Articles | Volume 23, issue 8
https://doi.org/10.5194/acp-23-4685-2023
https://doi.org/10.5194/acp-23-4685-2023
Research article
 | 
20 Apr 2023
Research article |  | 20 Apr 2023

Turbulent structure of the Arctic boundary layer in early summer driven by stability, wind shear and cloud-top radiative cooling: ACLOUD airborne observations

Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, André Ehrlich, and Manfred Wendisch

Related authors

Aerosol impacts on the entrainment efficiency of Arctic mixed-phase convection in a simulated air mass over open water
Jan Chylik, Dmitry Chechin, Regis Dupuy, Birte S. Kulla, Christof Lüpkes, Stephan Mertes, Mario Mech, and Roel A. J. Neggers
Atmos. Chem. Phys., 23, 4903–4929, https://doi.org/10.5194/acp-23-4903-2023,https://doi.org/10.5194/acp-23-4903-2023, 2023
Short summary
The foehn effect during easterly flow over Svalbard
Anna A. Shestakova, Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, and Marion Maturilli
Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022,https://doi.org/10.5194/acp-22-1529-2022, 2022
Short summary
The impact of sea waves on turbulent heat fluxes in the Barents Sea according to numerical modeling
Stanislav Myslenkov, Anna Shestakova, and Dmitry Chechin
Atmos. Chem. Phys., 21, 5575–5595, https://doi.org/10.5194/acp-21-5575-2021,https://doi.org/10.5194/acp-21-5575-2021, 2021
Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014,https://doi.org/10.5194/acp-14-9403-2014, 2014

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
An overview of the vertical structure of the atmospheric boundary layer in the central Arctic during MOSAiC
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 24, 1429–1450, https://doi.org/10.5194/acp-24-1429-2024,https://doi.org/10.5194/acp-24-1429-2024, 2024
Short summary
Air-sea interactions in stable atmospheric conditions: Lessons from the desert semi-enclosed Gulf of Eilat (Aqaba)
Shai Abir, Hamish A. McGowan, Yonatan Shaked, Hezi Gildor, Efrat Morin, and Nadav G. Lensky
EGUsphere, https://doi.org/10.5194/egusphere-2023-1724,https://doi.org/10.5194/egusphere-2023-1724, 2024
Short summary
Evaluation of methods to determine the surface mixing layer height of the atmospheric boundary layer in the central Arctic during polar night and transition to polar day in cloudless and cloudy conditions
Elisa F. Akansu, Sandro Dahlke, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15473–15489, https://doi.org/10.5194/acp-23-15473-2023,https://doi.org/10.5194/acp-23-15473-2023, 2023
Short summary
The role of a low-level jet for stirring the stable atmospheric surface layer in the Arctic
Ulrike Egerer, Holger Siebert, Olaf Hellmuth, and Lise Lotte Sørensen
Atmos. Chem. Phys., 23, 15365–15373, https://doi.org/10.5194/acp-23-15365-2023,https://doi.org/10.5194/acp-23-15365-2023, 2023
Short summary
Detection of dilution due to turbulent mixing vs. precipitation scavenging effects on biomass burning aerosol concentrations using stable water isotope ratios during ORACLES
Dean Henze, David Noone, and Darin Toohey
Atmos. Chem. Phys., 23, 15269–15288, https://doi.org/10.5194/acp-23-15269-2023,https://doi.org/10.5194/acp-23-15269-2023, 2023
Short summary

Cited articles

Albrecht, B. A., Cox, S. K., and Schubert, W. H.: Radiometric measurements of in-cloud temperature fluctuations, J. Appl. Meteorol. Clim., 18, 1066–1071, 1979. a
Aliabadi, A. A., Staebler, R. M., Liu, M., and Herber, A.: Characterization and Parametrization of Reynolds Stress and Turbulent Heat Flux in the Stably-Stratified Lower Arctic Troposphere Using Aircraft Measurements, Bound.-Lay. Meteorol., 161, 99–126, https://doi.org/10.1007/s10546-016-0164-7, 2016. a
Brooks, I. M., Tjernström, M., Persson, P. O. G., Shupe, M. D., Atkinson, R. A., Canut, G., Birch, C. E., Mauritsen, T., Sedlar, J., and Brooks, B. J.: The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud-Ocean Study, J. Geophys. Res.-Atmos., 122, 9685–9704, https://doi.org/10.1002/2017JD027234, 2017. a
Brümmer, B., Busack, B., Hoeber, H., and Kruspe, G.: Boundary-layer observations over water and Arctic sea-ice during on-ice air flow, Bound.-Lay. Meteorol., 68, 75–108, 1994. a, b
Caughey, S. J., Crease, B. A., and Roach, W. T.: A field study of nocturnal stratocumulus II Turbulence structure and entrainment, Q. J. Roy. Meteor. Soc., 108, 125–144, https://doi.org/10.1002/qj.49710845508, 1982. a
Download
Short summary
Clouds represent a very important component of the Arctic climate system, as they strongly reduce the amount of heat lost to space from the sea ice surface. Properties of clouds, as well as their persistence, strongly depend on the complex interaction of such small-scale properties as phase transitions, radiative transfer and turbulence. In this study we use airborne observations to learn more about the effect of clouds and radiative cooling on turbulence in comparison with other factors.
Altmetrics
Final-revised paper
Preprint