Articles | Volume 23, issue 15
https://doi.org/10.5194/acp-23-8583-2023
https://doi.org/10.5194/acp-23-8583-2023
Research article
 | 
02 Aug 2023
Research article |  | 02 Aug 2023

A new steady-state gas–particle partitioning model of polycyclic aromatic hydrocarbons: implication for the influence of the particulate proportion in emissions

Fu-Jie Zhu, Peng-Tuan Hu, and Wan-Li Ma

Related authors

The impact of gaseous degradation on the equilibrium state of gas/particle partitioning of semi-volatile organic compounds
Fu-Jie Zhu, Zi-Feng Zhang, Li-Yan Liu, Pu-Fei Yang, Peng-Tuan Hu, Geng-Bo Ren, Meng Qin, and Wan-Li Ma
EGUsphere, https://doi.org/10.5194/egusphere-2023-2376,https://doi.org/10.5194/egusphere-2023-2376, 2023
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
European CH4 inversions with ICON-ART coupled to the CarbonTracker Data Assimilation Shell
Michael Steiner, Wouter Peters, Ingrid Luijkx, Stephan Henne, Huilin Chen, Samuel Hammer, and Dominik Brunner
Atmos. Chem. Phys., 24, 2759–2782, https://doi.org/10.5194/acp-24-2759-2024,https://doi.org/10.5194/acp-24-2759-2024, 2024
Short summary
Extreme weather exacerbates ozone pollution in the Pearl River Delta, China: role of natural processes
Nan Wang, Hongyue Wang, Xin Huang, Xi Chen, Yu Zou, Tao Deng, Tingyuan Li, Xiaopu Lyu, and Fumo Yang
Atmos. Chem. Phys., 24, 1559–1570, https://doi.org/10.5194/acp-24-1559-2024,https://doi.org/10.5194/acp-24-1559-2024, 2024
Short summary
Multidecadal ozone trends in China and implications for human health and crop yields: a hybrid approach combining a chemical transport model and machine learning
Jia Mao, Amos P. K. Tai, David H. Y. Yung, Tiangang Yuan, Kong T. Chau, and Zhaozhong Feng
Atmos. Chem. Phys., 24, 345–366, https://doi.org/10.5194/acp-24-345-2024,https://doi.org/10.5194/acp-24-345-2024, 2024
Short summary
On the influence of vertical mixing, boundary layer schemes, and temporal emission profiles on tropospheric NO2 in WRF-Chem – comparisons to in situ, satellite, and MAX-DOAS observations
Leon Kuhn, Steffen Beirle, Vinod Kumar, Sergey Osipov, Andrea Pozzer, Tim Bösch, Rajesh Kumar, and Thomas Wagner
Atmos. Chem. Phys., 24, 185–217, https://doi.org/10.5194/acp-24-185-2024,https://doi.org/10.5194/acp-24-185-2024, 2024
Short summary
Decreasing trends of ammonia emissions over Europe seen from remote sensing and inverse modelling
Ondřej Tichý, Sabine Eckhardt, Yves Balkanski, Didier Hauglustaine, and Nikolaos Evangeliou
Atmos. Chem. Phys., 23, 15235–15252, https://doi.org/10.5194/acp-23-15235-2023,https://doi.org/10.5194/acp-23-15235-2023, 2023
Short summary

Cited articles

Bidleman, T. F.: Atmospheric processes wet and dry deposition of organic compounds are controlled by their vapor-particle partitioning, Environ. Sci. Technol., 22, 361–367, https://doi.org/10.1021/es00169a002, 1988. 
Cai, C., Yu, S., Liu, Y., Tao, S., and Liu, W.: PBDE emission from E-wastes during the pyrolytic process: Emission factor, compositional profile, size distribution, and gas-particle partitioning, Environ. Pollut., 235, 419–428, https://doi.org/10.1016/j.envpol.2017.12.068, 2018a. 
Cai, C., Yu, S., Li, X., Liu, Y., Tao, S., and Liu, W.: Emission characteristics of polycyclic aromatic hydrocarbons from pyrolytic processing during dismantling of electronic wastes, J. Hazard. Mater., 351, 270–276, https://doi.org/10.1016/j.jhazmat.2018.03.012, 2018b. 
Chen, D., Bi, X., Liu, M., Huang, B., Sheng, G., and Fu, J.: Phase partitioning, concentration variation and risk assessment of polybrominated diphenyl ethers (PBDEs) in the atmosphere of an e-waste recycling site, Chemosphere, 82, 1246–1252, https://doi.org/10.1016/j.chemosphere.2010.12.035, 2011. 
Dachs, J. and Eisenreich, S. J.: Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons, Environ. Sci. Technol., 34, 3690–3697, https://doi.org/10.1021/es991201+, 2000. 
Download
Short summary
A new steady-state gas–particle partitioning model of polycyclic aromatic hydrocarbons was established based on the level-III multimedia fugacity model, which proved that the particulate proportion of PAHs in emissions was a crucial factor for G–P partitioning of PAHs. In addition, gaseous and particulate interference was also derived in the new steady-state model determined by the particulate proportion in emission that could derivate the G–P partitioning quotients from the equilibrium state.
Altmetrics
Final-revised paper
Preprint