Manuscript prepared for Atmos. Chem. Phys. with version 4.2 of the LATEX class copernicus.cls. Date: 25 March 2013

Supplementary Material For: Droplet Number Uncertainties Associated With CCN: An Assessment Using Observations and a Global Adjoint Model

Richard H. Moore^{1,*}, Vlassis A. Karydis², Shannon L. Capps¹, Terry L. Lathem², and Athanasios Nenes^{1,2}

¹School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia

²School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia *Now at NASA Postdoctoral Program, NASA Langley Research Center, Hampton, Virginia

Impact of Modeled Aerosol Concentrations (N_a) on Derived Cloud Droplet Concentration (N_d) Uncertainties

- As discussed in Section 2.4 of the main article, the simulated droplet concentrations (N_d) typically 5 fall within the range of observed CCN concentrations (N_{CCN}) for all but a few studies; although, the wide range of observed CCN concentrations indicates high levels of spatio-temporal variability in some locations that is not expected to be captured well by the GMI model analysis due to the coarse grid size and annualized data averaging. Given this variability, it is important to evaluate the
- 10 robustness of derived N_d uncertainties under non-climatological aerosol loadings. To assess this, additional adjoint model runs were conducted with twice and one-half the aerosol concentrations outputted by the GMI model in order to quantify how transient aerosol concentrations (0.5-times and 2-times the climatological mean) affect the derived sensitivities.
- Figure S1 shows how the global distributions of N_d and the sensitivity of N_d to N_a change under these conditions. As would be expected, overall global N_d increase with increasing N_a ; although 15 the spatial patterns of N_d are relatively unchanged. More substantial changes in $\partial \ln N_d / \partial \ln N_a$ are seen in Figure S1, particularly for the $1/2N_a$ case relative to the base case, where much more of the southern hemisphere and continental regions have high $\partial \ln N_d / \partial \ln N_a$ values. Moving from the base case to the $2N_a$ case appears to have a much lower impact on $\partial \ln N_d / \partial \ln N_a$ in the marine environment, while decreasing sensitivities slightly over the continents.
- 20

The overall impact of the simulated aerosol loading on the derived N_d closure uncertainties is shown in Table S1, which is same computation as in Table 5 of the main article. Comparing the

Fig. S1. Spatial distributions of simulated, annual-averaged N_a (top), N_d (middle), and sensitivity of N_d to N_a (bottom) for three different aerosol concentration conditions relative to the base GMI aerosol loadings.

ratio of $\left(\frac{\Delta N_d}{\Delta N_{CCN}}\right)\left(\frac{N_{CCN}}{N_d}\right)$ for each of the three aerosol concentration cases, it is seen that the results change significantly from the base case to the $1/2N_a$ case (from ~0.29-0.37 to ~0.40-0.48), while a much smaller change is observed going from the base case to the $2N_a$ case (from ~0.29-0.37 to 25 \sim 0.25-0.32). This makes sense given that most field sites examined are within continental regions with relatively high aerosol concentrations so that a two-fold decrease in N_a increases the N_d sensitivity much more substantially than the sensitivity decrease associated with a two-fold increase in N_a (see Figure 2 of the main article). Since spatio-temporal transients caused by local pollution sources likely increase N_a relative to the base climatological condition, the results of these additional simulations indicate that the uncertainty in our analysis from the base model conditions is

30

small (less than \sim 5%).

Table S1. Variation in percent overprediction of CCN concentration $\left(\frac{\Delta N_{CCN}}{N_{CCN}}\right)$ and simulated cloud droplet concentration $\left(\frac{\Delta N_d}{N_d}\right)$ for three different aerosol concentration conditions relative to the base GMI aerosol loadings. Data are averaged over the field studies' domain, with equal weighting given to each study location regardless of area. Reported are the mean \pm one standard deviation across the 36 different data sets. Since individual field studies do not apply all scenarios, the overprediction values cannot be directly compared, so domain-averaged sensitivity ratios $\left(\frac{\Delta N_d}{\Delta N_{CCN}}\right) \left(\frac{N_{CCN}}{N_d}\right)$ are also reported in parentheses.

Closure Scenario	N	Measured Mean N _{CCN} %Overprediction	Simulated Mean N_d %Overprediction (Ratio) at $1/2N_{a,base}$	Simulated Mean N_d %Overprediction (Ratio) at $N_{a,base}$	Simulated Mean N_d %Overprediction (Ratio) at $2N_{a,base}$
$(NH_4)_2SO_4$	16	59±64	25±35 (0.42±0.23)	18±22 (0.31±0.16)	15±19(0.27±0.12)
Internal Mixture, Soluble Organics ($\kappa_{org} = 0.11$)	25	64±118	26±52 (0.42±0.21)	21±46 (0.32±0.16)	20±44 (0.28±0.12)
Internal Mixture, Insoluble Organics ($\kappa_{OT}g = 0$)	25	37±97	$14 \pm 41 (0.43 \pm 0.20)$	12±36(0.33±0.15)	$12\pm34(0.29\pm0.12)$
Size-Resolved, Internal Mixture, Insoluble Organics ($\kappa_{org} = 0$)	11	4±15	$3\pm8~(0.40\pm0.20)$	1±5 (0.29±0.12)	1±4 (0.25±0.09)
External Mixture, Soluble Organics ($\kappa_{org} = 0.11$)	17	71±115	27±49 (0.48±0.20)	23±43 (0.37±0.15)	22±42 (0.32±0.12)
External Mixture, Insoluble Organics ($\kappa_{org} = 0$)	16	16 ± 104	6±49 (0.45±0.20)	7±42 (0.33±0.14)	7±39 (0.30±0.11)