread biomass burning (BB) events occur annually in Africa and contribute ~ 1 / 3 of global BB emissions, which contain a large family of light-absorbing organics, known as brown carbon (BrC), whose absorption of incident radiation is difficult to estimate, leading to large uncertainties in the global radiative forcing estimation. This study quantifies the BrC absorption of aged BB particles and highlights the potential presence of absorbing iron oxides in this climatically important region.
Edward Gryspeerdt, Daniel T. McCoy, Ewan Crosbie, Richard H. Moore, Graeme J. Nott, David Painemal, Jennifer Small-Griswold, Armin Sorooshian, and Luke Ziemba
Atmos. Meas. Tech., 15, 3875–3892, https://doi.org/10.5194/amt-15-3875-2022, https://doi.org/10.5194/amt-15-3875-2022, 2022
Short summary
Short summary
Droplet number concentration is a key property of clouds, influencing a variety of cloud processes. It is also used for estimating the cloud response to aerosols. The satellite retrieval depends on a number of assumptions – different sampling strategies are used to select cases where these assumptions are most likely to hold. Here we investigate the impact of these strategies on the agreement with in situ data, the droplet number climatology and estimates of the indirect radiative forcing.
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022, https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
Short summary
In this study we show that the vertical velocity dominantly impacts the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic in the winter and summer season, while the cloud condensation nuclei concentration, aerosol size distribution and chemical composition impact NC within a season. The observational data presented in this study can evaluate and improve the representation of aerosol–cloud interactions for a wide range of conditions.
Linghan Zeng, Jack Dibb, Eric Scheuer, Joseph M. Katich, Joshua P. Schwarz, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Carsten Warneke, Anne E. Perring, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Richard H. Moore, Elizabeth B. Wiggins, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Lu Xu, and Rodney J. Weber
Atmos. Chem. Phys., 22, 8009–8036, https://doi.org/10.5194/acp-22-8009-2022, https://doi.org/10.5194/acp-22-8009-2022, 2022
Short summary
Short summary
Wildfires emit aerosol particles containing brown carbon material that affects visibility and global climate and is toxic. Brown carbon is poorly characterized due to measurement limitations, and its evolution in the atmosphere is not well known. We report on aircraft measurements of brown carbon from large wildfires in the western United States. We compare two methods for measuring brown carbon and study the evolution of brown carbon in the smoke as it moved away from the burning regions.
Joel C. Corbin, Tobias Schripp, Bruce E. Anderson, Greg J. Smallwood, Patrick LeClercq, Ewan C. Crosbie, Steven Achterberg, Philip D. Whitefield, Richard C. Miake-Lye, Zhenhong Yu, Andrew Freedman, Max Trueblood, David Satterfield, Wenyan Liu, Patrick Oßwald, Claire Robinson, Michael A. Shook, Richard H. Moore, and Prem Lobo
Atmos. Meas. Tech., 15, 3223–3242, https://doi.org/10.5194/amt-15-3223-2022, https://doi.org/10.5194/amt-15-3223-2022, 2022
Short summary
Short summary
The combustion of sustainable aviation fuels in aircraft engines produces particulate matter (PM) emissions with different properties than conventional fuels due to changes in fuel composition. Consequently, the response of various diagnostic instruments to PM emissions may be impacted. We found no significant instrument biases in terms of particle mass, number, and size measurements for conventional and sustainable aviation fuel blends despite large differences in the magnitude of emissions.
Stelios Myriokefalitakis, Elisa Bergas-Massó, María Gonçalves-Ageitos, Carlos Pérez García-Pando, Twan van Noije, Philippe Le Sager, Akinori Ito, Eleni Athanasopoulou, Athanasios Nenes, Maria Kanakidou, Maarten C. Krol, and Evangelos Gerasopoulos
Geosci. Model Dev., 15, 3079–3120, https://doi.org/10.5194/gmd-15-3079-2022, https://doi.org/10.5194/gmd-15-3079-2022, 2022
Short summary
Short summary
We here describe the implementation of atmospheric multiphase processes in the EC-Earth Earth system model. We provide global budgets of oxalate, sulfate, and iron-containing aerosols, along with an analysis of the links among atmospheric composition, aqueous-phase processes, and aerosol dissolution, supported by comparison to observations. This work is a first step towards an interactive calculation of the deposition of bioavailable atmospheric iron coupled to the model’s ocean component.
Adam T. Ahern, Frank Erdesz, Nicholas L. Wagner, Charles A. Brock, Ming Lyu, Kyra Slovacek, Richard H. Moore, Elizabeth B. Wiggins, and Daniel M. Murphy
Atmos. Meas. Tech., 15, 1093–1105, https://doi.org/10.5194/amt-15-1093-2022, https://doi.org/10.5194/amt-15-1093-2022, 2022
Short summary
Short summary
Particles in the atmosphere play a significant role in climate change by scattering light back into space, reducing the amount of energy available to be absorbed by greenhouse gases. We built a new instrument to measure what direction light is scattered by particles, e.g., wildfire smoke. This is important because, depending on the angle of the sun, some particles scatter light into space (cooling the planet), but some light is also scattered towards the Earth (not cooling the planet).
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Paraskevi Georgakaki, Georgia Sotiropoulou, Étienne Vignon, Anne-Claire Billault-Roux, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 22, 1965–1988, https://doi.org/10.5194/acp-22-1965-2022, https://doi.org/10.5194/acp-22-1965-2022, 2022
Short summary
Short summary
The modelling study focuses on the importance of ice multiplication processes in orographic mixed-phase clouds, which is one of the least understood cloud types in the climate system. We show that the consideration of ice seeding and secondary ice production through ice–ice collisional breakup is essential for correct predictions of precipitation in mountainous terrain, with important implications for radiation processes.
Irini Tsiodra, Georgios Grivas, Kalliopi Tavernaraki, Aikaterini Bougiatioti, Maria Apostolaki, Despina Paraskevopoulou, Alexandra Gogou, Constantine Parinos, Konstantina Oikonomou, Maria Tsagkaraki, Pavlos Zarmpas, Athanasios Nenes, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 21, 17865–17883, https://doi.org/10.5194/acp-21-17865-2021, https://doi.org/10.5194/acp-21-17865-2021, 2021
Short summary
Short summary
We analyze observations from year-long measurements at Athens, Greece. Nighttime wintertime PAH levels are 4 times higher than daytime, and wintertime values are 15 times higher than summertime. Biomass burning aerosol during wintertime pollution events is responsible for these significant wintertime enhancements and accounts for 43 % of the population exposure to PAH carcinogenic risk. Biomass burning poses additional health risks beyond those associated with the high PM levels that develop.
Mária Lbadaoui-Darvas, Satoshi Takahama, and Athanasios Nenes
Atmos. Chem. Phys., 21, 17687–17714, https://doi.org/10.5194/acp-21-17687-2021, https://doi.org/10.5194/acp-21-17687-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions constitute the most uncertain contribution to climate change. The uptake kinetics of water by aerosol is a central process of cloud droplet formation, yet its molecular-scale mechanism is unknown. We use molecular simulations to study this process for phase-separated organic particles. Our results explain the increased cloud condensation activity of such particles and can be generalized over various compositions, thus possibly serving as a basis for future models.
Tiziana Bräuer, Christiane Voigt, Daniel Sauer, Stefan Kaufmann, Valerian Hahn, Monika Scheibe, Hans Schlager, Felix Huber, Patrick Le Clercq, Richard H. Moore, and Bruce E. Anderson
Atmos. Chem. Phys., 21, 16817–16826, https://doi.org/10.5194/acp-21-16817-2021, https://doi.org/10.5194/acp-21-16817-2021, 2021
Short summary
Short summary
Over half of aviation climate impact is caused by contrails. Biofuels can reduce the ice crystal numbers in contrails and mitigate the climate impact. The experiment ECLIF II/NDMAX in 2018 assessed the effects of biofuels on contrails and aviation emissions. The NASA DC-8 aircraft performed measurements inside the contrail of the DLR A320. One reference fuel and two blends of the biofuel HEFA and kerosene are analysed. We find a max reduction of contrail ice numbers through biofuel use of 40 %.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Hossein Dadashazar, Majid Alipanah, Miguel Ricardo A. Hilario, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Andrew J. Peters, Amy Jo Scarino, Michael Shook, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Bo Zhang, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 16121–16141, https://doi.org/10.5194/acp-21-16121-2021, https://doi.org/10.5194/acp-21-16121-2021, 2021
Short summary
Short summary
This study investigates precipitation impacts on long-range transport of North American outflow over the western North Atlantic Ocean (WNAO). Results demonstrate that precipitation scavenging plays a significant role in modifying surface aerosol concentrations over the WNAO, especially in winter and spring due to large-scale scavenging processes. This study highlights how precipitation impacts surface aerosol properties with relevance for other marine regions vulnerable to continental outflow.
David Painemal, Douglas Spangenberg, William L. Smith Jr., Patrick Minnis, Brian Cairns, Richard H. Moore, Ewan Crosbie, Claire Robinson, Kenneth L. Thornhill, Edward L. Winstead, and Luke Ziemba
Atmos. Meas. Tech., 14, 6633–6646, https://doi.org/10.5194/amt-14-6633-2021, https://doi.org/10.5194/amt-14-6633-2021, 2021
Short summary
Short summary
Cloud properties derived from satellite sensors are critical for the global monitoring of climate. This study evaluates satellite-based cloud properties over the North Atlantic using airborne data collected during NAAMES. Satellite observations of droplet size and cloud optical depth tend to compare well with NAAMES data. The analysis indicates that the satellite pixel resolution and the specific viewing geometry need to be taken into account in research applications.
Spiro D. Jorga, Kalliopi Florou, Christos Kaltsonoudis, John K. Kodros, Christina Vasilakopoulou, Manuela Cirtog, Axel Fouqueau, Bénédicte Picquet-Varrault, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 15337–15349, https://doi.org/10.5194/acp-21-15337-2021, https://doi.org/10.5194/acp-21-15337-2021, 2021
Short summary
Short summary
We test the hypothesis that significant secondary organic aerosol production can take place even during winter nights through the oxidation of the emitted organic vapors by the nitrate radicals produced during the reaction of ozone and nitrogen oxides. Our experiments, using as a starting point the ambient air of an urban area with high biomass burning activity, demonstrate that, even with sunlight, there is 20 %–70 % additional organic aerosol formed in a few hours.
Andreas Tilgner, Thomas Schaefer, Becky Alexander, Mary Barth, Jeffrey L. Collett Jr., Kathleen M. Fahey, Athanasios Nenes, Havala O. T. Pye, Hartmut Herrmann, and V. Faye McNeill
Atmos. Chem. Phys., 21, 13483–13536, https://doi.org/10.5194/acp-21-13483-2021, https://doi.org/10.5194/acp-21-13483-2021, 2021
Short summary
Short summary
Feedbacks of acidity and atmospheric multiphase chemistry in deliquesced particles and clouds are crucial for the tropospheric composition, depositions, climate, and human health. This review synthesizes the current scientific knowledge on these feedbacks using both inorganic and organic aqueous-phase chemistry. Finally, this review outlines atmospheric implications and highlights the need for future investigations with respect to reducing emissions of key acid precursors in a changing world.
J. Brant Dodson, Patrick C. Taylor, Richard H. Moore, David H. Bromwich, Keith M. Hines, Kenneth L. Thornhill, Chelsea A. Corr, Bruce E. Anderson, Edward L. Winstead, and Joseph R. Bennett
Atmos. Chem. Phys., 21, 11563–11580, https://doi.org/10.5194/acp-21-11563-2021, https://doi.org/10.5194/acp-21-11563-2021, 2021
Short summary
Short summary
Aircraft in situ observations of low-level Beaufort Sea cloud properties and thermodynamics from the ARISE campaign are compared with the Arctic System Reanalysis (ASR) to better understand deficiencies in simulated clouds. ASR produces too little cloud water, which coincides with being too warm and dry. In addition, ASR struggles to produce cloud water even in favorable thermodynamic conditions. A random sampling experiment also shows the effects of the limited aircraft sampling on the results.
Paraskevi Georgakaki, Aikaterini Bougiatioti, Jörg Wieder, Claudia Mignani, Fabiola Ramelli, Zamin A. Kanji, Jan Henneberger, Maxime Hervo, Alexis Berne, Ulrike Lohmann, and Athanasios Nenes
Atmos. Chem. Phys., 21, 10993–11012, https://doi.org/10.5194/acp-21-10993-2021, https://doi.org/10.5194/acp-21-10993-2021, 2021
Short summary
Short summary
Aerosol and cloud observations coupled with a droplet activation parameterization was used to investigate the aerosol–cloud droplet link in alpine mixed-phase clouds. Predicted droplet number, Nd, agrees with observations and never exceeds a characteristic “limiting droplet number”, Ndlim, which depends solely on σw. Nd becomes velocity limited when it is within 50 % of Ndlim. Identifying when dynamical changes control Nd variability is central for understanding aerosol–cloud interactions.
Hossein Dadashazar, David Painemal, Majid Alipanah, Michael Brunke, Seethala Chellappan, Andrea F. Corral, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Claire Robinson, Amy Jo Scarino, Michael Shook, Kenneth Sinclair, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Xubin Zeng, Luke Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 21, 10499–10526, https://doi.org/10.5194/acp-21-10499-2021, https://doi.org/10.5194/acp-21-10499-2021, 2021
Short summary
Short summary
This study investigates the seasonal cycle of cloud drop number concentration (Nd) over the western North Atlantic Ocean (WNAO) using multiple datasets. Reasons for the puzzling discrepancy between the seasonal cycles of Nd and aerosol concentration were identified. Results indicate that Nd is highest in winter (when aerosol proxy values are often lowest) due to conditions both linked to cold-air outbreaks and that promote greater droplet activation.
Georgia Sotiropoulou, Luisa Ickes, Athanasios Nenes, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 9741–9760, https://doi.org/10.5194/acp-21-9741-2021, https://doi.org/10.5194/acp-21-9741-2021, 2021
Short summary
Short summary
Mixed-phase clouds are a large source of uncertainty in projections of the Arctic climate. This is partly due to the poor representation of the cloud ice formation processes. Implementing a parameterization for ice multiplication due to mechanical breakup upon collision of two ice particles in a high-resolution model improves cloud ice phase representation; however, cloud liquid remains overestimated.
Richard H. Moore, Elizabeth B. Wiggins, Adam T. Ahern, Stephen Zimmerman, Lauren Montgomery, Pedro Campuzano Jost, Claire E. Robinson, Luke D. Ziemba, Edward L. Winstead, Bruce E. Anderson, Charles A. Brock, Matthew D. Brown, Gao Chen, Ewan C. Crosbie, Hongyu Guo, Jose L. Jimenez, Carolyn E. Jordan, Ming Lyu, Benjamin A. Nault, Nicholas E. Rothfuss, Kevin J. Sanchez, Melinda Schueneman, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Nicholas L. Wagner, and Jian Wang
Atmos. Meas. Tech., 14, 4517–4542, https://doi.org/10.5194/amt-14-4517-2021, https://doi.org/10.5194/amt-14-4517-2021, 2021
Short summary
Short summary
Atmospheric particles are everywhere and exist in a range of sizes, from a few nanometers to hundreds of microns. Because particle size determines the behavior of chemical and physical processes, accurately measuring particle sizes is an important and integral part of atmospheric field measurements! Here, we discuss the performance of two commonly used particle sizers and how changes in particle composition and optical properties may result in sizing uncertainties, which we quantify.
Athanasios Nenes, Spyros N. Pandis, Maria Kanakidou, Armistead G. Russell, Shaojie Song, Petros Vasilakos, and Rodney J. Weber
Atmos. Chem. Phys., 21, 6023–6033, https://doi.org/10.5194/acp-21-6023-2021, https://doi.org/10.5194/acp-21-6023-2021, 2021
Short summary
Short summary
Ecosystems and air quality are affected by the dry deposition of inorganic reactive nitrogen (Nr, the sum of ammonium and nitrate). Its large variability is driven by the large difference in deposition velocity of N when in the gas or particle phase. Here we show that aerosol liquid water and acidity, by affecting gas–particle partitioning, modulate the dry deposition velocity of NH3, HNO3, and Nr worldwide. These effects explain the rapid accumulation of nitrate aerosol during haze events.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Yilin Chen, Huizhong Shen, Jennifer Kaiser, Yongtao Hu, Shannon L. Capps, Shunliu Zhao, Amir Hakami, Jhih-Shyang Shih, Gertrude K. Pavur, Matthew D. Turner, Daven K. Henze, Jaroslav Resler, Athanasios Nenes, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Tianfeng Chai, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, and Armistead G. Russell
Atmos. Chem. Phys., 21, 2067–2082, https://doi.org/10.5194/acp-21-2067-2021, https://doi.org/10.5194/acp-21-2067-2021, 2021
Short summary
Short summary
Ammonia (NH3) emissions can exert adverse impacts on air quality and ecosystem well-being. NH3 emission inventories are viewed as highly uncertain. Here we optimize the NH3 emission estimates in the US using an air quality model and NH3 measurements from the IASI satellite instruments. The optimized NH3 emissions are much higher than the National Emissions Inventory estimates in April. The optimized NH3 emissions improved model performance when evaluated against independent observation.
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021, https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Short summary
North Atlantic Aerosols and Marine Ecosystems Study measurements combined with GEOS-Chem-TOMAS modeling suggest that several not-well-understood key factors control northwest Atlantic aerosol number and size. These synergetic and climate-relevant factors include particle formation near and above the marine boundary layer top, particle growth by marine secondary organic aerosol on descent, particle formation/growth related to dimethyl sulfide, sea spray aerosol, and ship emissions.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Charles H. Hudgins, Kenneth L. Thornhill, Gregory L. Schuster, Richard H. Moore, Ewan C. Crosbie, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 695–713, https://doi.org/10.5194/amt-14-695-2021, https://doi.org/10.5194/amt-14-695-2021, 2021
Short summary
Short summary
First field data from a custom-built in situ instrument measuring hyperspectral (300–700 nm, 0.8 nm resolution) ambient atmospheric aerosol extinction are presented. The advantage of this capability is that it can be directly linked to other in situ techniques that measure physical and chemical properties of atmospheric aerosols. Second-order polynomials provided a better fit to the data than traditional power law fits, yielding greater discrimination among distinct ambient aerosol populations.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Michael Novak, Antonio Mannino, Ewan C. Crosbie, Gregory L. Schuster, Richard H. Moore, Charles H. Hudgins, Kenneth L. Thornhill, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 715–736, https://doi.org/10.5194/amt-14-715-2021, https://doi.org/10.5194/amt-14-715-2021, 2021
Short summary
Short summary
In situ measurements of ambient atmospheric aerosol hyperspectral (300–700 nm) optical properties (extinction, total absorption, water- and methanol-soluble absorption) were observed around the Korean peninsula. Such in situ observations provide a direct link between ambient aerosol optical properties and their physicochemical properties. The benefit of hyperspectral measurements is evident as simple mathematical functions could not fully capture the observed spectral detail of ambient aerosols.
Stylianos Kakavas, David Patoulias, Maria Zakoura, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 799–811, https://doi.org/10.5194/acp-21-799-2021, https://doi.org/10.5194/acp-21-799-2021, 2021
Short summary
Short summary
The dependence of aerosol acidity on particle size, location, and altitude over Europe during a summertime period is investigated. Differences of up to 1–4 pH units are predicted between sub- and supermicron particles in northern and southern Europe. Particles of all sizes become increasingly acidic with altitude (0.5–2.5 pH units decrease over 2.5 km). The size-dependent pH differences carry important implications for pH-sensitive processes in the aerosol.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Georges Saliba, Chia-Li Chen, Savannah L. Lewis, Lynn M. Russell, Michael A. Shook, Ewan C. Crosbie, Luke D. Ziemba, Matthew D. Brown, Taylor J. Shingler, Claire E. Robinson, Elizabeth B. Wiggins, Kenneth L. Thornhill, Edward L. Winstead, Carolyn Jordan, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 21, 831–851, https://doi.org/10.5194/acp-21-831-2021, https://doi.org/10.5194/acp-21-831-2021, 2021
Short summary
Short summary
Models describing atmospheric airflow were combined with satellite measurements representative of marine phytoplankton and other meteorological variables. These combined variables were compared to measured aerosol to identify upwind influences on aerosol concentrations. Results indicate that phytoplankton production rates upwind impact the aerosol mass. Also, results suggest that the condensation of mass onto short-lived large sea spray particles may be a significant sink of aerosol mass.
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021, https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Short summary
Summer clouds have a significant impact on the radiation budget of the Antarctic surface and thus on ice-shelf melting. However, these are poorly represented in climate models due to errors in their microphysical structure, including the number of ice crystals that they contain. We show that breakup from ice particle collisions can substantially magnify the ice crystal number concentration with significant implications for surface radiation. This process is currently missing in climate models.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Ari Laaksonen, Jussi Malila, and Athanasios Nenes
Atmos. Chem. Phys., 20, 13579–13589, https://doi.org/10.5194/acp-20-13579-2020, https://doi.org/10.5194/acp-20-13579-2020, 2020
Short summary
Short summary
Aerosol particles containing black carbon are ubiquitous in the atmosphere and originate from combustion processes. We examine their capability to act as condensation centers for water vapor. We make use of published experimental data sets for different types of black carbon particles, ranging from very pure particles to particles that contain both black carbon and water soluble organic matter, and we show that a recently developed theory reproduces most of the experimental results.
Lanxiadi Chen, Chao Peng, Wenjun Gu, Hanjing Fu, Xing Jian, Huanhuan Zhang, Guohua Zhang, Jianxi Zhu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13611–13626, https://doi.org/10.5194/acp-20-13611-2020, https://doi.org/10.5194/acp-20-13611-2020, 2020
Short summary
Short summary
We investigated hygroscopic properties of a number of mineral dust particles in a quantitative manner, via measuring the sample mass at different relative humidities. The robust and comprehensive data obtained would significantly improve our knowledge of hygroscopicity of mineral dust and its impacts on atmospheric chemistry and climate.
Aikaterini Bougiatioti, Athanasios Nenes, Jack J. Lin, Charles A. Brock, Joost A. de Gouw, Jin Liao, Ann M. Middlebrook, and André Welti
Atmos. Chem. Phys., 20, 12163–12176, https://doi.org/10.5194/acp-20-12163-2020, https://doi.org/10.5194/acp-20-12163-2020, 2020
Short summary
Short summary
The number concentration of droplets in clouds in the summertime in the southeastern United States is influenced by aerosol variations but limited by the strong competition for supersaturated water vapor. Concurrent variations in vertical velocity magnify the response of cloud droplet number to aerosol increases by up to a factor of 5. Omitting the covariance of vertical velocity with aerosol number may therefore bias estimates of the cloud albedo effect from aerosols.
Ifayoyinsola Ibikunle, Andreas Beyersdorf, Pedro Campuzano-Jost, Chelsea Corr, John D. Crounse, Jack Dibb, Glenn Diskin, Greg Huey, Jose-Luis Jimenez, Michelle J. Kim, Benjamin A. Nault, Eric Scheuer, Alex Teng, Paul O. Wennberg, Bruce Anderson, James Crawford, Rodney Weber, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-501, https://doi.org/10.5194/acp-2020-501, 2020
Publication in ACP not foreseen
Short summary
Short summary
Analysis of observations over South Korea during the NASA/NIER
KORUS-AQ field campaign show that aerosol is fairly acidic (mean pH 2.43 ± 0.68). Aerosol formation is always sensitive to HNO3 levels, especially in highly polluted regions, while it is only exclusively sensitive to NH3 in some rural/remote regions. Nitrate levels accumulate because dry deposition velocity is low. HNO3 reductions achieved by NOx controls can be the most effective PM reduction strategy for all conditions observed.
Shunliu Zhao, Matthew G. Russell, Amir Hakami, Shannon L. Capps, Matthew D. Turner, Daven K. Henze, Peter B. Percell, Jaroslav Resler, Huizhong Shen, Armistead G. Russell, Athanasios Nenes, Amanda J. Pappin, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Charles O. Stanier, and Tianfeng Chai
Geosci. Model Dev., 13, 2925–2944, https://doi.org/10.5194/gmd-13-2925-2020, https://doi.org/10.5194/gmd-13-2925-2020, 2020
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Athanasios Nenes, Spyros N. Pandis, Rodney J. Weber, and Armistead Russell
Atmos. Chem. Phys., 20, 3249–3258, https://doi.org/10.5194/acp-20-3249-2020, https://doi.org/10.5194/acp-20-3249-2020, 2020
Short summary
Short summary
We show that aerosol acidity (pH) and liquid water content naturally emerge as previously ignored parameters that drive particulate matter formation in the atmosphere, and its sensitivity to emissions of ammonia and nitric acid. The simple framework presented is easily applied to ambient measurements or model output, and it provides the
chemical regimeof PM sensitivity to ammonia and nitric acid availability.
Mary Kacarab, K. Lee Thornhill, Amie Dobracki, Steven G. Howell, Joseph R. O'Brien, Steffen Freitag, Michael R. Poellot, Robert Wood, Paquita Zuidema, Jens Redemann, and Athanasios Nenes
Atmos. Chem. Phys., 20, 3029–3040, https://doi.org/10.5194/acp-20-3029-2020, https://doi.org/10.5194/acp-20-3029-2020, 2020
Short summary
Short summary
We find that extensive biomass burning aerosol plumes from southern Africa can profoundly influence clouds in the southeastern Atlantic. Concurrent variations in vertical velocity, however, are found to magnify the relationship between boundary layer aerosol and the cloud droplet number. Neglecting these covariances may strongly bias the sign and magnitude of aerosol impacts on the cloud droplet number.
Arnaldo Negron, Natasha DeLeon-Rodriguez, Samantha M. Waters, Luke D. Ziemba, Bruce Anderson, Michael Bergin, Konstantinos T. Konstantinidis, and Athanasios Nenes
Atmos. Chem. Phys., 20, 1817–1838, https://doi.org/10.5194/acp-20-1817-2020, https://doi.org/10.5194/acp-20-1817-2020, 2020
Short summary
Short summary
Airborne biological particles impact human health, cloud formation, and ecosystems, but few techniques are available to characterize their atmospheric abundance. Combining a newly developed high-volume sampling/flow cytometry technique together with an laser-induced fluorescence instrument, we detect a highly dynamic bioaerosol community over urban Atlanta, composed of pollen, fungi, and bacteria with low and high nucleic acid content.
Georgia Sotiropoulou, Sylvia Sullivan, Julien Savre, Gary Lloyd, Thomas Lachlan-Cope, Annica M. L. Ekman, and Athanasios Nenes
Atmos. Chem. Phys., 20, 1301–1316, https://doi.org/10.5194/acp-20-1301-2020, https://doi.org/10.5194/acp-20-1301-2020, 2020
Short summary
Short summary
Arctic clouds constitute a large source of uncertainty in predictions of future climate. Observations indicate that the number concentration of cloud ice crystals exceeds the concentration of aerosols that can act as ice-nucleating particles (INPs). We show that ice multiplication due to mechanical break-up upon collisions between the few primary ice crystals (formed from INPs) can explain the discrepancy. Including a description of the process in climate models can improve cloud representation.
Michael A. Battaglia Jr., Rodney J. Weber, Athanasios Nenes, and Christopher J. Hennigan
Atmos. Chem. Phys., 19, 14607–14620, https://doi.org/10.5194/acp-19-14607-2019, https://doi.org/10.5194/acp-19-14607-2019, 2019
Short summary
Short summary
The effects of water-soluble organic carbon (WSOC) on aerosol pH were characterized for aqueous-phase particles containing a mixture of inorganics and organics. The ISORROPIA-II and E-AIM models were used in conjunction with AIOMFAC to quantify the effect of organics on aerosol pH through (1) changes to the aerosol liquid water content and (2) changes to the hydrogen ion activity coefficient. The study included both organic acids and nonacids, at RH levels ranging from 70 to 90 %.
Joel S. Schafer, Tom F. Eck, Brent N. Holben, Kenneth L. Thornhill, Luke D. Ziemba, Patricia Sawamura, Richard H. Moore, Ilya Slutsker, Bruce E. Anderson, Alexander Sinyuk, David M. Giles, Alexander Smirnov, Andreas J. Beyersdorf, and Edward L. Winstead
Atmos. Meas. Tech., 12, 5289–5301, https://doi.org/10.5194/amt-12-5289-2019, https://doi.org/10.5194/amt-12-5289-2019, 2019
Short summary
Short summary
Two independent datasets of column-integrated size distributions of atmospheric aerosols were compared during four 1-month regional campaigns from 2011 to 2014 in four US states. One set of measurements was from observations at multiple locations at the surface using retrievals from sun photometers, while the other relied on in situ aircraft sampling. These campaigns represent the most extensive comparison of AERONET size distributions with aircraft sampling of particle size on record.
Eleni Marinou, Matthias Tesche, Athanasios Nenes, Albert Ansmann, Jann Schrod, Dimitra Mamali, Alexandra Tsekeri, Michael Pikridas, Holger Baars, Ronny Engelmann, Kalliopi-Artemis Voudouri, Stavros Solomos, Jean Sciare, Silke Groß, Florian Ewald, and Vassilis Amiridis
Atmos. Chem. Phys., 19, 11315–11342, https://doi.org/10.5194/acp-19-11315-2019, https://doi.org/10.5194/acp-19-11315-2019, 2019
Short summary
Short summary
We assess the feasibility of ground-based and spaceborne lidars to retrieve profiles of cloud-relevant aerosol concentrations and ice-nucleating particles. The retrieved profiles are in good agreement with airborne in situ measurements. Our methodology will be applied to satellite observations in the future so as to provide a global 3D product of cloud-relevant properties.
George S. Fanourgakis, Maria Kanakidou, Athanasios Nenes, Susanne E. Bauer, Tommi Bergman, Ken S. Carslaw, Alf Grini, Douglas S. Hamilton, Jill S. Johnson, Vlassis A. Karydis, Alf Kirkevåg, John K. Kodros, Ulrike Lohmann, Gan Luo, Risto Makkonen, Hitoshi Matsui, David Neubauer, Jeffrey R. Pierce, Julia Schmale, Philip Stier, Kostas Tsigaridis, Twan van Noije, Hailong Wang, Duncan Watson-Parris, Daniel M. Westervelt, Yang Yang, Masaru Yoshioka, Nikos Daskalakis, Stefano Decesari, Martin Gysel-Beer, Nikos Kalivitis, Xiaohong Liu, Natalie M. Mahowald, Stelios Myriokefalitakis, Roland Schrödner, Maria Sfakianaki, Alexandra P. Tsimpidi, Mingxuan Wu, and Fangqun Yu
Atmos. Chem. Phys., 19, 8591–8617, https://doi.org/10.5194/acp-19-8591-2019, https://doi.org/10.5194/acp-19-8591-2019, 2019
Short summary
Short summary
Effects of aerosols on clouds are important for climate studies but are among the largest uncertainties in climate projections. This study evaluates the skill of global models to simulate aerosol, cloud condensation nuclei (CCN) and cloud droplet number concentrations (CDNCs). Model results show reduced spread in CDNC compared to CCN due to the negative correlation between the sensitivities of CDNC to aerosol number concentration (air pollution) and updraft velocity (atmospheric dynamics).
Jenny P. S. Wong, Maria Tsagkaraki, Irini Tsiodra, Nikolaos Mihalopoulos, Kalliopi Violaki, Maria Kanakidou, Jean Sciare, Athanasios Nenes, and Rodney J. Weber
Atmos. Chem. Phys., 19, 7319–7334, https://doi.org/10.5194/acp-19-7319-2019, https://doi.org/10.5194/acp-19-7319-2019, 2019
Short summary
Short summary
Biomass burning is a major source of light-absorbing organic species in atmospheric aerosols, and it can play an important role in climate and atmospheric chemistry. Through a combination of laboratory experiments and field observations, this work demonstrated that the light absorption properties of aged biomass burning organic aerosols are dominated by high-molecular-weight compounds. In addition, we found that total hydrated sugars may be a robust tracer for aged biomass burning aerosols.
Panayiotis Kalkavouras, Aikaterini Bougiatioti, Nikos Kalivitis, Iasonas Stavroulas, Maria Tombrou, Athanasios Nenes, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 19, 6185–6203, https://doi.org/10.5194/acp-19-6185-2019, https://doi.org/10.5194/acp-19-6185-2019, 2019
Short summary
Short summary
We study how new particle formation (NPF) events affect clouds throughout the year at a ground site in the E Mediterranean. Using a new tools and evaluation metrics, NPF is found to affect only evening and nocturnal clouds by modestly increasing droplet number by 7 to 12 %. A conventional analysis based on CCN concentration at prescribed supersaturation levels or aerosol size can considerably bias the perceived influence of NPF events on regional clouds, the hydrological cycle, and climate.
Nønne L. Prisle, Jack J. Lin, Sara Purdue, Haisheng Lin, J. Carson Meredith, and Athanasios Nenes
Atmos. Chem. Phys., 19, 4741–4761, https://doi.org/10.5194/acp-19-4741-2019, https://doi.org/10.5194/acp-19-4741-2019, 2019
Short summary
Short summary
We measure surface activity and cloud-forming potential of pollenkitt, an organic mixture coating pollen grains. Cloud droplet formation is affected through both surface tension and bulk depletion, with a consistent particle size-dependent signature. We observe nonideal solution effects in pollenkitt mixtures with ammonium sulfate salt. Our results suggest sensitivity of general water interactions, including cloud formation by pollen and their fragments, to both atmospheric humidity and aging.
Hongyu Guo, Athanasios Nenes, and Rodney J. Weber
Atmos. Chem. Phys., 18, 17307–17323, https://doi.org/10.5194/acp-18-17307-2018, https://doi.org/10.5194/acp-18-17307-2018, 2018
Short summary
Short summary
Overprediction of fine-particle ammonium-sulfate molar ratios (R) by thermodynamic models is suggested as evidence for organic aerosol limiting the condensation of ammonia onto particles, with significant impacts on aerosol chemistry. We find that the effects of small amounts of salt and dust, combined with measurement artifacts, explain the discrepancy in R. These results are highly insensitive to mixing state. This means that aerosol predictions are much more robust than thought before.
Sylvia C. Sullivan, Christian Barthlott, Jonathan Crosier, Ilya Zhukov, Athanasios Nenes, and Corinna Hoose
Atmos. Chem. Phys., 18, 16461–16480, https://doi.org/10.5194/acp-18-16461-2018, https://doi.org/10.5194/acp-18-16461-2018, 2018
Short summary
Short summary
Ice crystal formation in clouds can occur via thermodynamic nucleation, but also via mechanical collisions between pre-existing crystals or co-existing droplets. When descriptions of this mechanical ice generation are implemented into the COSMO weather model, we find that the contributions to crystal number from thermodynamic and mechanical processes are of the same order. Mechanical ice generation also intensifies differences in precipitation intensity between dynamic and quiescent regions.
Stelios Myriokefalitakis, Akinori Ito, Maria Kanakidou, Athanasios Nenes, Maarten C. Krol, Natalie M. Mahowald, Rachel A. Scanza, Douglas S. Hamilton, Matthew S. Johnson, Nicholas Meskhidze, Jasper F. Kok, Cecile Guieu, Alex R. Baker, Timothy D. Jickells, Manmohan M. Sarin, Srinivas Bikkina, Rachel Shelley, Andrew Bowie, Morgane M. G. Perron, and Robert A. Duce
Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, https://doi.org/10.5194/bg-15-6659-2018, 2018
Short summary
Short summary
The first atmospheric iron (Fe) deposition model intercomparison is presented in this study, as a result of the deliberations of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP; http://www.gesamp.org/) Working Group 38. We conclude that model diversity over remote oceans reflects uncertainty in the Fe content parameterizations of dust aerosols, combustion aerosol emissions and the size distribution of transported aerosol Fe.
Sara Bacer, Sylvia C. Sullivan, Vlassis A. Karydis, Donifan Barahona, Martina Krämer, Athanasios Nenes, Holger Tost, Alexandra P. Tsimpidi, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4021–4041, https://doi.org/10.5194/gmd-11-4021-2018, https://doi.org/10.5194/gmd-11-4021-2018, 2018
Short summary
Short summary
The complexity of ice nucleation mechanisms and aerosol--ice interactions makes their representation still challenging in atmospheric models. We have implemented a comprehensive ice crystal formation parameterization in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations. The newly implemented parameterization takes into account processes which were previously neglected by the standard version of the model.
Ewan Crosbie, Matthew D. Brown, Michael Shook, Luke Ziemba, Richard H. Moore, Taylor Shingler, Edward Winstead, K. Lee Thornhill, Claire Robinson, Alexander B. MacDonald, Hossein Dadashazar, Armin Sorooshian, Andreas Beyersdorf, Alexis Eugene, Jeffrey Collett Jr., Derek Straub, and Bruce Anderson
Atmos. Meas. Tech., 11, 5025–5048, https://doi.org/10.5194/amt-11-5025-2018, https://doi.org/10.5194/amt-11-5025-2018, 2018
Short summary
Short summary
A new aircraft-mounted probe for collecting samples of cloud water has been designed, fabricated, and extensively tested. Cloud drop composition provides valuable insight into atmospheric processes, but separating liquid samples from the airstream in a controlled way at flight speeds has proven difficult. The features of the design have been analysed with detailed numerical flow simulations and the new probe has demonstrated improved efficiency and performance through extensive flight testing.
Petros Vasilakos, Armistead Russell, Rodney Weber, and Athanasios Nenes
Atmos. Chem. Phys., 18, 12765–12775, https://doi.org/10.5194/acp-18-12765-2018, https://doi.org/10.5194/acp-18-12765-2018, 2018
Short summary
Short summary
In this work, we investigated the role of emission reductions on aerosol acidity and particulate nitrate. We found that models exhibit positive biases in pH predictions, attributed to very high levels of crustal elements (Mg, Ca, K) in model simulations, which in turn led to an increasing aerosol pH trend over the past decade and allowed nitrate to become an important component of aerosol, which is inconsistent with the measurements, highlighting the importance of accurate pH prediction.
Hongyu Guo, Rene Otjes, Patrick Schlag, Astrid Kiendler-Scharr, Athanasios Nenes, and Rodney J. Weber
Atmos. Chem. Phys., 18, 12241–12256, https://doi.org/10.5194/acp-18-12241-2018, https://doi.org/10.5194/acp-18-12241-2018, 2018
Short summary
Short summary
Reduction in ammonia has been proposed as a way to lower fine particle mass and improve air quality, but gas-phase ammonia is linked to agricultural productivity. We assess the feasibility of ammonia control at a variety of locations through an aerosol thermodynamic analysis. We show that aerosol response to ammonia control is highly nonlinear and only becomes effective when ambient particle pH drops below approximately 3. Particle pH is a relevant aerosol air quality parameter.
Theodora Nah, Hongyu Guo, Amy P. Sullivan, Yunle Chen, David J. Tanner, Athanasios Nenes, Armistead Russell, Nga Lee Ng, L. Gregory Huey, and Rodney J. Weber
Atmos. Chem. Phys., 18, 11471–11491, https://doi.org/10.5194/acp-18-11471-2018, https://doi.org/10.5194/acp-18-11471-2018, 2018
Short summary
Short summary
We present measurements from a field study conducted in an agriculturally intensive region in the southeastern US during the fall of 2016 to investigate how NH3 affects particle acidity and SOA formation via gas–particle partitioning of semi-volatile organic acids. For this study, higher NH3 concentrations relative to what has been measured in the region in previous studies had minor effects on PM1 organic acids and their influence on the overall organic aerosol and PM1 mass concentrations.
Evangelia Kostenidou, Eleni Karnezi, James R. Hite Jr., Aikaterini Bougiatioti, Kate Cerully, Lu Xu, Nga L. Ng, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 5799–5819, https://doi.org/10.5194/acp-18-5799-2018, https://doi.org/10.5194/acp-18-5799-2018, 2018
Short summary
Short summary
The volatility distribution of organic aerosol (OA) and its sources during the Southern Oxidant and Aerosol Study (SOAS) was estimated. The volatility distribution of all components covered a wide range including both semi-volatile and low-volatility components. The oxygen content of the factors can be combined with their estimated volatility and hygroscopicity to provide a better view of their physical properties.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Sylvia C. Sullivan, Corinna Hoose, Alexei Kiselev, Thomas Leisner, and Athanasios Nenes
Atmos. Chem. Phys., 18, 1593–1610, https://doi.org/10.5194/acp-18-1593-2018, https://doi.org/10.5194/acp-18-1593-2018, 2018
Short summary
Short summary
Ice multiplication (IM) processes can have a profound impact on cloud and precipitation development but are poorly understood. Here we study whether a lower limit of ice nuclei exists to initiate IM. The lower limit is found to be extremely low (0.01 per liter or less). A counterintuitive but profound conclusion thus emerges: IM requires cloud formation around a thermodynamic
sweet spotand is sensitive to fluctuations in cloud condensation nuclei concentration alone.
Khairunnisa Yahya, Timothy Glotfelty, Kai Wang, Yang Zhang, and Athanasios Nenes
Geosci. Model Dev., 10, 2333–2363, https://doi.org/10.5194/gmd-10-2333-2017, https://doi.org/10.5194/gmd-10-2333-2017, 2017
Lauren M. Zamora, Ralph A. Kahn, Sabine Eckhardt, Allison McComiskey, Patricia Sawamura, Richard Moore, and Andreas Stohl
Atmos. Chem. Phys., 17, 7311–7332, https://doi.org/10.5194/acp-17-7311-2017, https://doi.org/10.5194/acp-17-7311-2017, 2017
Short summary
Short summary
Clouds have a major but uncertain effect on Arctic surface temperatures. Here, we used remote sensing observations to better understand aerosol effects on one type of Arctic cloud. By modifying a variety of cloud properties, aerosols in this type of cloud indirectly reduced the net warming effect of these clouds on the surface by ~ 10 % of the clean-background cloud effect, not including changes in cloud fraction. This work will improve our ability to predict future Arctic surface temperatures.
Patricia Sawamura, Richard H. Moore, Sharon P. Burton, Eduard Chemyakin, Detlef Müller, Alexei Kolgotin, Richard A. Ferrare, Chris A. Hostetler, Luke D. Ziemba, Andreas J. Beyersdorf, and Bruce E. Anderson
Atmos. Chem. Phys., 17, 7229–7243, https://doi.org/10.5194/acp-17-7229-2017, https://doi.org/10.5194/acp-17-7229-2017, 2017
Short summary
Short summary
We present a detailed evaluation of physical properties of aerosols, like aerosol number concentration and aerosol size, obtained from an advanced, airborne, multi-wavelength high-spectral-resolution lidar (HSRL-2) system. These lidar-retrieved physical properties were compared to airborne in situ measurements. Our findings highlight the advantages of advanced HSRL measurements and retrievals to help constrain the vertical distribution of aerosol volume or mass loading relevant for air quality.
Petros Vasilakos, Yong-Ηa Kim, Jeffrey R. Pierce, Sotira Yiacoumi, Costas Tsouris, and Athanasios Nenes
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-96, https://doi.org/10.5194/gmd-2017-96, 2017
Revised manuscript not accepted
Short summary
Short summary
Radioactive charging can significantly impact the way radioactive aerosols behave, and as a result their lifetime, but such effects are neglected in predictive model studies of radioactive plumes. We extend a well-established model that simulates the evolution of atmospheric particulate matter to account for radioactive charging effects in an accurate and computationally efficient way. It is shown that radioactivity can strongly impact the deposition patterns of aerosol.
Hongyu Guo, Jiumeng Liu, Karl D. Froyd, James M. Roberts, Patrick R. Veres, Patrick L. Hayes, Jose L. Jimenez, Athanasios Nenes, and Rodney J. Weber
Atmos. Chem. Phys., 17, 5703–5719, https://doi.org/10.5194/acp-17-5703-2017, https://doi.org/10.5194/acp-17-5703-2017, 2017
Short summary
Short summary
Fine particle pH is linked to many environmental impacts by affecting particle concentration and composition. Predicted Pasadena, CA (CalNex campaign), PM1 pH is 1.9 and PM2.5 pH 2.7, the latter higher due to sea salts. The model predicted gas–particle partitionings of HNO3–NO3−, NH3–NH4+, and HCl–Cl− are in good agreement, verifying the model predictions. A summary of contrasting locations in the US and eastern Mediterranean shows fine particles are generally highly acidic, with pH below 3.
Vlassis A. Karydis, Alexandra P. Tsimpidi, Sara Bacer, Andrea Pozzer, Athanasios Nenes, and Jos Lelieveld
Atmos. Chem. Phys., 17, 5601–5621, https://doi.org/10.5194/acp-17-5601-2017, https://doi.org/10.5194/acp-17-5601-2017, 2017
Short summary
Short summary
The importance of mineral dust for cloud droplet formation is studied by considering the adsorption activation of insoluble dust particles and the thermodynamic interactions between mineral cations and inorganic anions. This study demonstrates that a comprehensive treatment of the CCN activity of mineral dust and its chemical and thermodynamic interactions with inorganic species by chemistry climate models is important to realistically account for aerosol–chemistry–cloud–climate interaction.
Alexandra Tsekeri, Vassilis Amiridis, Franco Marenco, Athanasios Nenes, Eleni Marinou, Stavros Solomos, Phil Rosenberg, Jamie Trembath, Graeme J. Nott, James Allan, Michael Le Breton, Asan Bacak, Hugh Coe, Carl Percival, and Nikolaos Mihalopoulos
Atmos. Meas. Tech., 10, 83–107, https://doi.org/10.5194/amt-10-83-2017, https://doi.org/10.5194/amt-10-83-2017, 2017
Short summary
Short summary
The In situ/Remote sensing aerosol Retrieval Algorithm (IRRA) provides vertical profiles of aerosol optical, microphysical and hygroscopic properties from airborne in situ and remote sensing measurements. The algorithm is highly advantageous for aerosol characterization in humid conditions, employing the ISORROPIA II model for acquiring the particle hygroscopic growth. IRRA can find valuable applications in aerosol–cloud interaction schemes and in validation of active space-borne sensors.
Havala O. T. Pye, Benjamin N. Murphy, Lu Xu, Nga L. Ng, Annmarie G. Carlton, Hongyu Guo, Rodney Weber, Petros Vasilakos, K. Wyat Appel, Sri Hapsari Budisulistiorini, Jason D. Surratt, Athanasios Nenes, Weiwei Hu, Jose L. Jimenez, Gabriel Isaacman-VanWertz, Pawel K. Misztal, and Allen H. Goldstein
Atmos. Chem. Phys., 17, 343–369, https://doi.org/10.5194/acp-17-343-2017, https://doi.org/10.5194/acp-17-343-2017, 2017
Short summary
Short summary
We use a chemical transport model to examine how organic compounds in the atmosphere interact with water present in particles. Organic compounds themselves lead to water uptake, and organic compounds interact with water associated with inorganic compounds in the rural southeast atmosphere. Including interactions of organic compounds with water requires a treatment of nonideality to more accurately represent aerosol observations during the Southern Oxidant and Aerosol Study (SOAS) 2013.
Panayiotis Kalkavouras, Elissavet Bossioli, Spiros Bezantakos, Aikaterini Bougiatioti, Nikos Kalivitis, Iasonas Stavroulas, Giorgos Kouvarakis, Anna P. Protonotariou, Aggeliki Dandou, George Biskos, Nikolaos Mihalopoulos, Athanasios Nenes, and Maria Tombrou
Atmos. Chem. Phys., 17, 175–192, https://doi.org/10.5194/acp-17-175-2017, https://doi.org/10.5194/acp-17-175-2017, 2017
Short summary
Short summary
Concentrations of chemically and size-resolved submicron aerosol particles along with concentrations of gases and meteorological variables were measured at Santorini and Finokalia (central and southern Aegean Sea) during the Etesians. Particle nucleation bursts were recorded. The NPF can double CCN number (at 0.1 % supersaturation), but the resulting strong competition for water vapor in cloudy updrafts decreases maximum supersaturation by 14 % and augments the potential droplet number by 12 %.
Stelios Myriokefalitakis, Athanasios Nenes, Alex R. Baker, Nikolaos Mihalopoulos, and Maria Kanakidou
Biogeosciences, 13, 6519–6543, https://doi.org/10.5194/bg-13-6519-2016, https://doi.org/10.5194/bg-13-6519-2016, 2016
Short summary
Short summary
The global atmospheric cycle of P is simulated accounting for natural and anthropogenic sources, acid dissolution of dust aerosol and changes in atmospheric acidity. Simulations show that P-containing dust dissolution flux may have increased in the last 150 years but is expected to decrease in the future, and biological particles are important carriers of bioavailable P to the ocean. These insights to the P cycle have important implications for marine ecosystem responses to climate change.
Sharon P. Burton, Eduard Chemyakin, Xu Liu, Kirk Knobelspiesse, Snorre Stamnes, Patricia Sawamura, Richard H. Moore, Chris A. Hostetler, and Richard A. Ferrare
Atmos. Meas. Tech., 9, 5555–5574, https://doi.org/10.5194/amt-9-5555-2016, https://doi.org/10.5194/amt-9-5555-2016, 2016
Short summary
Short summary
Retrievals of aerosol microphysics exist for ground-based, airborne, and future space-borne lidar measurements. We investigate the information content of a lidar measurement system, using only a forward model but no explicit inversion. The simplified aerosol used here is applicable as a best case for all retrievals in the absence of additional constraints. We report (1) information content of the measurements; (2) uncertainties on the retrieved parameters; and (3) sources of compensating errors.
Carsten Warneke, Michael Trainer, Joost A. de Gouw, David D. Parrish, David W. Fahey, A. R. Ravishankara, Ann M. Middlebrook, Charles A. Brock, James M. Roberts, Steven S. Brown, Jonathan A. Neuman, Brian M. Lerner, Daniel Lack, Daniel Law, Gerhard Hübler, Iliana Pollack, Steven Sjostedt, Thomas B. Ryerson, Jessica B. Gilman, Jin Liao, John Holloway, Jeff Peischl, John B. Nowak, Kenneth C. Aikin, Kyung-Eun Min, Rebecca A. Washenfelder, Martin G. Graus, Mathew Richardson, Milos Z. Markovic, Nick L. Wagner, André Welti, Patrick R. Veres, Peter Edwards, Joshua P. Schwarz, Timothy Gordon, William P. Dube, Stuart A. McKeen, Jerome Brioude, Ravan Ahmadov, Aikaterini Bougiatioti, Jack J. Lin, Athanasios Nenes, Glenn M. Wolfe, Thomas F. Hanisco, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Frank N. Keutsch, Jennifer Kaiser, Jingqiu Mao, and Courtney D. Hatch
Atmos. Meas. Tech., 9, 3063–3093, https://doi.org/10.5194/amt-9-3063-2016, https://doi.org/10.5194/amt-9-3063-2016, 2016
Short summary
Short summary
In this paper we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign, which was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants.
During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction.
Aikaterini Bougiatioti, Spiros Bezantakos, Iasonas Stavroulas, Nikos Kalivitis, Panagiotis Kokkalis, George Biskos, Nikolaos Mihalopoulos, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 16, 7389–7409, https://doi.org/10.5194/acp-16-7389-2016, https://doi.org/10.5194/acp-16-7389-2016, 2016
Short summary
Short summary
BBOA from long-range transport exhibits increased CCN concentrations for particles larger than 100 nm. At the same time the hygroscopicity parameter decreased for all particle sizes, as sub-100 nm particles appear to be richer in less hygroscopic organic material, while larger particles become less hygroscopic due to condensation of less hygroscopic gaseous compounds. Finally, atmospheric processing of freshly emitted BBOA to more oxidized organic aerosol can result in a 2-fold increase of κ.
Swen Metzger, Benedikt Steil, Mohamed Abdelkader, Klaus Klingmüller, Li Xu, Joyce E. Penner, Christos Fountoukis, Athanasios Nenes, and Jos Lelieveld
Atmos. Chem. Phys., 16, 7213–7237, https://doi.org/10.5194/acp-16-7213-2016, https://doi.org/10.5194/acp-16-7213-2016, 2016
Short summary
Short summary
We introduce an unique single parameter framework to efficiently parameterize the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, being entirely based on the single solute specific coefficient introduced in Metzger et al. (2012).
Patricia Sawamura, Richard H. Moore, Sharon P. Burton, Eduard Chemyakin, Detlef Müller, Alexei Kolgotin, Richard A. Ferrare, Chris A. Hostetler, Luke D. Ziemba, Andreas J. Beyersdorf, and Bruce E. Anderson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-380, https://doi.org/10.5194/acp-2016-380, 2016
Revised manuscript not accepted
Aikaterini Bougiatioti, Panayiota Nikolaou, Iasonas Stavroulas, Giorgos Kouvarakis, Rodney Weber, Athanasios Nenes, Maria Kanakidou, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 16, 4579–4591, https://doi.org/10.5194/acp-16-4579-2016, https://doi.org/10.5194/acp-16-4579-2016, 2016
Short summary
Short summary
Atmospheric aerosols and relevant parameters were measured in the eastern Mediterranean during summer and fall 2012. Submicron aerosol water can contribute up to 33 % of total mass, and 27.5 % of this can be associated with organics. Using these data, the pH of the submicron aerosols was calculated to be highly acidic, varying from 0.5 to 2.8 and independently of air masses origin. Such pH values could increase nutrient availability and thus sea water productivity of the Mediterranean Sea.
Christopher R. Hoyle, Clare S. Webster, Harald E. Rieder, Athanasios Nenes, Emanuel Hammer, Erik Herrmann, Martin Gysel, Nicolas Bukowiecki, Ernest Weingartner, Martin Steinbacher, and Urs Baltensperger
Atmos. Chem. Phys., 16, 4043–4061, https://doi.org/10.5194/acp-16-4043-2016, https://doi.org/10.5194/acp-16-4043-2016, 2016
Short summary
Short summary
A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from the high-altitude site Jungfraujoch. It is found that cloud droplet formation at the Jungfraujoch is predominantly controlled by the number concentration of aerosol particles. A statistical model based on only the number of particles larger than 80nm can explain 79 % of the observed variance in droplet numbers.
Yong-ha Kim, Sotira Yiacoumi, Athanasios Nenes, and Costas Tsouris
Atmos. Chem. Phys., 16, 3449–3462, https://doi.org/10.5194/acp-16-3449-2016, https://doi.org/10.5194/acp-16-3449-2016, 2016
Short summary
Short summary
Three microphysical approaches are proposed to incorporate mutual effects of particle charging and coagulation in predictions of transient charge and size distributions of atmospheric particles, including radioactive aerosols. The three approaches have different levels of complexities and are applicable to various laboratory and field atmospheric studies. Also, these approaches can be easily incorporated into aerosol transport models at different scales to account for particle charging effects.
Sylvia C. Sullivan, Ricardo Morales Betancourt, Donifan Barahona, and Athanasios Nenes
Atmos. Chem. Phys., 16, 2611–2629, https://doi.org/10.5194/acp-16-2611-2016, https://doi.org/10.5194/acp-16-2611-2016, 2016
Short summary
Short summary
We use the adjoint model of a cirrus parameterization to quantify sources of crystal variability for various ice-nucleating spectra and output from CAM5.
The sensitivities can be directly linked to nucleation regime and
efficiency of various INP.
The lab-based spectrum calculates much higher INP efficiencies than field-based ones, owing to aerosol surface properties.
The sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters.
A. J. Beyersdorf, L. D. Ziemba, G. Chen, C. A. Corr, J. H. Crawford, G. S. Diskin, R. H. Moore, K. L. Thornhill, E. L. Winstead, and B. E. Anderson
Atmos. Chem. Phys., 16, 1003–1015, https://doi.org/10.5194/acp-16-1003-2016, https://doi.org/10.5194/acp-16-1003-2016, 2016
Short summary
Short summary
Airborne measurements in Baltimore-Washington, DC allow for an understanding of the relationship between aerosol extinction which can be measured by satellites and aerosol mass used for air quality monitoring. Extinction was found to be driven to first order by aerosol loadings; however, humidity-driven aerosol hydration plays an important secondary role. Spatial and diurnal variability in aerosol composition were small, but day-to-day variability in aerosol hygroscopicity must be accounted for.
L. M. Zamora, R. A. Kahn, M. J. Cubison, G. S. Diskin, J. L. Jimenez, Y. Kondo, G. M. McFarquhar, A. Nenes, K. L. Thornhill, A. Wisthaler, A. Zelenyuk, and L. D. Ziemba
Atmos. Chem. Phys., 16, 715–738, https://doi.org/10.5194/acp-16-715-2016, https://doi.org/10.5194/acp-16-715-2016, 2016
Short summary
Short summary
Based on extensive aircraft campaigns, we quantify how biomass burning smoke affects subarctic and Arctic liquid cloud microphysical properties. Enhanced cloud albedo may decrease short-wave radiative flux by between 2 and 4 Wm2 or more in some subarctic conditions. Smoke halved average cloud droplet diameter. In one case study, it also appeared to limit droplet formation. Numerous Arctic background Aitken particles can also interact with combustion particles, perhaps affecting their properties.
C. E. Jordan, B. E. Anderson, A. J. Beyersdorf, C. A. Corr, J. E. Dibb, M. E. Greenslade, R. F. Martin, R. H. Moore, E. Scheuer, M. A. Shook, K. L. Thornhill, D. Troop, E. L. Winstead, and L. D. Ziemba
Atmos. Meas. Tech., 8, 4755–4771, https://doi.org/10.5194/amt-8-4755-2015, https://doi.org/10.5194/amt-8-4755-2015, 2015
Short summary
Short summary
We describe a new instrument developed to observe ambient atmospheric aerosol extinction spectra from 300 to 700nm. Laboratory tests were performed to demonstrate that the instrument compares well with theoretical calculations over that spectral range, as well as with commercially available instrumentation measuring aerosol extinction at three visible wavelengths. The unique spectral data will be used to explore linkages between ambient aerosol optical properties, chemistry, and microphysics.
M. Paramonov, V.-M. Kerminen, M. Gysel, P. P. Aalto, M. O. Andreae, E. Asmi, U. Baltensperger, A. Bougiatioti, D. Brus, G. P. Frank, N. Good, S. S. Gunthe, L. Hao, M. Irwin, A. Jaatinen, Z. Jurányi, S. M. King, A. Kortelainen, A. Kristensson, H. Lihavainen, M. Kulmala, U. Lohmann, S. T. Martin, G. McFiggans, N. Mihalopoulos, A. Nenes, C. D. O'Dowd, J. Ovadnevaite, T. Petäjä, U. Pöschl, G. C. Roberts, D. Rose, B. Svenningsson, E. Swietlicki, E. Weingartner, J. Whitehead, A. Wiedensohler, C. Wittbom, and B. Sierau
Atmos. Chem. Phys., 15, 12211–12229, https://doi.org/10.5194/acp-15-12211-2015, https://doi.org/10.5194/acp-15-12211-2015, 2015
Short summary
Short summary
The research paper presents the first comprehensive overview of field measurements with the CCN Counter performed at a large number of locations around the world within the EUCAARI framework. The paper sheds light on the CCN number concentrations and activated fractions around the world and their dependence on the water vapour supersaturation ratio, the dependence of aerosol hygroscopicity on particle size, and seasonal and diurnal variation of CCN activation and hygroscopic properties.
N. Kalivitis, V.-M. Kerminen, G. Kouvarakis, I. Stavroulas, A. Bougiatioti, A. Nenes, H. E. Manninen, T. Petäjä, M. Kulmala, and N. Mihalopoulos
Atmos. Chem. Phys., 15, 9203–9215, https://doi.org/10.5194/acp-15-9203-2015, https://doi.org/10.5194/acp-15-9203-2015, 2015
Short summary
Short summary
Cloud condensation nuclei (CCN) production associated with atmospheric new particle formation (NPF) is presented, and this is the first direct evidence of CCN production resulting from NPF in the eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles. Sub-100nm particles were found to be substantially less hygroscopic than larger particles during the active NPF period.
S. H. Budisulistiorini, X. Li, S. T. Bairai, J. Renfro, Y. Liu, Y. J. Liu, K. A. McKinney, S. T. Martin, V. F. McNeill, H. O. T. Pye, A. Nenes, M. E. Neff, E. A. Stone, S. Mueller, C. Knote, S. L. Shaw, Z. Zhang, A. Gold, and J. D. Surratt
Atmos. Chem. Phys., 15, 8871–8888, https://doi.org/10.5194/acp-15-8871-2015, https://doi.org/10.5194/acp-15-8871-2015, 2015
Short summary
Short summary
Isoprene epoxydiols (IEPOX) are major gas-phase products from the atmospheric oxidation of isoprene that yield secondary organic aerosol (SOA) by reactive uptake onto acidic sulfate aerosol. We report a substantial contribution of IEPOX-derived SOA to the total fine aerosol collected during summer. IEPOX-derived SOA measured by online and offline mass spectrometry techniques is correlated with acidic sulfate aerosol, demonstrating the critical role of anthropogenic emissions in its formation.
K. M. Cerully, A. Bougiatioti, J. R. Hite Jr., H. Guo, L. Xu, N. L. Ng, R. Weber, and A. Nenes
Atmos. Chem. Phys., 15, 8679–8694, https://doi.org/10.5194/acp-15-8679-2015, https://doi.org/10.5194/acp-15-8679-2015, 2015
Short summary
Short summary
The hygroscopicity of SE US aerosol is mostly water-soluble, with a hygroscopicity that is insensitive to partial volatilization in a thermodenuder.
The most and least oxidized components of the aerosol are the most hygroscopic of organic constituents.
No clear relationship was found between organic aerosol hygroscopicity and oxygen-to-carbon ratio.
The aerosol factors covary in a way that induces the observed diurnal invariance in total organic hygroscopicity.
L. Hildebrandt Ruiz, A. L. Paciga, K. M. Cerully, A. Nenes, N. M. Donahue, and S. N. Pandis
Atmos. Chem. Phys., 15, 8301–8313, https://doi.org/10.5194/acp-15-8301-2015, https://doi.org/10.5194/acp-15-8301-2015, 2015
Short summary
Short summary
Secondary organic aerosol (SOA) is transformed after its initial formation. We explored the effects of this chemical aging on the composition, mass yield, volatility, and hygroscopicity of SOA formed from the photo-oxidation of small aromatic volatile organic compounds. Higher exposure to the hydroxyl radical resulted in different SOA composition, average carbon oxidation state, and mass yield. The vapor pressure of SOA formed under different conditions varied by as much as a factor of 30.
Y. Shinozuka, A. D. Clarke, A. Nenes, A. Jefferson, R. Wood, C. S. McNaughton, J. Ström, P. Tunved, J. Redemann, K. L. Thornhill, R. H. Moore, T. L. Lathem, J. J. Lin, and Y. J. Yoon
Atmos. Chem. Phys., 15, 7585–7604, https://doi.org/10.5194/acp-15-7585-2015, https://doi.org/10.5194/acp-15-7585-2015, 2015
S. Myriokefalitakis, N. Daskalakis, N. Mihalopoulos, A. R. Baker, A. Nenes, and M. Kanakidou
Biogeosciences, 12, 3973–3992, https://doi.org/10.5194/bg-12-3973-2015, https://doi.org/10.5194/bg-12-3973-2015, 2015
Short summary
Short summary
The global atmospheric cycle of Fe is simulated accounting for natural and combustion sources, proton- and organic ligand-promoted Fe dissolution from dust aerosol and changes in anthropogenic emissions, and thus in atmospheric acidity. Simulations show that Fe dissolution may have increased in the last 150 years and is expected to decrease due to air pollution regulations. Reductions in dissolved-Fe deposition can further limit the primary productivity over high-nutrient-low-chlorophyll water.
H. Guo, L. Xu, A. Bougiatioti, K. M. Cerully, S. L. Capps, J. R. Hite Jr., A. G. Carlton, S.-H. Lee, M. H. Bergin, N. L. Ng, A. Nenes, and R. J. Weber
Atmos. Chem. Phys., 15, 5211–5228, https://doi.org/10.5194/acp-15-5211-2015, https://doi.org/10.5194/acp-15-5211-2015, 2015
Short summary
Short summary
Particle pH can affect many aerosol processes, including gas-particle partitioning, SOA formation, and mobilization of toxic redox metals. pH is challenging to directly measure and often improperly characterized by proxies like ion balances or molar ratios of measured aerosol ionic species. We present a detailed analysis predicting pH with a thermodynamic model, verify the prediction, and test pH sensitivity to model inputs based on data from the SOAS field campaign.
C. J. Hennigan, J. Izumi, A. P. Sullivan, R. J. Weber, and A. Nenes
Atmos. Chem. Phys., 15, 2775–2790, https://doi.org/10.5194/acp-15-2775-2015, https://doi.org/10.5194/acp-15-2775-2015, 2015
Short summary
Short summary
We show that the ion balance and molar ratio methods are unsuitable for use as aerosol pH proxies. Our recommendation is that 1) thermodynamic equilibrium models constrained by both gas and aerosol inputs run in the forward (open) mode, and 2) the phase partitioning of ammonia provides the best predictions of aerosol pH. Given the significance of acidity for numerous chemical processes in the atmosphere, the implications of this study are important and far reaching.
Y. You, V. P. Kanawade, J. A. de Gouw, A. B. Guenther, S. Madronich, M. R. Sierra-Hernández, M. Lawler, J. N. Smith, S. Takahama, G. Ruggeri, A. Koss, K. Olson, K. Baumann, R. J. Weber, A. Nenes, H. Guo, E. S. Edgerton, L. Porcelli, W. H. Brune, A. H. Goldstein, and S.-H. Lee
Atmos. Chem. Phys., 14, 12181–12194, https://doi.org/10.5194/acp-14-12181-2014, https://doi.org/10.5194/acp-14-12181-2014, 2014
Short summary
Short summary
Amiens play important roles in atmospheric secondary aerosol formation and human health, but the fast response measurements of amines are lacking. Here we show measurements in a southeastern US forest and a moderately polluted midwestern site. Our results show that gas to particle conversion is an important process that controls ambient amine concentrations and that biomass burning is an important source of amines.
R. Morales Betancourt and A. Nenes
Geosci. Model Dev., 7, 2345–2357, https://doi.org/10.5194/gmd-7-2345-2014, https://doi.org/10.5194/gmd-7-2345-2014, 2014
D. Barahona, A. Molod, J. Bacmeister, A. Nenes, A. Gettelman, H. Morrison, V. Phillips, and A. Eichmann
Geosci. Model Dev., 7, 1733–1766, https://doi.org/10.5194/gmd-7-1733-2014, https://doi.org/10.5194/gmd-7-1733-2014, 2014
B. Gantt, J. He, X. Zhang, Y. Zhang, and A. Nenes
Atmos. Chem. Phys., 14, 7485–7497, https://doi.org/10.5194/acp-14-7485-2014, https://doi.org/10.5194/acp-14-7485-2014, 2014
G. Drozd, J. Woo, S. A. K. Häkkinen, A. Nenes, and V. F. McNeill
Atmos. Chem. Phys., 14, 5205–5215, https://doi.org/10.5194/acp-14-5205-2014, https://doi.org/10.5194/acp-14-5205-2014, 2014
S. Romakkaniemi, A. Jaatinen, A. Laaksonen, A. Nenes, and T. Raatikainen
Atmos. Meas. Tech., 7, 1377–1384, https://doi.org/10.5194/amt-7-1377-2014, https://doi.org/10.5194/amt-7-1377-2014, 2014
A. Bougiatioti, I. Stavroulas, E. Kostenidou, P. Zarmpas, C. Theodosi, G. Kouvarakis, F. Canonaco, A. S. H. Prévôt, A. Nenes, S. N. Pandis, and N. Mihalopoulos
Atmos. Chem. Phys., 14, 4793–4807, https://doi.org/10.5194/acp-14-4793-2014, https://doi.org/10.5194/acp-14-4793-2014, 2014
R. Morales Betancourt and A. Nenes
Atmos. Chem. Phys., 14, 4809–4826, https://doi.org/10.5194/acp-14-4809-2014, https://doi.org/10.5194/acp-14-4809-2014, 2014
S. Crumeyrolle, G. Chen, L. Ziemba, A. Beyersdorf, L. Thornhill, E. Winstead, R. H. Moore, M. A. Shook, C. Hudgins, and B. E. Anderson
Atmos. Chem. Phys., 14, 2139–2153, https://doi.org/10.5194/acp-14-2139-2014, https://doi.org/10.5194/acp-14-2139-2014, 2014
M. Trail, A. P. Tsimpidi, P. Liu, K. Tsigaridis, Y. Hu, A. Nenes, and A. G. Russell
Geosci. Model Dev., 6, 1429–1445, https://doi.org/10.5194/gmd-6-1429-2013, https://doi.org/10.5194/gmd-6-1429-2013, 2013
S. Lance, T. Raatikainen, T. B. Onasch, D. R. Worsnop, X.-Y. Yu, M. L. Alexander, M. R. Stolzenburg, P. H. McMurry, J. N. Smith, and A. Nenes
Atmos. Chem. Phys., 13, 5049–5062, https://doi.org/10.5194/acp-13-5049-2013, https://doi.org/10.5194/acp-13-5049-2013, 2013
T. L. Lathem, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, M. J. Cubison, A. Hecobian, J. L. Jimenez, R. J. Weber, B. E. Anderson, and A. Nenes
Atmos. Chem. Phys., 13, 2735–2756, https://doi.org/10.5194/acp-13-2735-2013, https://doi.org/10.5194/acp-13-2735-2013, 2013
M. Frosch, M. Bilde, A. Nenes, A. P. Praplan, Z. Jurányi, J. Dommen, M. Gysel, E. Weingartner, and U. Baltensperger
Atmos. Chem. Phys., 13, 2283–2297, https://doi.org/10.5194/acp-13-2283-2013, https://doi.org/10.5194/acp-13-2283-2013, 2013
Y. C. Sud, D. Lee, L. Oreopoulos, D. Barahona, A. Nenes, and M. J. Suarez
Geosci. Model Dev., 6, 57–79, https://doi.org/10.5194/gmd-6-57-2013, https://doi.org/10.5194/gmd-6-57-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
Annual cycle of hygroscopic properties and mixing state of the suburban aerosol in Athens, Greece
Measurement report: Atmospheric new particle formation at a peri-urban site in Lille, northern France
New particle formation and growth during summer in an urban environment: a dual chamber study
An evaluation of biomass burning aerosol mass, extinction, and size distribution in GEOS using observations from CAMP2Ex
Seasonal significance of new particle formation impacts on cloud condensation nuclei at a mountaintop location
Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany
Measurement report: Increasing trend of atmospheric ion concentrations in the boreal forest
Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the North China Plain
Measurement report: The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 1: Correlation between soils and airborne samples
Constraining the particle-scale diversity of black carbon light absorption using a unified framework
Survival probability of new atmospheric particles: closure between theory and measurements from 1.4 to 100 nm
Predicting atmospheric background number concentration of ice-nucleating particles in the Arctic
Different effects of anthropogenic emissions and aging processes on the mixing state of soot particles in the nucleation and accumulation modes
Fluorescence characteristics, absorption properties, and radiative effects of water-soluble organic carbon in seasonal snow across northeastern China
Measurement report: Size distributions of urban aerosols down to 1 nm from long-term measurements
Rapid reappearance of air pollution after cold air outbreaks in northern and eastern China
Atmospheric nanoparticles hygroscopic growth measurement by combined surface plasmon resonance microscope and hygroscopic-tandem differential mobility analyzer
On the relation between apparent ion and total particle growth rates in the boreal forest and related chamber experiments
Assessment of NAAPS-RA performance in Maritime Southeast Asia during CAMP2Ex
Comparison of particle number size distribution trends in ground measurements and climate models
Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation
Impact of water uptake and mixing state on submicron particle deposition in the human respiratory tract (HRT) based on explicit hygroscopicity measurements at HRT-like conditions
Parameterizations of size distribution and refractive index of biomass burning organic aerosol with black carbon content
Newly identified climatically and environmentally significant high-latitude dust sources
Measurement Report: Understanding the seasonal cycle of Southern Ocean aerosols
Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties
Using aircraft measurements to characterize subgrid-scale variability of aerosol properties near the Atmospheric Radiation Measurement Southern Great Plains site
Measurement report: A multi-year study on the impacts of Chinese New Year celebrations on air quality in Beijing, China
Mixing state of black carbon at different atmospheres in north and southwest China
Characterization of ultrafine particles and the occurrence of new particle formation events in an urban and coastal site of the Mediterranean area
Columnar and surface urban aerosol in the Moscow megacity according to measurements and simulations with the COSMO-ART model
Vertical aerosol particle exchange in the marine boundary layer estimated from helicopter-borne measurements in the Azores region
Circum-Antarctic abundance and properties of CCN and INPs
The ice-nucleating activity of African mineral dust in the Caribbean boundary layer
Biomass burning and marine aerosol processing over the southeast Atlantic Ocean: a TEM single-particle analysis
Volatility parameterization of ambient organic aerosols at a rural site of the North China Plain
Light absorption by brown carbon over the South-East Atlantic Ocean
Particle size distribution and particulate matter concentrations during synoptic and convective dust events in West Texas
Measurement of light-absorbing particles in surface snow of central and western Himalayan glaciers: spatial variability, radiative impacts, and potential source regions
Seasonal variations in fire conditions are important drivers in the trend of aerosol optical properties over the south-eastern Atlantic
Black carbon aerosol reductions during COVID-19 confinement quantified by aircraft measurements over Europe
Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere
Absorption enhancement of black carbon particles in a Mediterranean city and countryside: effect of particulate matter chemistry, ageing and trend analysis
Characterizing the hygroscopicity of growing particles in the Canadian Arctic summer
Measurement report: Distinct size dependence and diurnal variation in organic aerosol hygroscopicity, volatility, and cloud condensation nuclei activity at a rural site in the Pearl River Delta (PRD) region, China
Measurement report: Atmospheric new particle formation in a coastal agricultural site explained with binPMF analysis of nitrate CI-APi-TOF spectra
Characteristics and evolution of brown carbon in western United States wildfires
Reduced surface fine dust under droughts over the southeastern United States during summertime: observations and CMIP6 model simulations
Strong light scattering of highly oxygenated organic aerosols impacts significantly on visibility degradation
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Short summary
The Arctic is a unique environment that is warming faster than other locations on Earth. We evaluate measurements of aerosol particles, which can influence climate, over the central Arctic Ocean for a full year and compare the data to land-based measurement stations across the Arctic. Our measurements show that the central Arctic has similarities to but also distinct differences from the stations further south. We note that this may change as the Arctic warms and sea ice continues to decline.
Christina Spitieri, Maria Gini, Martin Gysel-Beer, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 23, 235–249, https://doi.org/10.5194/acp-23-235-2023, https://doi.org/10.5194/acp-23-235-2023, 2023
Short summary
Short summary
The paper provides insights into the hygroscopic properties and state of mixing of atmospheric aerosol through 1 year of measurements of key microphysical parameters in the suburbs of the most densely populated city of Greece, Athens, in the eastern Mediterranean, which is considered an important climate change hotspot. The results can be used for the prediction of cloud condensation nuclei and quantification of the influence of ambient relative humidity on light scattering by aerosol particles.
Suzanne Crumeyrolle, Jenni S. S. Kontkanen, Clémence Rose, Alejandra Velazquez Garcia, Eric Bourrianne, Maxime Catalfamo, Véronique Riffault, Emmanuel Tison, Joel Ferreira de Brito, Nicolas Visez, Nicolas Ferlay, Frédérique Auriol, and Isabelle Chiapello
Atmos. Chem. Phys., 23, 183–201, https://doi.org/10.5194/acp-23-183-2023, https://doi.org/10.5194/acp-23-183-2023, 2023
Short summary
Short summary
Ultrafine particles (UFPs) are particles with an aerodynamic diameter of 100 nm or less and negligible mass concentration but are the dominant contributor to the total particle number concentration. The present study aims to better understand the environmental factors favoring or inhibiting atmospheric new particle formation (NPF) over Lille, a large city in the north of France, and to analyze the impact of such an event on urban air quality using a long-term dataset (3 years).
Spiro D. Jorga, Kalliopi Florou, David Patoulias, and Spyros N. Pandis
Atmos. Chem. Phys., 23, 85–97, https://doi.org/10.5194/acp-23-85-2023, https://doi.org/10.5194/acp-23-85-2023, 2023
Short summary
Short summary
We take advantage of this unexpected low, new particle formation frequency in Greece and use a dual atmospheric simulation chamber system with starting point ambient air in an effort to gain insight about the chemical species that is limiting nucleation in this area. A potential nucleation precursor, ammonia, was added in one of the chambers while the other one was used as a reference. The addition of ammonia assisted new particle formation in almost 50 % of the experiments conducted.
Allison B. Marquardt Collow, Virginie Buchard, Peter R. Colarco, Arlindo M. da Silva, Ravi Govindaraju, Edward P. Nowottnick, Sharon Burton, Richard Ferrare, Chris Hostetler, and Luke Ziemba
Atmos. Chem. Phys., 22, 16091–16109, https://doi.org/10.5194/acp-22-16091-2022, https://doi.org/10.5194/acp-22-16091-2022, 2022
Short summary
Short summary
Biomass burning aerosol impacts aspects of the atmosphere and Earth system through radiative forcing, serving as cloud condensation nuclei, and air quality. Despite its importance, the representation of biomass burning aerosol is not always accurate in models. Field campaign observations from CAMP2Ex are used to evaluate the mass and extinction of aerosols in the GEOS model. Notable biases in the model illuminate areas of future development with GEOS and the underlying GOCART aerosol module.
Noah S. Hirshorn, Lauren M. Zuromski, Christopher Rapp, Ian McCubbin, Gerardo Carrillo-Cardenas, Fangqun Yu, and A. Gannet Hallar
Atmos. Chem. Phys., 22, 15909–15924, https://doi.org/10.5194/acp-22-15909-2022, https://doi.org/10.5194/acp-22-15909-2022, 2022
Short summary
Short summary
New particle formation (NPF) is a source of atmospheric aerosol number concentration that can impact climate by growing to larger sizes and under proper conditions form cloud condensation nuclei (CCN). Using novel methods, we find that at Storm Peak Laboratory, a remote, mountaintop site in Colorado, NPF is observed to enhance CCN concentrations in the spring by a factor of 1.54 and in the winter by a factor of 1.36 which can occur on a regional scale having important climate implications.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Juha Sulo, Janne Lampilahti, Xuemeng Chen, Jenni Kontkanen, Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Katrianne Lehtipalo
Atmos. Chem. Phys., 22, 15223–15242, https://doi.org/10.5194/acp-22-15223-2022, https://doi.org/10.5194/acp-22-15223-2022, 2022
Short summary
Short summary
We measured atmospheric ion concentrations continuously in a boreal forest between 2005 and 2021 and observed an increasing interannual trend. The increase in cluster ion concentrations can be largely explained by an overall decreasing level of anthropogenic aerosols in the boreal forest. This suggests that the role of ions in atmospheric new particle formation may be more important in the future.
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Short summary
Factors of cloud condensation nuclei number concentration (NCCN) profiles determined in the North China Plain include air mass sources, temperature structure, anthropogenic emissions, and terrain distribution. Cloud condensation nuclei (CCN) spectra suggest that the ability of aerosol activation into CCN is stronger in southeasterly than in northwesterly air masses and stronger in the free atmosphere than near the surface. A good method to parameterize NCCN from aerosol optical data is found.
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022, https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
Short summary
Playa surfaces in Iran that emerged through Lake Urmia (LU) desiccation have become a relevant dust source of regional relevance. Here, we identify highly erodible LU playa surfaces and determine their physicochemical properties and mineralogical composition and perform emulsion-freezing experiments with them. We find high ice nucleation activities (up to 250 K) that correlate positively with organic matter and clay content and negatively with pH, salinity, K-feldspars, and quartz.
Payton Beeler and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 14825–14836, https://doi.org/10.5194/acp-22-14825-2022, https://doi.org/10.5194/acp-22-14825-2022, 2022
Short summary
Short summary
Understanding and parameterizing the influences of black carbon (BC) particle morphology and compositional heterogeneity on its light absorption represent a fundamental problem. We develop scaling laws using a single unifying parameter that effectively encompasses large-scale diversity observed in BC light absorption on a per-particle basis. The laws help reconcile the disparities between field observations and model predictions. Our framework is packaged in an open-source Python application.
Runlong Cai, Chenjuan Deng, Dominik Stolzenburg, Chenxi Li, Junchen Guo, Veli-Matti Kerminen, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 14571–14587, https://doi.org/10.5194/acp-22-14571-2022, https://doi.org/10.5194/acp-22-14571-2022, 2022
Short summary
Short summary
The survival probability of new particles is the key parameter governing their influences on the atmosphere and climate, yet the knowledge of particle survival in the atmosphere is rather limited. We propose methods to compute the size-resolved particle survival probability and validate them using simulations and measurements from diverse environments. Using these methods, we could explain particle survival from the cluster size to the cloud condensation nuclei size.
Guangyu Li, Jörg Wieder, Julie T. Pasquier, Jan Henneberger, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 14441–14454, https://doi.org/10.5194/acp-22-14441-2022, https://doi.org/10.5194/acp-22-14441-2022, 2022
Short summary
Short summary
The concentration of ice-nucleating particles (INPs) is atmospherically relevant for primary ice formation in clouds. In this work, from 12 weeks of field measurement data in the Arctic, we developed a new parameterization to predict INP concentrations applicable for pristine background conditions based only on temperature. The INP parameterization could improve the cloud microphysical representation in climate models, aiding in Arctic climate predictions.
Yuying Wang, Rong Hu, Qiuyan Wang, Zhanqing Li, Maureen Cribb, Yele Sun, Xiaorui Song, Yi Shang, Yixuan Wu, Xin Huang, and Yuxiang Wang
Atmos. Chem. Phys., 22, 14133–14146, https://doi.org/10.5194/acp-22-14133-2022, https://doi.org/10.5194/acp-22-14133-2022, 2022
Short summary
Short summary
The mixing state of size-resolved soot particles and their influencing factors were investigated. The results suggest anthropogenic emissions and aging processes have diverse impacts on the mixing state of soot particles in different modes. Considering that the mixing state of soot particles is crucial to model aerosol absorption, this finding is important to study particle growth and the warming effect of black carbon aerosols.
Xiaoying Niu, Wei Pu, Pingqing Fu, Yang Chen, Yuxuan Xing, Dongyou Wu, Ziqi Chen, Tenglong Shi, Yue Zhou, Hui Wen, and Xin Wang
Atmos. Chem. Phys., 22, 14075–14094, https://doi.org/10.5194/acp-22-14075-2022, https://doi.org/10.5194/acp-22-14075-2022, 2022
Short summary
Short summary
In this study, we do the first investigation of WSOC in seasonal snow of northeastern China. The results revealed the regional-specific compositions and sources of WSOC due to different natural environments and anthropogenic activities. The abundant concentrations of WSOC and its absorption properties contributed to a crucial impact on the snow albedo and radiative effect. We established that our study could raise awareness of carbon cycling processes, hydrological processes, and climate change.
Chenjuan Deng, Yiran Li, Chao Yan, Jin Wu, Runlong Cai, Dongbin Wang, Yongchun Liu, Juha Kangasluoma, Veli-Matti Kerminen, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 22, 13569–13580, https://doi.org/10.5194/acp-22-13569-2022, https://doi.org/10.5194/acp-22-13569-2022, 2022
Short summary
Short summary
The size distributions of urban atmospheric particles convey important information on their origins and impacts. This study investigates the characteristics of typical particle size distributions and key gaseous precursors in the long term in urban Beijing. A fitting function is proposed to represent and help interpret size distribution including particles and gaseous precursors. In addition to NPF (new particle formation) as the major source, vehicles can emit sub-3 nm particles as well
Qian Liu, Guixing Chen, Lifang Sheng, and Toshiki Iwasaki
Atmos. Chem. Phys., 22, 13371–13388, https://doi.org/10.5194/acp-22-13371-2022, https://doi.org/10.5194/acp-22-13371-2022, 2022
Short summary
Short summary
Air pollution can be cleaned up quickly by a cold air outbreak (CAO) but reappears after a CAO. By quantifying the CAO properties, we find the coldness and depth of the cold air mass are key factors affecting the rapid (slow) reappearance of air pollution through modulating the atmospheric boundary layer height and stability. We also find that the spatial pattern of CAO in high-latitude Eurasia a few days ahead can be recognized as a precursor for the reappearance of air pollution.
Zhibo Xie, Jiaoshi Zhang, Huaqiao Gui, Yang Liu, Bo Yang, Haosheng Dai, Hang Xiao, Douguo Zhang, Da-Ren Chen, and Jianguo Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-666, https://doi.org/10.5194/acp-2022-666, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
The hygroscopic growth of single nanoparticles is important for hygroscopic characteristics analysis of atmospheric particles, and for the scientific studies involving atmospheric particles. Based on the hygroscopicity difference of subgroups atmospheric nanoparticles, the classification and proportion analysis of atmospheric nanoparticles have been completed, which has potential significance in predicting the contribution of atmospheric particulate hygroscopicity and particle growth mechanism.
Loïc Gonzalez Carracedo, Katrianne Lehtipalo, Lauri R. Ahonen, Nina Sarnela, Sebastian Holm, Juha Kangasluoma, Markku Kulmala, Paul M. Winkler, and Dominik Stolzenburg
Atmos. Chem. Phys., 22, 13153–13166, https://doi.org/10.5194/acp-22-13153-2022, https://doi.org/10.5194/acp-22-13153-2022, 2022
Short summary
Short summary
Fast nanoparticle growth is essential for the survival of new aerosol particles in the atmosphere and hence their contribution to the climate. We show that using naturally charged ions for growth calculations can cause a significant error. During the diurnal cycle, the importance of ion-induced and neutral nucleation varies, causing the ion population to have a slower measurable apparent growth. Results suggest that data from ion spectrometers need to be considered with great care below 3 nm.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Ruiqi Man, Zhijun Wu, Taomou Zong, Aristeidis Voliotis, Yanting Qiu, Johannes Größ, Dominik van Pinxteren, Limin Zeng, Hartmut Herrmann, Alfred Wiedensohler, and Min Hu
Atmos. Chem. Phys., 22, 12387–12399, https://doi.org/10.5194/acp-22-12387-2022, https://doi.org/10.5194/acp-22-12387-2022, 2022
Short summary
Short summary
Regional and total deposition doses for different age groups were quantified based on explicit hygroscopicity measurements. We found that particle hygroscopic growth led to a reduction (~24 %) in the total dose. The deposition rate of hygroscopic particles was higher in the daytime, while hydrophobic particles exhibited a higher rate at night and during rush hours. The results will deepen the understanding of the impact of hygroscopicity and the mixing state on deposition patterns in the lungs.
Biao Luo, Ye Kuang, Shan Huang, Qicong Song, Weiwei Hu, Wei Li, Yuwen Peng, Duohong Chen, Dingli Yue, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 22, 12401–12415, https://doi.org/10.5194/acp-22-12401-2022, https://doi.org/10.5194/acp-22-12401-2022, 2022
Short summary
Short summary
We performed comprehensive analysis on biomass burning organic aerosol (BBOA) size distributions, as well as mass scattering and absorption efficiencies, with an improved method of on-line quantification of brown carbon absorptions. Both BBOA volume size distribution and retrieved refractive index depend highly on combustion conditions represented by the black carbon content, which has significant implications for BBOA climate effect simulations.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-568, https://doi.org/10.5194/acp-2022-568, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Observations of aerosols in pristine regions are rare, but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia, and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Samuel E. LeBlanc, Michal Segal-Rozenhaimer, Jens Redemann, Connor Flynn, Roy R. Johnson, Stephen E. Dunagan, Robert Dahlgren, Jhoon Kim, Myungje Choi, Arlindo da Silva, Patricia Castellanos, Qian Tan, Luke Ziemba, Kenneth Lee Thornhill, and Meloë Kacenelenbogen
Atmos. Chem. Phys., 22, 11275–11304, https://doi.org/10.5194/acp-22-11275-2022, https://doi.org/10.5194/acp-22-11275-2022, 2022
Short summary
Short summary
Airborne observations of atmospheric particles and pollution over Korea during a field campaign in May–June 2016 showed that the smallest atmospheric particles are present in the lowest 2 km of the atmosphere. The aerosol size is more spatially variable than optical thickness. We show this with remote sensing (4STAR), in situ (LARGE) observations, satellite measurements (GOCI), and modeled properties (MERRA-2), and it is contrary to the current understanding.
Jerome D. Fast, David M. Bell, Gourihar Kulkarni, Jiumeng Liu, Fan Mei, Georges Saliba, John E. Shilling, Kaitlyn Suski, Jason Tomlinson, Jian Wang, Rahul Zaveri, and Alla Zelenyuk
Atmos. Chem. Phys., 22, 11217–11238, https://doi.org/10.5194/acp-22-11217-2022, https://doi.org/10.5194/acp-22-11217-2022, 2022
Short summary
Short summary
Recent aircraft measurements from the HI-SCALE campaign conducted over the Southern Great Plains (SGP) site in Oklahoma are used to quantify spatial variability of aerosol properties in terms of grid spacings typically used by weather and climate models. Surprisingly large horizontal gradients in aerosol properties were frequently observed in this rural area. This spatial variability can be used as an uncertainty range when comparing surface point measurements with model predictions.
Benjamin Foreback, Lubna Dada, Kaspar R. Daellenbach, Chao Yan, Lili Wang, Biwu Chu, Ying Zhou, Tom V. Kokkonen, Mona Kurppa, Rosaria E. Pileci, Yonghong Wang, Tommy Chan, Juha Kangasluoma, Lin Zhuohui, Yishou Guo, Chang Li, Rima Baalbaki, Joni Kujansuu, Xiaolong Fan, Zemin Feng, Pekka Rantala, Shahzad Gani, Federico Bianchi, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, Yongchun Liu, and Pauli Paasonen
Atmos. Chem. Phys., 22, 11089–11104, https://doi.org/10.5194/acp-22-11089-2022, https://doi.org/10.5194/acp-22-11089-2022, 2022
Short summary
Short summary
This study analyzed air quality in Beijing during the Chinese New Year over 7 years, including data from a new in-depth measurement station. This is one of few studies to look at long-term impacts, including the outcome of firework restrictions starting in 2018. Results show that firework pollution has gone down since 2016, indicating a positive result from the restrictions. Results of this study may be useful in making future decisions about the use of fireworks to improve air quality.
Gang Zhao, Tianyi Tan, Shuya Hu, Zhuofei Du, Dongjie Shang, Zhijun Wu, Song Guo, Jing Zheng, Wenfei Zhu, Mengren Li, Limin Zeng, and Min Hu
Atmos. Chem. Phys., 22, 10861–10873, https://doi.org/10.5194/acp-22-10861-2022, https://doi.org/10.5194/acp-22-10861-2022, 2022
Short summary
Short summary
Black carbon is the second strongest absorbing component in the atmosphere that exerts warming effects on climate. One critical challenge in quantifying the ambient black carbon's radiative effects is addressing the BC microphysical properties. In this study, the microphysical properties of the aged and fresh BC particles are synthetically analyzed under different atmospheres. The measurement results can be further used in models to help constrain the uncertainties of the BC radiative effects.
Adelaide Dinoi, Daniel Gullì, Kay Weinhold, Ivano Ammoscato, Claudia Roberta Calidonna, Alfred Wiedensohler, and Daniele Contini
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-512, https://doi.org/10.5194/acp-2022-512, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
In this study, particle number size distribution analysis was performed with the purpose of characterizing new particle formation (NPF) events occurred in two areas of southern Italy during 5 years of measurements. The identification of NPF events produced different results in terms of frequency and seasonality. Some of the main variables involved in the process, the local atmospheric conditions in which the events occurred and the role of the air masses were discussed and compared.
Natalia E. Chubarova, Heike Vogel, Elizaveta E. Androsova, Alexander A. Kirsanov, Olga B. Popovicheva, Bernhard Vogel, and Gdaliy S. Rivin
Atmos. Chem. Phys., 22, 10443–10466, https://doi.org/10.5194/acp-22-10443-2022, https://doi.org/10.5194/acp-22-10443-2022, 2022
Short summary
Short summary
Effects of urban aerosol pollution in Moscow were analyzed using the COSMO-ART chemical transport model and intensive measurement campaigns. We show that urban aerosol comprises about 15–20% of columnar aerosol content, consisting mainly of fine aerosol mode. The black carbon (BC) fraction is about 5 %, depending on particle dispersion intensity (IPD). The BC fraction low value explains weak absorbing properties of the Moscow atmosphere. IPD also defines the daily cycle of urban aerosol species.
Janine Lückerath, Andreas Held, Holger Siebert, Michel Michalkow, and Birgit Wehner
Atmos. Chem. Phys., 22, 10007–10021, https://doi.org/10.5194/acp-22-10007-2022, https://doi.org/10.5194/acp-22-10007-2022, 2022
Short summary
Short summary
Three different methods were applied to estimate the vertical aerosol particle flux in the marine boundary layer (MBL) and between the MBL and free troposphere. For the first time, aerosol fluxes derived from these three methods were estimated and compared using airborne aerosol measurements using data from the ACORES field campaign in the northeastern Atlantic Ocean in July 2017. The amount of fluxes was small and directed up and down for different cases, but the methods were applicable.
Christian Tatzelt, Silvia Henning, André Welti, Andrea Baccarini, Markus Hartmann, Martin Gysel-Beer, Manuela van Pinxteren, Robin L. Modini, Julia Schmale, and Frank Stratmann
Atmos. Chem. Phys., 22, 9721–9745, https://doi.org/10.5194/acp-22-9721-2022, https://doi.org/10.5194/acp-22-9721-2022, 2022
Short summary
Short summary
We present the abundance and origin of cloud-relevant aerosol particles in the preindustral-like conditions of the Southern Ocean (SO) during austral summer. Cloud condensation nuclei (CCN) and ice-nucleating particles (INP) were measured during a circum-Antarctic scientific cruise with in situ instrumentation and offline filter measurements, respectively. Transport processes were found to play an equally important role as local sources for both the CCN and INP population of the SO.
Alexander D. Harrison, Daniel O'Sullivan, Michael P. Adams, Grace C. E. Porter, Edmund Blades, Cherise Brathwaite, Rebecca Chewitt-Lucas, Cassandra Gaston, Rachel Hawker, Ovid O. Krüger, Leslie Neve, Mira L. Pöhlker, Christopher Pöhlker, Ulrich Pöschl, Alberto Sanchez-Marroquin, Andrea Sealy, Peter Sealy, Mark D. Tarn, Shanice Whitehall, James B. McQuaid, Kenneth S. Carslaw, Joseph M. Prospero, and Benjamin J. Murray
Atmos. Chem. Phys., 22, 9663–9680, https://doi.org/10.5194/acp-22-9663-2022, https://doi.org/10.5194/acp-22-9663-2022, 2022
Short summary
Short summary
The formation of ice in clouds fundamentally alters cloud properties; hence it is important we understand the special aerosol particles that can nucleate ice when immersed in supercooled cloud droplets. In this paper we show that African desert dust that has travelled across the Atlantic to the Caribbean nucleates ice much less well than we might have expected.
Caroline Dang, Michal Segal-Rozenhaimer, Haochi Che, Lu Zhang, Paola Formenti, Jonathan Taylor, Amie Dobracki, Sara Purdue, Pui-Shan Wong, Athanasios Nenes, Arthur Sedlacek III, Hugh Coe, Jens Redemann, Paquita Zuidema, Steven Howell, and James Haywood
Atmos. Chem. Phys., 22, 9389–9412, https://doi.org/10.5194/acp-22-9389-2022, https://doi.org/10.5194/acp-22-9389-2022, 2022
Short summary
Short summary
Transmission electron microscopy was used to analyze aged African smoke particles and how the smoke interacts with the marine atmosphere. We found that the volatility of organic aerosol increases with biomass burning plume age, that black carbon is often mixed with potassium salts and that the marine atmosphere can incorporate Na and Cl into smoke particles. Marine salts are more processed when mixed with smoke plumes, and there are interesting Cl-rich yet Na-absent marine particles.
Siman Ren, Lei Yao, Yuwei Wang, Gan Yang, Yiliang Liu, Yueyang Li, Yiqun Lu, Lihong Wang, and Lin Wang
Atmos. Chem. Phys., 22, 9283–9297, https://doi.org/10.5194/acp-22-9283-2022, https://doi.org/10.5194/acp-22-9283-2022, 2022
Short summary
Short summary
We improved the empirical functions between volatility and chemical formulas of organic aerosols based on lab experiments and field observations. It was found that organic compounds in ambient aerosols can be divided into two groups according to their O / C ratios and that there should be specialized volatility parameterizations for different O / C organic compounds.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Arthur J. Sedlacek III, Ernie R. Lewis, Amie Dobracki, Jenny P. S. Wong, Paola Formenti, Steven G. Howell, and Athanasios Nenes
Atmos. Chem. Phys., 22, 9199–9213, https://doi.org/10.5194/acp-22-9199-2022, https://doi.org/10.5194/acp-22-9199-2022, 2022
Short summary
Short summary
Widespread biomass burning (BB) events occur annually in Africa and contribute ~ 1 / 3 of global BB emissions, which contain a large family of light-absorbing organics, known as brown carbon (BrC), whose absorption of incident radiation is difficult to estimate, leading to large uncertainties in the global radiative forcing estimation. This study quantifies the BrC absorption of aged BB particles and highlights the potential presence of absorbing iron oxides in this climatically important region.
Karin Ardon-Dryer and Mary C. Kelley
Atmos. Chem. Phys., 22, 9161–9173, https://doi.org/10.5194/acp-22-9161-2022, https://doi.org/10.5194/acp-22-9161-2022, 2022
Short summary
Short summary
Changes in the particle size distribution and particulate matter concentrations during different dust events in West Texas were examined. Analysis based on different timescales showed that current common methods used to evaluate the impact of dust events on air quality will not capture the true impact of short (convective) dust events and, therefore, do not provide an insightful understanding of their impact on the environment and human health.
Chaman Gul, Shichang Kang, Siva Praveen Puppala, Xiaokang Wu, Cenlin He, Yangyang Xu, Inka Koch, Sher Muhammad, Rajesh Kumar, and Getachew Dubache
Atmos. Chem. Phys., 22, 8725–8737, https://doi.org/10.5194/acp-22-8725-2022, https://doi.org/10.5194/acp-22-8725-2022, 2022
Short summary
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn
Atmos. Chem. Phys., 22, 8767–8785, https://doi.org/10.5194/acp-22-8767-2022, https://doi.org/10.5194/acp-22-8767-2022, 2022
Short summary
Short summary
A 17-month in situ study on Ascension Island found low single-scattering albedo and strong absorption enhancement of the marine boundary layer aerosols during biomass burnings on the African continent, along with apparent patterns of regular monthly variability. We further discuss the characteristics and drivers behind these changes and find that biomass burning conditions in Africa may be the main factor influencing the optical properties of marine boundary aerosols.
Ovid O. Krüger, Bruna A. Holanda, Sourangsu Chowdhury, Andrea Pozzer, David Walter, Christopher Pöhlker, Maria Dolores Andrés Hernández, John P. Burrows, Christiane Voigt, Jos Lelieveld, Johannes Quaas, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 22, 8683–8699, https://doi.org/10.5194/acp-22-8683-2022, https://doi.org/10.5194/acp-22-8683-2022, 2022
Short summary
Short summary
The abrupt reduction in human activities during the first COVID-19 lockdown created unprecedented atmospheric conditions. We took the opportunity to quantify changes in black carbon (BC) as a major anthropogenic air pollutant. Therefore, we measured BC on board a research aircraft over Europe during the lockdown and compared the results to measurements from 2017. With model simulations we account for different weather conditions and find a lockdown-related decrease in BC of 41 %.
Lisa J. Beck, Siegfried Schobesberger, Heikki Junninen, Janne Lampilahti, Antti Manninen, Lubna Dada, Katri Leino, Xu-Cheng He, Iida Pullinen, Lauriane L. J. Quéléver, Anna Franck, Pyry Poutanen, Daniela Wimmer, Frans Korhonen, Mikko Sipilä, Mikael Ehn, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 8547–8577, https://doi.org/10.5194/acp-22-8547-2022, https://doi.org/10.5194/acp-22-8547-2022, 2022
Short summary
Short summary
The presented article introduces an overview of atmospheric ions and their composition above the boreal forest. We provide the results of an extensive airborne measurement campaign with an air ion mass spectrometer and particle measurements, showing their diurnal evolution within the boundary layer and free troposphere. In addition, we compare the airborne dataset with the co-located data from the ground at SMEAR II station, Finland.
Jesús Yus-Díez, Marta Via, Andrés Alastuey, Angeliki Karanasiou, María Cruz Minguillón, Noemí Perez, Xavier Querol, Cristina Reche, Matic Ivančič, Martin Rigler, and Marco Pandolfi
Atmos. Chem. Phys., 22, 8439–8456, https://doi.org/10.5194/acp-22-8439-2022, https://doi.org/10.5194/acp-22-8439-2022, 2022
Short summary
Short summary
This study presents the absorption enhancement of internally and externally mixed black carbon (BC) particles in a Mediterranean city and countryside. We showed the importance of secondary organic aerosols (SOAs) and particle ageing by increasing the BC absorption enhancement. We performed a trend analysis on the absorption enhancement. We found a positive trend of the absorption enhancement at the regional station in summer driven by the increase over time of the relative contribution of SOA.
Rachel Y.-W. Chang, Jonathan P. D. Abbatt, Matthew C. Boyer, Jai Prakash Chaubey, and Douglas B. Collins
Atmos. Chem. Phys., 22, 8059–8071, https://doi.org/10.5194/acp-22-8059-2022, https://doi.org/10.5194/acp-22-8059-2022, 2022
Short summary
Short summary
During summer 2016, the ability of newly formed particles to turn into droplets was measured in the Canadian Arctic. Our observations suggest that these small particles were growing by the condensation of organic vapours likely coming from the surrounding open waters. These particles grew large enough that they could form cloud droplets and therefore affect the earth’s radiation budget. These results are relevant as the Arctic summer rapidly warms with climate change.
Mingfu Cai, Shan Huang, Baoling Liang, Qibin Sun, Li Liu, Bin Yuan, Min Shao, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Zelong Wang, Duohong Chen, Haobo Tan, Hanbin Xu, Fei Li, Xuejiao Deng, Tao Deng, Jiaren Sun, and Jun Zhao
Atmos. Chem. Phys., 22, 8117–8136, https://doi.org/10.5194/acp-22-8117-2022, https://doi.org/10.5194/acp-22-8117-2022, 2022
Short summary
Short summary
This study investigated the size dependence and diurnal variation in organic aerosol hygroscopicity, volatility, and cloud condensation nuclei (CCN) activity. We found that the physical properties of OA could vary in a large range at different particle sizes and affected the number concentration of CCN (NCCN) at all supersaturations. Our results highlight the importance of evaluating the atmospheric evolution processes of OA at different size ranges and their impact on climate effects.
Miska Olin, Magdalena Okuljar, Matti P. Rissanen, Joni Kalliokoski, Jiali Shen, Lubna Dada, Markus Lampimäki, Yusheng Wu, Annalea Lohila, Jonathan Duplissy, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 8097–8115, https://doi.org/10.5194/acp-22-8097-2022, https://doi.org/10.5194/acp-22-8097-2022, 2022
Short summary
Short summary
Atmospheric new particle formation is an important source of the total particle number concentration in the atmosphere. Several parameters for predicting new particle formation events have been suggested before, but the results have been inconclusive. This study proposes an another predicting parameter, related to a specific type of highly oxidized organic molecules, especially for similar locations to the measurement site in this study, which was a coastal agricultural site in Finland.
Linghan Zeng, Jack Dibb, Eric Scheuer, Joseph M. Katich, Joshua P. Schwarz, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Carsten Warneke, Anne E. Perring, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Richard H. Moore, Elizabeth B. Wiggins, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Lu Xu, and Rodney J. Weber
Atmos. Chem. Phys., 22, 8009–8036, https://doi.org/10.5194/acp-22-8009-2022, https://doi.org/10.5194/acp-22-8009-2022, 2022
Short summary
Short summary
Wildfires emit aerosol particles containing brown carbon material that affects visibility and global climate and is toxic. Brown carbon is poorly characterized due to measurement limitations, and its evolution in the atmosphere is not well known. We report on aircraft measurements of brown carbon from large wildfires in the western United States. We compare two methods for measuring brown carbon and study the evolution of brown carbon in the smoke as it moved away from the burning regions.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 22, 7843–7859, https://doi.org/10.5194/acp-22-7843-2022, https://doi.org/10.5194/acp-22-7843-2022, 2022
Short summary
Short summary
Fine dust is an important component of PM2.5 and can be largely modulated by droughts. In contrast to the increase in dust in the southwest USA where major dust sources are located, dust in the southeast USA is affected more by long-range transport from Africa and decreases under droughts. Both the transport and emissions of African dust are weakened when the southeast USA is under droughts, which reveals how regional-scale droughts can influence aerosol abundance through long-range transport.
Li Liu, Ye Kuang, Miaomiao Zhai, Biao Xue, Yao He, Jun Tao, Biao Luo, Wanyun Xu, Jiangchuan Tao, Changqin Yin, Fei Li, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, and Min Shao
Atmos. Chem. Phys., 22, 7713–7726, https://doi.org/10.5194/acp-22-7713-2022, https://doi.org/10.5194/acp-22-7713-2022, 2022
Short summary
Short summary
Using simultaneous measurements of a humidified nephelometer system and an aerosol chemical speciation monitor in winter in Guangzhou, the strongest scattering ability of more oxidized oxygenated organic aerosol (MOOA) among aerosol components considering their dry-state scattering ability and water uptake ability was revealed, leading to large impacts of MOOA on visibility degradation. This has important implications for visibility improvement in China and aerosol radiative effect simulation.
Cited articles
Abdul-Razzak, H., Ghan, S. J., and Rivera-Carpio, C.: A parameterisation of aerosol activation: 1. {S}ingle aerosol type, J. Geophys. Res., 103, 6123–6131, https://doi.org/10.1029/97JD03735, 1998.
Acker, J. G. and Leptoukh, G.: O}nline analysis enhances use of {NASA {E}arth science data, Eos Transactions, 88, 14, https://doi.org/10.1029/2007EO020003, 2007.
Anderson, B. E., Grant, W. B., Gregory, G. L., Browell, E. V., James E. Collins, J., Sachse, G. W., Bagwell, D. R., Hudgins, C. H., Blake, D. R., and Blake, N. J.: {A}erosols from biomass burning over the tropical {S}outh {A}tlantic region: {D}istributions and impacts, J. Geophys. Res., 101, 24117–24137, https://doi.org/10.1029/96JD00717, 1996.
Asa-Awuku, A., Moore, R. H., Nenes, A., Bahreini, R., Holloway, J. S., Brock, C. A., Middlebrook, A. M., Ryerson, T. B., Jimenez, J. L., DeCarlo, P. F., Hecobian, A., Weber, R. J., Stickel, R., Tanner, D. J., and Huey, L. G.: {A}irborne cloud condensation nuclei measurements during the 2006 {T}exas {A}ir {Q}uality {S}tudy, J. Geophys. Res., 116, D11201, https://doi.org/10.1029/2010JD014874, 2011.
Barahona, D. and Nenes, A.: {P}arameterization of cloud droplet formation in large-scale models: {I}ncluding effects of entrainment, J. Geophys. Res., 112, D16206, https://doi.org/10.1029/2007JD008473, 2007.
Bougiatioti, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., Nenes, A., and Mihalopoulos, N.: Cloud condensation nuclei measurements in the marine boundary layer of the Eastern Mediterranean: CCN closure and droplet growth kinetics, Atmos. Chem. Phys., 9, 7053–7066, https://doi.org/10.5194/acp-9-7053-2009, 2009.
Bougiatioti, A., Nenes, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., and Mihalopoulos, N.: Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol, Atmos. Chem. Phys., 11, 8791–8808, https://doi.org/10.5194/acp-11-8791-2011, 2011.
Broekhuizen, K., Chang, R. Y.-W., Leaitch, W. R., Li, S.-M., and Abbatt, J. P. D.: Closure between measured and modelled cloud condensation nuclei (CCN) using size-resolved aerosol compositions in downtown Toronto, Atmos. Chem. Phys., 6, 2513–2524, https://doi.org/10.5194/acp-6-2513-2006, 2006.
Cai, Y., Montague, D. C., Mooiweer-Bryan, W., and Deshler, T.: {P}erformance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: {L}aboratory and field studies, J. Aerosol Sci., 39, 759–769, https://doi.org/10.1016/j.jaerosci.2008.04.007, 2008.
Chang, R. Y.-W., Liu, P. S. K., Leaitch, W. R., and Abbatt, J. P. D.: C}omparison between measured and predicted {CCN concentrations at {E}gbert, {O}ntario: {F}ocus on the organic aerosol fraction at a semi-rural site, Atmos. Environ., 41, 8172–8182, https://doi.org/10.1016/j.atmosenv.2007.06.039, 2007.
Chang, R. Y.-W., Slowik, J. G., Shantz, N. C., Vlasenko, A., Liggio, J., Sjostedt, S. J., Leaitch, W. R., and Abbatt, J. P. D.: The hygroscopicity parameter (?) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation, Atmos. Chem. Phys., 10, 5047–5064, https://doi.org/10.5194/acp-10-5047-2010, 2010.
Chuang, P. Y., Charlson, R. J., and Seinfeld, J. H.: {K}inetic limitations on droplet formation in clouds, Nature, 390, 594–596, https://doi.org/10.1038/37576, 1997.
Chuang, P. Y., Collins, D. R., Pawlowska, H., Snider, J. R., Jonsson, H. H., Brenguier, J. L., Flagan, R. C., and Seinfeld, J. H.: CCN measurements during {ACE}-2 and their relationship to cloud microphysical properties, Tellus, 52, 843–867, https://doi.org/10.1034/j.1600-0889.2000.00018.x, 2000.
Conant, W. C., VanReken, T. M., Rissman, T. A., Varutbangkul, V., Jonsson, H. H., Nenes, A., Jimenez, J. L., Delia, A. E., Bahreini, R., Roberts, G. C., Flagan, R. C., and Seinfeld, J. H.: {A}erosol–cloud drop concentration closure in warm cumulus, J. Geophys. Res., 109, D13204, https://doi.org/10.1029/2003JD004324, 2004.
Considine, D. B., Bergmann, D. J., and Liu, H.: Sensitivity of Global Modeling Initiative chemistry and transport model simulations of radon-222 and lead-210 to input meteorological data, Atmos. Chem. Phys., 5, 3389–3406, https://doi.org/10.5194/acp-5-3389-2005, 2005.
Covert, D. S., Gras, J. L., Wiedensohler, A., and Stratmann, F.: C}omparison of directly measured {CCN with CCN modelled from the number-size distribution in the marine boundary layer during ACE 1 at {C}ape {G}rim, {T}asmania, J. Geophys. Res., 103, 16597–16608, https://doi.org/10.1029/98JD01093, 1998.
Cruz, C. N. and Pandis, S. N.: A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei, Atmos. Environ., 31, 2205–2214, https://doi.org/10.1016/S1352-2310(97)00054-X, 1997.
Cubison, M. J., Ervens, B., Feingold, G., Docherty, K. S., Ulbrich, I. M., Shields, L., Prather, K., Hering, S., and Jimenez, J. L.: The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties, Atmos. Chem. Phys., 8, 5649–5667, https://doi.org/10.5194/acp-8-5649-2008, 2008.
d'Almeida, G. A.: {O}n the variability of desert aerosol radiative characteristics, J. Geophys. Res., 92, 3017–3026, https://doi.org/10.1029/JD092iD03p03017, 1987.
Dusek, U., Covert, D. S., Wiedensohler, A., Neusüss, C., Weise, D., and Cantrell, W.: {C}loud condensation nuclei spectra derived from size distributions and hygroscopic properties of the aerosol in coastal south-west {P}ortugal during {ACE}-2, Tellus, 55, 35–53, https://doi.org/10.1034/j.1600-0889.2003.00041.x, 2003.
Ervens, B., Cubison, M., Andrews, E., Feingold, G., Ogren, J. A., Jimenez, J. L., DeCarlo, P., and Nenes, A.: {P}rediction of cloud condensation nucleus number concentration using measurements of aerosol size distributions and composition and light scattering enhancement due to humidity, J. Geophys. Res., 112, D10S32, https://doi.org/10.1029/2006JD007426, 2007.
Ervens, B., Cubison, M. J., Andrews, E., Feingold, G., Ogren, J. A., Jimenez, J. L., Quinn, P. K., Bates, T. S., Wang, J., Zhang, Q., Coe, H., Flynn, M., and Allan, J. D.: CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations, Atmos. Chem. Phys., 10, 4795–4807, https://doi.org/10.5194/acp-10-4795-2010, 2010.
Flagan, R. C.: {O}pposed migration aerosol classifier ({OMAC}), Aerosol Sci. Technol., 38, 890–899, https://doi.org/10.1080/027868290505242, 2004.
Fountoukis, C. and Nenes, A.: {C}ontinued development of a cloud droplet formation parameterisation for global climate models, J. Geophys. Res., 110, D11212, https://doi.org/10.1029/2004JD005591, 2005.
Fountoukis, C., Nenes, A., Meskhidze, N., Bahreini, R., Conant, W. C., Jonsson, H., Murphy, S., Sorooshian, A., Varutbangkul, V., Brechtel, F., Flagan, R. C., and Seinfeld, J. H.: {A}erosol-cloud drop concentration closure for clouds sampled during the {I}nternational {C}onsortium for {A}tmospheric {R}esearch on {T}ransport and {T}ransformation 2004 campaign, J. Geophys. Res., 112, D10S30, https://doi.org/10.1029/2006JD007272, 2007.
Gasparini, R., Collins, D. R., Andrews, E., Sheridan, P. J., Ogren, J. A., and Hudson, J. G.: {C}oupling aerosol size distributions and size-resolved hygroscopicity to predict humidity-dependent optical properties and cloud condensation nuclei spectra, J. Geophys. Res., 111, D05S13, https://doi.org/10.1029/2005JD006092, 2006.
Giebl, H., Berner, A., Reischl, G., Puxbaum, H., Kasper-Giebl, A., and Hitzenberger, R.: CCN activation of oxalic and malonic acid test aerosols with the {U}niversity of {V}ienna cloud condensation nuclei, Journal of Aerosol Science, 33, 1623–1634, https://doi.org/10.1016/S0021-8502(02)00115-5, 2002.
Good, N., Topping, D. O., Allan, J. D., Flynn, M., Fuentes, E., Irwin, M., Williams, P. I., Coe, H., and McFiggans, G.: Consistency between parameterisations of aerosol hygroscopicity and CCN activity during the RHaMBLe discovery cruise, Atmos. Chem. Phys., 10, 3189–3203, https://doi.org/10.5194/acp-10-3189-2010, 2010.
Guibert, S., Snider, J. R., and Brenguier, J.-L.: {A}erosol activation in marine stratocumulus clouds: 1. {M}easurement validation for a closure study, J. Geophys. Res., 108, 8628, https://doi.org/10.1029/2002JD002678, 2003.
Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J. L., Artaxo, P., Andreae, M. O., Martin, S. T., and Pöschl, U.: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modelling of atmospheric aerosol composition and CCN activity, Atmos. Chem. Phys., 9, 7551–7575, https://doi.org/10.5194/acp-9-7551-2009, 2009.
Hallberg, A., Wobrock, W., Flossmann, A. I., Bower, K. N., Noone, K. J., Wiedensohler, A., Hansson, H.-C., Wendisch, M., Berner, A., Kruisz, C., Laj, P., Facchini, M. C., Fuzzi, S., and Arends, B. G.: {M}icrophysics of clouds: {M}odel versus measurements, Atmos. Environ., 31, 2453–2462, https://doi.org/10.1016/S1352-2310(97)00041-1, 1997.
Hudson, J. G.: {C}loud condensation nuclei, J. Appl. Meteorol., 32, 596–607, https://doi.org/10.1175/1520-0450(1993)032<0596:CCN>2.0.CO;2, 1993.
Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb, C. A., and Worsnop, D. R.: {D}evelopment of an aerosol mass spectrometer for size and composition analysis of submicron particles, Aerosol Sci. Technol., 33, 49–70, https://doi.org/10.1080/027868200410840, 2000.
Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R., Yourshaw, I., Seinfeld, J. H., Flagan, R. C., Zhang, X., Smith, K. A., Morris, J. W., and Davidovits, P.: {A}mbient aerosol sampling using the {A}erodyne {A}erosol {M}ass {S}pectrometer, J. Geophys. Res., 108, 8425, https://doi.org/10.1029/2001JD001213, 2003.
Jurányi, Z., Gysel, M., Weingartner, E., DeCarlo, P. F., Kammermann, L., and Baltensperger, U.: Measured and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 10, 7891–7906, https://doi.org/10.5194/acp-10-7891-2010, 2010.
Kammermann, L., Gysel, M., Weingartner, E., Herich, H., Cziczo, D. J., Holst, T., Svenningsson, B., Ameth, A., and Baltensperger, U.: {S}ubarctic atmospheric aerosol composition: 3. {M}easured and modelled properties of cloud condensation nuclei, J. Geophys. Res., 115, D04202, https://doi.org/10.1029/2009JD012447, 2010.
Karydis, V. A., Kumar, P., Barahona, D., Sokolik, I. N., and Nenes, A.: O}n the effect of dust particles on global {CCN and cloud droplet number, J. Geophys. Res., 116, D23204, https://doi.org/10.1029/2011JD016283, 2011.
Karydis, V. A., Capps, S. L., Russell, A. G., and Nenes, A.: Adjoint sensitivity of global cloud droplet number to aerosol and dynamical parameters, Atmos. Chem. Phys., 12, 9041–9055, https://doi.org/10.5194/acp-12-9041-2012, 2012.
Kim, J. H., Yum, S. S., Shim, S., Yoon, S.-C., Hudson, J. G., Park, J., and Lee, S.-J.: On aerosol hygroscopicity, cloud condensation nuclei (CCN) spectra and critical supersaturation measured at two remote islands of Korea between 2006 and 2009, Atmos. Chem. Phys., 11, 12627–12645, https://doi.org/10.5194/acp-11-12627-2011, 2011.
Koch, D. and Rind, D.: {B}eryllium 10/beryllium 7 as a tracer of stratospheric transport, J. Geophys. Res., 103, 3907–3917, https://doi.org/10.1029/97JD03117, 1998.
Köhler, H.: {T}he nucleus in and growth of hygroscopic droplets, Transactions of the Faraday Society, 32, 1152–1161, https://doi.org/10.1039/TF9363201152, 1936.
Koren, I. and Feingold, G.: {A}erosol-cloud-precipitation system as a predator-prey problem, P. Natl. Acad. Sci. USA, 108, 12227–12232, https://doi.org/10.1073/pnas.1101777108, 2011.
Kumar, P., Sokolik, I. N., and Nenes, A.: Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN, Atmos. Chem. Phys., 9, 2517–2532, https://doi.org/10.5194/acp-9-2517-2009, 2009.
Kuwata, M., Kondo, Y., Miyazaki, Y., Komazaki, Y., Kim, J. H., Yum, S. S., Tanimoto, H., and Matsueda, H.: Cloud condensation nuclei activity at Jeju Island, Korea in spring 2005, Atmos. Chem. Phys., 8, 2933–2948, https://doi.org/10.5194/acp-8-2933-2008, 2008.
Lance, S., Nenes, A., and Rissman, T. A.: {C}hemical and dynamical effects on cloud droplet number: {I}mplications for estimates of the aerosol indirect effect, J. Geophys. Res., 109, D22208, https://doi.org/10.1029/2004JD004596, 2004.
Lance, S., Medina, J., Smith, J. N., and Nenes, A.: M}apping the operation of the {DMT continuous-flow CCN counter, Aerosol Sci. Technol., 40, 242–254, https://doi.org/10.1080/02786820500543290, 2006.
Lance, S., Nenes, A., Mazzoleni, C., Dubey, M. K., Gates, H., Varutbangkul, V., Rissman, T. A., Murphy, S. M., Sorooshian, A., Flagan, R. C., Seinfeld, J. H., Feingold, G., and Jonsson, H. H.: C}loud condensation nuclei activity, closure, and droplet growth kinetics of {H}ouston aerosol during the {G}ulf of {M}exico {A}tmospheric {C}omposition and {C}limate {S}tudy {(GoMACCS), J. Geophys. Res., 114, D00F15, https://doi.org/10.1029/2008JD011699, 2009.
Lathem, T. L., Beyersdorf, A. J., Thornhill, K. L., Winstead, E. L., Cubison, M. J., Hecobian, A., Jimenez, J. L., Weber, R. J., Anderson, B. E., and Nenes, A.: Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008, Atmos. Chem. Phys., 13, 2735–2756, https://doi.org/10.5194/acp-13-2735-2013, 2013.
Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and Spracklen, D. V.: Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters, Atmos. Chem. Phys., 11, 12253–12273, https://doi.org/10.5194/acp-11-12253-2011, 2011.
Lee, L. A., Pringle, K. J., Reddington, C. L., Mann, G. W., Stier, P., Spracklen, D. V., Pierce, J. R., and Carslaw, K. S.: The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei, Atmos. Chem. Phys. Discuss., 13, 6295–6378, https://doi.org/10.5194/acpd-13-6295-2013, 2013.
Liu, X., Penner, J. E., and Herzog, M.: {G}lobal modelling of aerosol dynamics: {M}odel description, evaluation, and interactions between sulfate and nonsulfate aerosols, J. Geophys. Res., 110, D18206, https://doi.org/10.1029/2004JD005674, 2005.
Martin, M., Chang, R. Y.-W., Sierau, B., Sjogren, S., Swietlicki, E., Abbatt, J. P. D., Leck, C., and Lohmann, U.: Cloud condensation nuclei closure study on summer arctic aerosol, Atmos. Chem. Phys., 11, 11335–11350, https://doi.org/10.5194/acp-11-11335-2011, 2011.
McComiskey, A. and Feingold, G.: The scale problem in quantifying aerosol indirect effects, Atmos. Chem. Phys., 12, 1031–1049, https://doi.org/10.5194/acp-12-1031-2012, 2012.
Medina, J., Nenes, A., Sotirpoulou, R.-E. P., Cottrell, L. D., Ziemba, L. D., Beckman, P. J., and Griffin, R. J.: {C}loud condensation nuclei closure during the {I}nternational {C}onsortium for {A}tmospheric {R}esearch on {T}ransport and {T}ransformation 2004 campaign: {E}ffects of size-resolved composition, J. Geophys. Res., 112, D10S31, https://doi.org/10.1029/2006JD007588, 2007.
Meskhidze, N., Nenes, A., Conant, W. C., and Seinfeld, J. H.: E}valuation of a new cloud droplet activation parameterisation with in situ data from {CRYSTAL-FACE and CSTRIPE, J. Geophys. Res., 110, D16202, https://doi.org/10.1029/2004JD005703, 2005.
Moore, R. H., Bahreini, R., Brock, C. A., Froyd, K. D., Cozic, J., Holloway, J. S., Middlebrook, A. M., Murphy, D. M., and Nenes, A.: Hygroscopicity and composition of Alaskan Arctic CCN during April 2008, Atmos. Chem. Phys., 11, 11807–11825, https://doi.org/10.5194/acp-11-11807-2011, 2011.
Moore, R. H., Cerully, K., Bahreini, R., Brock, C. A., Middlebrook, A. M., and Nenes, A.: H}ygroscopicity and composition of {C}alifornia {CCN during S}ummer, 2010, J. Geophys. Res., 117, D00V12, https://doi.org/10.1029/2011JD017352, 2012{a.
Moore, R. H., Raatikainen, T., Langridge, J. M., Bahreini, R., Brock, C. A., Holloway, J. S., Lack, D. A., Middlebrook, A. M., Perring, A. E., Schwarz, J. P., Spackman, J. R., and Nenes, A.: CCN spectra, hygroscopicity, and droplet activation kinetics of secondary organic aerosol resulting from the 2010 D}eepwater {H}orizon {O}il {S}pill, Environ. Sci. Technol., 46, 3093–3100, https://doi.org/10.1021/es203362w, 2012{b.
Murphy, S. M., Agrawal, H., Sorooshian, A., Padró, L. T., Gates, H., Hersey, S., Welch, W. A., Jung, H., Miller, J. W., III, D. R. C., Nenes, A., Jonsson, H. H., Flagan, R. C., and Seinfeld, J. H.: {C}omprehensive simultaneous shipboard and airborne characterisation of exhaust from a modern container ship at sea, Environ. Sci. Technol., 43, 4626–4640, https://doi.org/10.1021/es802413j, 2009.
Nakajima, T. and Schulz, M.: {C}louds in the {P}erturbed {C}limate {S}ystem, chap. What do we know about large-scale changes of aerosols, clouds, and the radiation budget?, 401–430, MIT Press, 2009.
Nenes, A. and Seinfeld, J. H.: {P}arameterization of cloud droplet formation in global climate models, J. Geophys. Res., 108, 4415, https://doi.org/10.1029/2002JD002911, 2003.
Olfert, J. S., Kulkarni, P., and Wang, J.: {M}easuring aerosol size distributions with the fast integrated mobility spectrometer, J. Aerosol Sci., 39, 940–956, https://doi.org/10.1016/j.jaerosci.2008.06.005, 2008.
Oreopoulos, L. and Platnick, S.: R}adiative susceptiblity of cloudy atmospheres to droplet number perturbations: 2. {G}lobal analysis from {MODIS, J. Geophys. Res., 113, D14S21, https://doi.org/10.1029/2007JD009655, 2008.
Paatero, J., Vaattovaara, P., Vestenius, M., Meinander, O., Makkonen, U., Kivi, R., Hyvärinen, A., Asmi, E., Tjernström, M., and Leck, C.: {F}innish contribution to the {A}rctic {S}ummer {C}loud {O}cean {S}tudy ({ASCOS}) expedition, {A}rctic {O}cean 2008, Geophysica, 45, 119–146, 2009.
Padró, L. T., Asa-Awuku, A., Morrison, R., and Nenes, A.: Inferring thermodynamic properties from CCN activation experiments: single-component and binary aerosols, Atmos. Chem. Phys., 7, 5263–5274, https://doi.org/10.5194/acp-7-5263-2007, 2007.
Padró, L. T., Moore, R. H., Zhang, X., Rastogi, N., Weber, R. J., and Nenes, A.: Mixing state and compositional effects on CCN activity and droplet growth kinetics of size-resolved CCN in an urban environment, Atmos. Chem. Phys., 12, 10239–10255, https://doi.org/10.5194/acp-12-10239-2012, 2012.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Quaas, J., Boucher, O., Bellouin, N., and Kinne, S.: {S}atellite-based estimate of the direct and indirect aerosol climate forcing, J. Geophys. Res., 113, D05204, https://doi.org/10.1029/2007JD008962, 2008.
Quinn, P. K., Bates, T. S., Coffman, D. J., and Covert, D. S.: Influence of particle size and chemistry on the cloud nucleating properties of aerosols, Atmos. Chem. Phys., 8, 1029–1042, https://doi.org/10.5194/acp-8-1029-2008, 2008.
Radke, L. F., Hegg, D. A., Lyons, J. H., Brock, C. A., Hobbs, P. V., Weiss, R., and Rasmussen, R.: {A}erosols and {C}limate, chap. Airborne measurements on smokes from biomass burning, 411–422, Deepak Publishing, 1988.
Raymond, T. M. and Pandis, S. N.: {C}loud activation of single-component organic aerosol particles, J. Geophys. Res., 107, 4787, https://doi.org/10.1029/2002JD002159, 2002.
Raymond, T. M. and Pandis, S. N.: {F}ormation of cloud droplets by multicomponent organic particles, J. Geophys. Res., 108, 4469, https://doi.org/10.1029/2003JD003503, 2003.
Rind, D. and Lerner, J.: {U}se of on-line tracers as a diagnostic tool in general circulation model development 1. {H}orizontal and vertical transport in the troposphere, J. Geophys. Res., 101, 12667–12683, https://doi.org/10.1029/96JD00551, 1996.
Rissman, T. A., Nenes, A., and Seinfeld, J. H.: {C}hemical amplification (or dampening) of the {T}womey effect: {C}onditions derived from droplet activation theory, J. Atmos. Sci., 61, 919–930, https://doi.org/10.1175/1520-0469(2004)061<0919:CAODOT>2.0.CO;2, 2004.
Rissman, T. A., VanReken, T. M., Wang, J., Gasparini, R., Collins, D. R., Jonsson, H. H., Brechtel, F. J., Flagan, R. C., and Seinfeld, J. H.: {C}haracterization of ambient aerosol from measurements of cloud condensation nuclei during 2003 {A}tmospheric {R}adiation {M}easurement {A}erosol {I}ntensive {O}bservational {P}eriod at the {S}outhern {G}reat {P}lains site in {O}klahoma, J. Geophys. Res., 111, D05S11, https://doi.org/10.1029/2004JD005695, 2006.
Roberts, G., Mauger, G., Hadley, O., and Ramanathan, V.: {N}orth {A}merican and {A}sian aerosols over the eastern {P}acific {O}cean and their role in regulating cloud condensation nuclei, J. Geophys. Res., 111, D13205, https://doi.org/10.1029/2005JD006661, 2006.
Roberts, G. C. and Nenes, A.: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements, Aerosol Sci. Technol., 39, 206–221, https://doi.org/10.1080/027868290913988, 2005.
Rose, D., Gunthe, S. S., Su, H., Garland, R. M., Yang, H., Berghof, M., Cheng, Y. F., Wehner, B., Achtert, P., Nowak, A., Wiedensohler, A., Takegawa, N., Kondo, Y., Hu, M., Zhang, Y., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles, Atmos. Chem. Phys., 11, 2817–2836, https://doi.org/10.5194/acp-11-2817-2011, 2011.
Rotman, D. A., Tannahill, J. R., Kinnison, D. E., Connell, P. S., Bergmann, D., Proctor, D., Rodriguez, J. M., Lin, S. J., Rood, R. B., Prather, M. J., Rasch, P. J., Considine, D. B., Ramaroson, R., and Kawa, S. R.: {G}lobal {M}odeling {I}nitiative assessment model: {M}odel description, integration, and testing of the transport shell, J. Geophys. Res., 106, 1669–1691, https://doi.org/10.1029/2000JD900463, 2001.
Snider, J. R. and Brenguier, J.-L.: {C}loud condensation nuclei and cloud droplet measurements during {ACE}-2, Tellus, 52, 828–842, https://doi.org/10.1034/j.1600-0889.2000.00044.x, 2000.
Snider, J. R., Guibert, S., Brenguier, J.-L., and Putaud, J.-P.: {A}erosol activation in marine stratocumulus clouds: 2. {K}öhler and parcel theory closure studies, J. Geophys. Res., 108, 8629, https://doi.org/10.1029/2002JD002692, 2003.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (Eds.): {C}limate {C}hange 2007: {T}he {P}hysical {S}cience {B}asis, Intergovernmental Panel on Climate Change Fourth Assessment Report, Cambridge University Press, 2007.
Sotiropoulou, R.-E. P., Medina, J., and Nenes, A.: CCN predictions: {I}s theory sufficient for assessments of the indirect effect?, Geophys. Res. Lett., 33, L05816, https://doi.org/10.1029/2005GL025148, 2006.
Sotiropoulou, R.-E. P., Nenes, A., Adams, P. J., and Seinfeld, J. H.: {C}loud condensation nuclei prediction error from application of {K}öhler theory: {I}mportance for the aerosol indirect effect, J. Geophys. Res., 112, D12202, https://doi.org/10.1029/2006JD007834, 2007.
Stevens, B. and Feingold, G.: {U}ntangling aerosol effects on clouds and precipitation in a buffered system, Nature, 461, 607–613, https://doi.org/10.1038/nature08281, 2009.
Stroud, C. A., Nenes, A., Jimenez, J. L., DeCarlo, P. F., Huffman, J. A., Bruintjes, R., Nemitz, E., Delia, A. E., Toohey, D. W., Guenther, A. B., and Nandi, S.: C}loud activating properties of aerosol observed during {CELTIC, J. Atmos. Sci., 64, 441–459, https://doi.org/10.1175/JAS3843.1, 2007.
Twomey, S.: {T}he influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
Twomey, S.: {A}erosols, clouds and radiation, Atmos. Environ., 25, 2435–2442, https://doi.org/10.1016/0960-1686(91)90159-5, 1991.
VanReken, T. M., Rissman, T. A., Roberts, G. C., Varutbangkul, V., Jonsson, H. H., Flagan, R. C., and Seinfeld, J. H.: T}oward aerosol/cloud condensation nuclei {(CCN) closure during CRYSTAL-FACE, J. Geophys. Res., 108, 4633, https://doi.org/10.1029/2003JD003582, 2003.
Vestin, A., Rissler, J., Swietlicki, E., Frank, G. P., and Andreae, M. O.: {C}loud-nucleating properties of the {A}mazonian biomass burning aerosol: {C}loud condensation nuclei measurements and modelling, J. Geophys. Res., 112, D14201, https://doi.org/10.1029/2006JD008104, 2007.
Wang, J., Lee, Y.-N., Daum, P. H., Jayne, J., and Alexander, M. L.: Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect, Atmos. Chem. Phys., 8, 6325–6339, https://doi.org/10.5194/acp-8-6325-2008, 2008.
Wang, J., Cubison, M. J., Aiken, A. C., Jimenez, J. L., and Collins, D. R.: The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols, Atmos. Chem. Phys., 10, 7267–7283, https://doi.org/10.5194/acp-10-7267-2010, 2010.
Wang, S. C. and Flagan, R. C.: {S}canning electrical mobility spectrometer, J. Aerosol Sci., 20, 1485–1488, https://doi.org/10.1016/0021-8502(89)90868-9, 1989.
Weber, R. J., Orsini, D., Daun, Y., Lee, Y.-N., Klotz, P. J., and Brechtel, F.: A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition, Aerosol Sci. Technol., 35, 718–727, https://doi.org/10.1080/02786820152546761, 2001.
Yum, S. S., Roberts, G., Kim, J. H., Song, K., and Kim, D.: {S}ubmicron aerosol size distributions and cloud condensation nuclei concentrations measured at {G}osan, {K}orea, during the {A}tmospheric {B}rown {C}louds–{E}ast {A}sian {R}egional {E}xperiment 2005, J. Geophys. Res., 112, D22S32, https://doi.org/10.1029/2006JD008212, 2007.
Altmetrics
Final-revised paper
Preprint