Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-8175-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-8175-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aerosol atmospheric rivers: climatology, event characteristics, and detection algorithm sensitivities
Sudip Chakraborty
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Bin Guan
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Joint Institute for Regional Earth System Science and Engineering,
University of California, Los Angeles, CA, USA
Duane E. Waliser
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Arlindo M. da Silva
Global Modeling and Assimilation Office, NASA/Goddard Space Flight
Center, Greenbelt, MD, USA
Related authors
Sudip Chakraborty, Jonathon H. Jiang, Hui Su, and Rong Fu
Atmos. Chem. Phys., 21, 12855–12866, https://doi.org/10.5194/acp-21-12855-2021, https://doi.org/10.5194/acp-21-12855-2021, 2021
Short summary
Short summary
Boreal autumn is the main wet season over the Congo basin. Thus, changes in its onset date have a significant impact on the rainforest. This study provides compelling evidence that the cooling effect of aerosols modifies the timing and strength of the southern African easterly jet that is central to the boreal autumn wet season over the Congo rainforest. A higher boreal summer aerosol concentration is positively correlated with the boreal autumn wet season onset timing.
Huanxin Zhang, Jun Wang, Nathan Janechek, Cui Ge, Meng Zhou, Lorena Castro García, Tong Sha, Yanyu Wang, Weizhi Deng, Zhixin Xue, Chengzhe Li, Lakhima Chutia, Yi Wang, Sebastian Val, James L. McDuffie, Sina Hasheminassab, Scott E. Gluck, David J. Diner, Peter R. Colarco, and Arlindo M. da Silva
EGUsphere, https://doi.org/10.5194/egusphere-2025-1360, https://doi.org/10.5194/egusphere-2025-1360, 2025
Short summary
Short summary
We present here the development of the Unified Inputs (of initial and boundary conditions) for WRF-Chem (UI-WRF-Chem) framework to support the Multi-Angle Imager for Aerosols (MAIA) satellite mission. Some of the major updates include improving dust size distribution in the chemical boundary conditions, updating land surface properties using timely satellite data and improvement of soil NOx emissions. We demonstrate subsequent model improvement over several of the MAIA target areas.
Mukesh Rai, Kazuyuki Miyazaki, Vivienne Payne, Bin Guan, and Duane Waliser
EGUsphere, https://doi.org/10.5194/egusphere-2025-399, https://doi.org/10.5194/egusphere-2025-399, 2025
Short summary
Short summary
This study introduces a novel method for quantifying extreme events of trace gas air pollutants by leveraging a tropospheric chemical reanalysis data set. The analysis revealed that while extreme events are infrequent, they contribute substantially (60 %) to the total transport of pollutants. This finding underscores the critical role of long-range transport events in determining global and regional air quality.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024, https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Short summary
How can we systematically understand what causes high levels of atmospheric humidity and thus heat stress? Here we argue that atmospheric rivers can be a useful tool, based on our finding that in several US regions, atmospheric rivers and humid heat occur close together in space and time. Most typically, an atmospheric river transports moisture which heightens heat stress, with precipitation following a day later. These effects tend to be larger for stronger and more extensive systems.
Adriana Rocha-Lima, Peter R. Colarco, Anton S. Darmenov, Edward P. Nowottnick, Arlindo M. da Silva, and Luke D. Oman
Atmos. Chem. Phys., 24, 2443–2464, https://doi.org/10.5194/acp-24-2443-2024, https://doi.org/10.5194/acp-24-2443-2024, 2024
Short summary
Short summary
Observations show an increasing aerosol optical depth trend in the Middle East between 2003–2012. We evaluate the NASA Goddard Earth Observing System (GEOS) model's ability to capture these trends and examine the meteorological and surface parameters driving dust emissions. Our results highlight the importance of data assimilation for long-term trends of atmospheric aerosols and support the hypothesis that vegetation cover loss may have contributed to increasing dust emissions in the period.
Shih-Wei Wei, Mariusz Pagowski, Arlindo da Silva, Cheng-Hsuan Lu, and Bo Huang
Geosci. Model Dev., 17, 795–813, https://doi.org/10.5194/gmd-17-795-2024, https://doi.org/10.5194/gmd-17-795-2024, 2024
Short summary
Short summary
This study describes the modeling system and the evaluation results for the first prototype version of a global aerosol reanalysis product at NOAA, prototype NOAA Aerosol ReAnalysis version 1.0 (pNARA v1.0). We evaluated pNARA v1.0 against independent datasets and compared it with other reanalyses. We identified deficiencies in the system (both in the forecast model and in the data assimilation system) and the uncertainties that exist in our reanalysis.
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Adrienne M. Wootten, Elias C. Massoud, Duane E. Waliser, and Huikyo Lee
Earth Syst. Dynam., 14, 121–145, https://doi.org/10.5194/esd-14-121-2023, https://doi.org/10.5194/esd-14-121-2023, 2023
Short summary
Short summary
Climate projections and multi-model ensemble weighting are increasingly used for climate assessments. This study examines the sensitivity of projections to multi-model ensemble weighting strategies in the south-central United States. Model weighting and ensemble means are sensitive to the domain and variable used. There are numerous findings regarding the improvement in skill with model weighting and the sensitivity associated with various strategies.
Allison B. Marquardt Collow, Virginie Buchard, Peter R. Colarco, Arlindo M. da Silva, Ravi Govindaraju, Edward P. Nowottnick, Sharon Burton, Richard Ferrare, Chris Hostetler, and Luke Ziemba
Atmos. Chem. Phys., 22, 16091–16109, https://doi.org/10.5194/acp-22-16091-2022, https://doi.org/10.5194/acp-22-16091-2022, 2022
Short summary
Short summary
Biomass burning aerosol impacts aspects of the atmosphere and Earth system through radiative forcing, serving as cloud condensation nuclei, and air quality. Despite its importance, the representation of biomass burning aerosol is not always accurate in models. Field campaign observations from CAMP2Ex are used to evaluate the mass and extinction of aerosols in the GEOS model. Notable biases in the model illuminate areas of future development with GEOS and the underlying GOCART aerosol module.
Samuel E. LeBlanc, Michal Segal-Rozenhaimer, Jens Redemann, Connor Flynn, Roy R. Johnson, Stephen E. Dunagan, Robert Dahlgren, Jhoon Kim, Myungje Choi, Arlindo da Silva, Patricia Castellanos, Qian Tan, Luke Ziemba, Kenneth Lee Thornhill, and Meloë Kacenelenbogen
Atmos. Chem. Phys., 22, 11275–11304, https://doi.org/10.5194/acp-22-11275-2022, https://doi.org/10.5194/acp-22-11275-2022, 2022
Short summary
Short summary
Airborne observations of atmospheric particles and pollution over Korea during a field campaign in May–June 2016 showed that the smallest atmospheric particles are present in the lowest 2 km of the atmosphere. The aerosol size is more spatially variable than optical thickness. We show this with remote sensing (4STAR), in situ (LARGE) observations, satellite measurements (GOCI), and modeled properties (MERRA-2), and it is contrary to the current understanding.
Sol Kim, L. Ruby Leung, Bin Guan, and John C. H. Chiang
Geosci. Model Dev., 15, 5461–5480, https://doi.org/10.5194/gmd-15-5461-2022, https://doi.org/10.5194/gmd-15-5461-2022, 2022
Short summary
Short summary
The Energy Exascale Earth System Model (E3SM) project is a state-of-the-science Earth system model developed by the US Department of Energy (DOE). Understanding how the water cycle behaves in this model is of particular importance to the DOE’s mission. Atmospheric rivers (ARs) – which are crucial to the global water cycle – move vast amounts of water vapor through the sky and produce rain and snow. We find that this model reliably represents atmospheric rivers around the world.
Sujung Go, Alexei Lyapustin, Gregory L. Schuster, Myungje Choi, Paul Ginoux, Mian Chin, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, Arlindo da Silva, Brent Holben, and Jeffrey S. Reid
Atmos. Chem. Phys., 22, 1395–1423, https://doi.org/10.5194/acp-22-1395-2022, https://doi.org/10.5194/acp-22-1395-2022, 2022
Short summary
Short summary
This paper presents a retrieval algorithm of iron-oxide species (hematite, goethite) content in the atmosphere from DSCOVR EPIC observations. Our results display variations within the published range of hematite and goethite over the main dust-source regions but show significant seasonal and spatial variability. This implies a single-viewing satellite instrument with UV–visible channels may provide essential information on shortwave dust direct radiative effects for climate modeling.
Galina Wind, Arlindo M. da Silva, Kerry G. Meyer, Steven Platnick, and Peter M. Norris
Geosci. Model Dev., 15, 1–14, https://doi.org/10.5194/gmd-15-1-2022, https://doi.org/10.5194/gmd-15-1-2022, 2022
Short summary
Short summary
This is the third paper in series about the Multi-sensor Cloud and Aerosol Retrieval Simulator (MCARS). In this paper we use MCARS to create a set of constraints that might be used to assimilate a new above-cloud aerosol retrieval product developed for the MODIS instrument into a general circulation model. We executed the above-cloud aerosol retrieval over a series of synthetic MODIS granules and found the product to be of excellent quality.
Sarah J. Doherty, Pablo E. Saide, Paquita Zuidema, Yohei Shinozuka, Gonzalo A. Ferrada, Hamish Gordon, Marc Mallet, Kerry Meyer, David Painemal, Steven G. Howell, Steffen Freitag, Amie Dobracki, James R. Podolske, Sharon P. Burton, Richard A. Ferrare, Calvin Howes, Pierre Nabat, Gregory R. Carmichael, Arlindo da Silva, Kristina Pistone, Ian Chang, Lan Gao, Robert Wood, and Jens Redemann
Atmos. Chem. Phys., 22, 1–46, https://doi.org/10.5194/acp-22-1-2022, https://doi.org/10.5194/acp-22-1-2022, 2022
Short summary
Short summary
Between July and October, biomass burning smoke is advected over the southeastern Atlantic Ocean, leading to climate forcing. Model calculations of forcing by this plume vary significantly in both magnitude and sign. This paper compares aerosol and cloud properties observed during three NASA ORACLES field campaigns to the same in four models. It quantifies modeled biases in properties key to aerosol direct radiative forcing and evaluates how these biases propagate to biases in forcing.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Sudip Chakraborty, Jonathon H. Jiang, Hui Su, and Rong Fu
Atmos. Chem. Phys., 21, 12855–12866, https://doi.org/10.5194/acp-21-12855-2021, https://doi.org/10.5194/acp-21-12855-2021, 2021
Short summary
Short summary
Boreal autumn is the main wet season over the Congo basin. Thus, changes in its onset date have a significant impact on the rainforest. This study provides compelling evidence that the cooling effect of aerosols modifies the timing and strength of the southern African easterly jet that is central to the boreal autumn wet season over the Congo rainforest. A higher boreal summer aerosol concentration is positively correlated with the boreal autumn wet season onset timing.
Kristina Pistone, Paquita Zuidema, Robert Wood, Michael Diamond, Arlindo M. da Silva, Gonzalo Ferrada, Pablo E. Saide, Rei Ueyama, Ju-Mee Ryoo, Leonhard Pfister, James Podolske, David Noone, Ryan Bennett, Eric Stith, Gregory Carmichael, Jens Redemann, Connor Flynn, Samuel LeBlanc, Michal Segal-Rozenhaimer, and Yohei Shinozuka
Atmos. Chem. Phys., 21, 9643–9668, https://doi.org/10.5194/acp-21-9643-2021, https://doi.org/10.5194/acp-21-9643-2021, 2021
Short summary
Short summary
Using aircraft-based measurements off the Atlantic coast of Africa, we found the springtime smoke plume was strongly correlated with the amount of water vapor in the atmosphere (more smoke indicated more humidity). We see the same general feature in satellite-assimilated and free-running models. Our analysis suggests this relationship is not caused by the burning but originates due to coincident continental meteorology plus fires. This air is transported over the ocean without further mixing.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Monica Ionita, Viorica Nagavciuc, and Bin Guan
Hydrol. Earth Syst. Sci., 24, 5125–5147, https://doi.org/10.5194/hess-24-5125-2020, https://doi.org/10.5194/hess-24-5125-2020, 2020
Short summary
Short summary
Analysis of the largest 10 floods in the lower Rhine, between 1817 and 2015, shows that all these extreme flood peaks have been preceded, up to 7 d in advance, by intense moisture transport from the tropical North Atlantic basin in the form of narrow bands also known as atmospheric rivers. The results presented in this study offer new insights regarding the importance of moisture transport as the driver of extreme flooding in the lower part of the Rhine catchment area.
Yohei Shinozuka, Pablo E. Saide, Gonzalo A. Ferrada, Sharon P. Burton, Richard Ferrare, Sarah J. Doherty, Hamish Gordon, Karla Longo, Marc Mallet, Yan Feng, Qiaoqiao Wang, Yafang Cheng, Amie Dobracki, Steffen Freitag, Steven G. Howell, Samuel LeBlanc, Connor Flynn, Michal Segal-Rosenhaimer, Kristina Pistone, James R. Podolske, Eric J. Stith, Joseph Ryan Bennett, Gregory R. Carmichael, Arlindo da Silva, Ravi Govindaraju, Ruby Leung, Yang Zhang, Leonhard Pfister, Ju-Mee Ryoo, Jens Redemann, Robert Wood, and Paquita Zuidema
Atmos. Chem. Phys., 20, 11491–11526, https://doi.org/10.5194/acp-20-11491-2020, https://doi.org/10.5194/acp-20-11491-2020, 2020
Short summary
Short summary
In the southeast Atlantic, well-defined smoke plumes from Africa advect over marine boundary layer cloud decks; both are most extensive around September, when most of the smoke resides in the free troposphere. A framework is put forth for evaluating the performance of a range of global and regional atmospheric composition models against observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) airborne mission in September 2016.
Kirk Knobelspiesse, Henrique M. J. Barbosa, Christine Bradley, Carol Bruegge, Brian Cairns, Gao Chen, Jacek Chowdhary, Anthony Cook, Antonio Di Noia, Bastiaan van Diedenhoven, David J. Diner, Richard Ferrare, Guangliang Fu, Meng Gao, Michael Garay, Johnathan Hair, David Harper, Gerard van Harten, Otto Hasekamp, Mark Helmlinger, Chris Hostetler, Olga Kalashnikova, Andrew Kupchock, Karla Longo De Freitas, Hal Maring, J. Vanderlei Martins, Brent McBride, Matthew McGill, Ken Norlin, Anin Puthukkudy, Brian Rheingans, Jeroen Rietjens, Felix C. Seidel, Arlindo da Silva, Martijn Smit, Snorre Stamnes, Qian Tan, Sebastian Val, Andrzej Wasilewski, Feng Xu, Xiaoguang Xu, and John Yorks
Earth Syst. Sci. Data, 12, 2183–2208, https://doi.org/10.5194/essd-12-2183-2020, https://doi.org/10.5194/essd-12-2183-2020, 2020
Short summary
Short summary
The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign is a resource for the next generation of spaceborne multi-angle polarimeter (MAP) and lidar missions. Conducted in the fall of 2017 from the Armstrong Flight Research Center in Palmdale, California, four MAP instruments and two lidars were flown on the high-altitude ER-2 aircraft over a variety of scene types and ground assets. Data are freely available to the public and useful for algorithm development and testing.
Cited articles
Abdalmogith, S. S. and Harrison, R. M.: The use of trajectory cluster analysis to examine the long-range transport of secondary inorganic aerosol in the UK, Atmos. Environ., 39, 6686–6695, https://doi.org/10.1016/j.atmosenv.2005.07.059, 2005.
Ackermann, I. J., Hass, H., Memmesheimer, M., Ziegenbein, C., and Ebel, A.:
The parametrization of the sulfate-nitrate-ammonia aerosol system in the
long-range transport model EURAD, Meteorol. Atmos. Phys., 57, 101–114, 1995.
Adebiyi, A. A. and Zuidema, P.: The role of the southern African easterly
jet in modifying the southeast Atlantic aerosol and cloud environments, Q. J. Roy. Meteor. Soc., 142, 1574–1589, https://doi.org/10.1002/qj.2765, 2016.
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions.
Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Bertschi, I. T., Jaffe, D. A., Jaeglé, L., Price, H. U., and Dennison,
J. B.: PHOBEA/ITCT 2002 airborne observations of transpacific transport of
ozone, CO, volatile organic compounds, and aerosols to the northeast
Pacific: Impacts of Asian anthropogenic and Siberian boreal fire emissions,
J. Geophys. Res., 109, D23S12, https://doi.org/10.1029/2003JD004328, 2004.
Bister, M. and Kulmala, M.: Anthropogenic aerosols may have increased upper tropospheric humidity in the 20th century, Atmos. Chem. Phys., 11, 4577–4586, https://doi.org/10.5194/acp-11-4577-2011, 2011.
Buchard, V., Randles, C. A., da Silva, A. M., Darmenov, A., Colarco, P. R.,
Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A. J., Ziemba, L. D.,
and Yu, H.: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation
and case studies, J. Climate, 30, 6851–6872, https://doi.org/10.1175/JCLI-D-16-0613.1, 2017.
Chakraborty, S.: Global Aerosol Atmospheric Rivers Database, Version 1, UCLA Dataverse [data set], https://doi.org/10.25346/S6/CXO9PD, 2022.
Chakraborty, S., Fu, R., Massie, S. T., and Stephens, G.: Relative influence
of meteorological conditions and aerosols on the lifetime of mesoscale
convective systems, P. Natl. Acad. Sci. USA, 113, 7426–7431,
https://doi.org/10.1073/pnas.1601935113, 2016.
Chakraborty, S., Fu, R., Rosenfeld, D., and Massie, S. T.: The Influence of
Aerosols and Meteorological Conditions on the Total Rain Volume of the
Mesoscale Convective Systems Over Tropical Continents, Geophys. Res. Lett., 45, 13099–13106, https://doi.org/10.1029/2018GL080371, 2018.
Chakraborty, S., Guan, B., Waliser, D. E., da Silva, A. M., Uluatam, S., and
Hess, P.: Extending the Atmospheric River Concept to Aerosols: Climate and
Air Quality Impacts, Geophys. Res. Lett., 48, e2020GL091827, https://doi.org/10.1029/2020GL091827, 2021a.
Chakraborty, S., Jiang, J. H., Su, H., and Fu, R.: On the role of aerosol radiative effect in the wet season onset timing over the Congo rainforest during boreal autumn, Atmos. Chem. Phys., 21, 12855–12866, https://doi.org/10.5194/acp-21-12855-2021, 2021b.
Chapman, W. E., Subramanian, A. C., Delle Monache, L., Xie, S. P., and
Ralph, F. M.: Improving Atmospheric River Forecasts With Machine Learning, Geophys. Res. Lett., 46, 10627–10635, https://doi.org/10.1029/2019GL083662, 2019.
Chen, T.-F., Chang, K.-H., and Tsai, C.-Y.: Modeling direct and indirect effect of long range transport on atmospheric PM2.5 levels, Atmos. Environ., 89, 1–9, 2014.
Chylek, P. and Wong, J.: Effect of absorbing aerosols on global radiation
budget, Geophys. Res. Lett., 22, 929–931, https://doi.org/10.1029/95GL00800, 1995.
Cook, K. H.: Generation of the African easterly jet and its role in
determining West African precipitation, J. Climate, 12, 1165–1184,
https://doi.org/10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2, 1999.
Dai, Q., Bi, X., Song, W., Li, T., Liu, B., Ding, J., Xu, J., Song, C.,
Yang, N., Schulze, B. C., Zhang, Y., Feng, Y., and Hopke, P. K.: Residential
coal combustion as a source of primary sulfate in Xi'an, China, Atmos. Environ., 196, 66–76, https://doi.org/10.1016/j.atmosenv.2018.10.002, 2019.
Das, S., Harshvardhan, H., Bian, H., Chin, M., Curci, G., Protonotariou, A.
P., Mielonen, T., Zhang, K., Wang, H., and Liu, X.: Biomass burning aerosol
transport and vertical distribution over the South African-Atlantic region, J. Geophys. Res.-Atmos., 122, 6391–6415, https://doi.org/10.1002/2016JD026421, 2017.
Dhana Laskhmi, D. and Satyanarayana, A. N. V.: Climatology of landfalling
atmospheric Rivers and associated heavy precipitation over the Indian
coastal regions, Int. J. Climatol., 40, 5616–5633, https://doi.org/10.1002/joc.6540, 2020.
Edwards, T. K., Smith, L. M., and Stechmann, S. N.: Atmospheric rivers and
water fluxes in precipitating quasi-geostrophic turbulence, Q. J. Roy. Meteor. Soc., 146, 1960–1975, https://doi.org/10.1002/qj.3777, 2020.
Fan, J., Leung, L. R., DeMott, P. J., Comstock, J. M., Singh, B., Rosenfeld, D., Tomlinson, J. M., White, A., Prather, K. A., Minnis, P., Ayers, J. K., and Min, Q.: Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust, Atmos. Chem. Phys., 14, 81–101, https://doi.org/10.5194/acp-14-81-2014,2014.
Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of aerosol–cloud
interactions: Mechanisms, significance, and challenges, J. Atmos. Sci., 73, 4221–4252, https://doi.org/10.1175/JAS-D-16-0037.1, 2016.
Fast, J. D., Allan, J., Bahreini, R., Craven, J., Emmons, L., Ferrare, R., Hayes, P. L., Hodzic, A., Holloway, J., Hostetler, C., Jimenez, J. L., Jonsson, H., Liu, S., Liu, Y., Metcalf, A., Middlebrook, A., Nowak, J., Pekour, M., Perring, A., Russell, L., Sedlacek, A., Seinfeld, J., Setyan, A., Shilling, J., Shrivastava, M., Springston, S., Song, C., Subramanian, R., Taylor, J. W., Vinoj, V., Yang, Q., Zaveri, R. A., and Zhang, Q.: Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns, Atmos. Chem. Phys., 14, 10013–10060, https://doi.org/10.5194/acp-14-10013-2014, 2014.
Febo, A., Guglielmi, F., Manigrasso, M., Ciambottini, V., and Avino, P.: Local air pollution and long–range mass transport of atmospheric particulate matter: A comparative study of the temporal evolution of the aerosol size fractions, Atmos. Pollut. Res., 1, 141–146, 2010.
Froyd, K. D., Murphy, D. M., Sanford, T. J., Thomson, D. S., Wilson, J. C., Pfister, L., and Lait, L.: Aerosol composition of the tropical upper troposphere, Atmos. Chem. Phys., 9, 4363–4385, https://doi.org/10.5194/acp-9-4363-2009, 2009.
Garrett, T. J. and Hobbs, P. V: Long-range transport of continental aerosols over the Atlantic Ocean and their effects on cloud structures, J. Atmos. Sci., 52, 2977–2984, 1995.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gibson, P. B., Waliser, D. E., Guan, B., Deflorio, M. J., Ralph, F. M., and
Swain, D. L.: Ridging associated with Drought across the Western and
Southwestern United States: Characteristics, trends, and predictability
sources, J. Climate, 33, 2485–2508, https://doi.org/10.1175/JCLI-D-19-0439.1, 2020.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_2d_aer_Nx: 2d,1-Hourly,Time-averaged,Single-Level,Assimilation,Aerosol Diagnostics V5.12.4, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA, https://doi.org/10.5067/KLICLTZ8EM9D, 2015a.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavgU_2d_adg_Nx: 2d,diurnal,Time-averaged,Single-Level,Assimilation,Aerosol Diagnostics (extended) V5.12.4, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/KPUMVXFEQLA1, Greenbelt, MD, USA, 2015b.
Gohm, A., Harnisch, F., Vergeiner, J., Obleitner, F., Schnitzhofer, R.,
Hansel, A., Fix, A., Neininger, B., Emeis, S., and Schäfer, K.: Air
pollution transport in an Alpine valley: Results from airborne and
ground-based observations, Bound.-Lay. Meteorol., 131, 441–463, 2009.
Gross, A. and Baklanov, A.: Aerosol Production in the Marine Boundary Layer
Due to Emissions from DMS: Study Based on Theoretical Scenarios Guided by
Field Campaign Data, in: Air Pollution Modeling and Its Application XVII, edited by: Borrego, C. and Norman, A. L., Springer US, Boston, MA, 286–294, https://doi.org/10.1007/978-0-387-68854-1_31, 2007.
Gu, L., Baldocchi, D. D., Wofsy, S. C., Munger, J. W., Michalsky, J. J.,
Urbanski, S. P., and Boden, T. A.: Response of a Deciduous Forest to the
Mount Pinatubo Eruption: Enhanced Photosynthesis, Science, 299, 2035–2038, https://doi.org/10.1126/science.1078366, 2003.
Guan, B. and Waliser, D. E.: Detection of atmospheric rivers: Evaluation and
application of an algorithm for global studies, J. Geophys. Res.-Atmos., 120, 12514–12535, https://doi.org/10.1002/2015JD024257, 2015.
Guan, B. and Waliser, D. E.: Tracking Atmospheric Rivers Globally: Spatial
Distributions and Temporal Evolution of Life Cycle Characteristics, J. Geophys. Res.-Atmos., 124, 12523–12552, https://doi.org/10.1029/2019JD031205, 2019.
Guan, B., Waliser, D. E., and Martin Ralph, F.: An intercomparison between
reanalysis and dropsonde observations of the total water vapor transport in
individual atmospheric rivers, J. Hydrometeorol., 19, 321–337, https://doi.org/10.1175/JHM-D-17-0114.1, 2018.
Guan, B., Waliser, D. E., and Ralph, F. M.: A multimodel evaluation of the
water vapor budget in atmospheric rivers, Ann. NY Acad. Sci., 1472, 139–154,
https://doi.org/10.1111/nyas.14368, 2020.
Gueymard, C. A. and Yang, D.: Worldwide validation of CAMS and MERRA-2
reanalysis aerosol optical depth products using 15 years of AERONET
observations, Atmos. Environ., 225, 117216, https://doi.org/10.1016/j.atmosenv.2019.117216, 2020.
Gupta, P. and Christopher, S. A.: Particulate matter air quality assessment
using integrated surface, satellite, and meteorological products: 2. A
neural network approach, J. Geophys. Res., 114, D20205, https://doi.org/10.1029/2008JD011497, 2009.
Han, L., Cheng, S., Zhuang, G., Ning, H., Wang, H., Wei, W., and Zhao, X.: The changes and long-range transport of PM2.5 in Beijing in the past decade, Atmos. Environ., 110, 186–195, 2015.
Huang, Y., Dickinson, R. E., and Chameides, W. L.: Impact of aerosol
indirect effect on surface temperature over East Asia, P. Natl. Acad. Sci. USA, 103, 4371–4376, https://doi.org/10.1073/pnas.0504428103, 2006.
Huning, L. S., Guan, B., Waliser, D. E., and Lettenmaier, D. P.: Sensitivity
of Seasonal Snowfall Attribution to Atmospheric Rivers and Their
Reanalysis-Based Detection, Geophys. Res. Lett., 46, 794–803, https://doi.org/10.1029/2018GL080783, 2019.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
Jennrich, G. C., Furtado, J. C., Basara, J. B., and Martin, E. R.: Synoptic
Characteristics of 14-Day Extreme Precipitation Events across the United
States, J. Climate, 33, 6423–6440, https://doi.org/10.1175/JCLI-D-19-0563.1, 2020.
Keil, A. and Haywood, J. M.: Solar radiative forcing by biomass burning
aerosol particles during SAFARI 2000: A case study based on measured aerosol
and cloud properties, J. Geophys. Res., 108, 8467, https://doi.org/10.1029/2002jd002315, 2003.
Khain, A. P., BenMoshe, N., and Pokrovsky, A.: Factors determining the
impact of aerosols on surface precipitation from clouds: An attempt at
classification, J. Atmos. Sci., 65, 1721–1748, https://doi.org/10.1175/2007JAS2515.1, 2008.
Kim, D. and Ramanathan, V.: Solar radiation budget and radiative forcing due
to aerosols and clouds, J. Geophys. Res., 113, D02203, https://doi.org/10.1029/2007JD008434, 2008.
Kim, Y. J., Woo, J.-H., Ma, Y.-I., Kim, S., Nam, J. S., Sung, H., Choi, K.-C., Seo, J., Kim, J. S., and Kang, C.-H.: Chemical characteristics of long-range transport aerosol at background sites in Korea, Atmos. Environ., 43, 5556–5566, 2009.
Kindap, T., Unal, A., Chen, S.-H., Hu, Y., Odman, M. T., and Karaca, M.: Long-range aerosol transport from Europe to Istanbul, Turkey, Atmos. Environ., 40, 3536–3547, https://doi.org/10.1016/j.atmosenv.2006.01.055, 2006.
Knohl, A. and Baldocchi, D. D.: Effects of diffuse radiation on canopy gas
exchange processes in a forest ecosystem, J. Geophys. Res., 113, G02023,
https://doi.org/10.1029/2007JG000663, 2008.
Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H.,
Zhang, H., and Zhu, B.: Aerosol and boundary-layer interactions and impact
on air quality, Natl. Sci. Rev., 4, 810–833, https://doi.org/10.1093/nsr/nwx117, 2017.
Lohmann, U. and Feichter, J.: Can the direct and semi-direct aerosol effect
compete with the indirect effect on a global scale?, Geophys. Res. Lett., 28, 159–161, https://doi.org/10.1029/2000GL012051, 2001.
Markowicz, K. M., Chilinski, M. T., Lisok, J., Zawadzka, O., Stachlewska, I. S., Janicka, L., Rozwadowska, A., Makuch, P., Pakszys, P., Zielinski, T., Petelski, T., Posyniak, M., Pietruczuk, A., Szkop, A., and Westphal, D. L.: Study of aerosol optical properties during long-range transport of biomass burning from Canada to Central Europe in July 2013, J. Aerosol Sci., 101, 156–173, https://doi.org/10.1016/j.jaerosci.2016.08.006, 2016.
Martin, R. V.: Satellite remote sensing of surface air quality, Atmos. Environ., 42, 7823–7843, https://doi.org/10.1016/j.atmosenv.2008.07.018, 2008.
May, N. W., Quinn, P. K., McNamara, S. M., and Pratt, K. A.: Multiyear study
of the dependence of sea salt aerosol on wind speed and sea ice conditions
in the coastal Arctic, J. Geophys. Res.-Atmos., 121, 9208–9219, https://doi.org/10.1002/2016JD025273, 2016.
McComiskey, A. and Feingold, G.: Quantifying error in the radiative forcing
of the first aerosol indirect effect, Geophys. Res. Lett., 35, L02810, https://doi.org/10.1029/2007GL032667,
2008.
Mishra, A. K., Koren, I., and Rudich, Y.: Effect of aerosol vertical
distribution on aerosol-radiation interaction: A theoretical prospect,
Heliyon, 1, e00036, https://doi.org/10.1016/j.heliyon.2015.e00036, 2015.
Mori, I., Nishikawa, M., Tanimura, T., and Quan, H.: Change in size distribution and chemical composition of kosa (Asian dust) aerosol during long-range transport, Atmos. Environ., 37, 4253–4263, 2003.
NASA: EOSDIS Distributed Active Archive Centers (DAACs), NASA, https://earthdata.nasa.gov/eosdis/daacs, last access: 13 June 2022.
Nash, D. and Carvalho, L. M. V.: Brief Communication: An electrifying atmospheric river – understanding the thunderstorm event in Santa Barbara County during March 2019, Nat. Hazards Earth Syst. Sci., 20, 1931–1940, https://doi.org/10.5194/nhess-20-1931-2020, 2020.
Niyogi, D., Chang, H.-I., Saxena, V. K., Holt, T., Alapaty, K., Booker, F.,
Chen, F., Davis, K. J., Holben, B., Matsui, T., Meyers, T., Oechel, W. C.,
Pielke Sr, R. A., Wells, R., Wilson, K., and Xue, Y.: Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes, Geophys. Res. Lett., 31, L20506, https://doi.org/10.1029/2004GL020915, 2004.
Nowottnick, E. P., Colarco, P. R., Welton, E. J., and da Silva, A.: Use of the CALIOP vertical feature mask for evaluating global aerosol models, Atmos. Meas. Tech., 8, 3647–3669, https://doi.org/10.5194/amt-8-3647-2015, 2015.
Prospero, J. M.: Long‐term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality, J. Geophys. Res., 104, 15917–15927, 1999.
Prospero, J. M., Olmez, I., and Ames, M.: Al and Fe in PM2.5 and PM10 suspended particles in south-central Florida: The impact of the long range transport of African mineral dust, Water Air Soil Poll., 125, 291–317, 2001.
Qin, K., Wu, L., Wong, M. S., Letu, H., Hu, M., Lang, H., Sheng, S., Teng,
J., Xiao, X., and Yuan, L.: Trans-boundary aerosol transport during a winter
haze episode in China revealed by ground-based Lidar and CALIPSO satellite,
Atmos Environ, 141, 20–29, 2016.
Rajeev, K., Ramanathan, V., and Meywerk, J.: Regional aerosol distribution
and its long-range transport over the Indian Ocean, J. Geophys. Res., 105, 2029–2043, 2000.
Ralph, F. M., Dettinger, M. D., Rutz, J. J., and Waliser, D. E. (Eds.): Atmospheric Rivers, 2020th edn., https://doi.org/10.1007/978-3-030-28906-5, Springer Nature Switzerland AG, Cham, Switzerland, 2020.
Ramanathan, V., Li, F., Ramana, M. v, Praveen, P. S., Kim, D., Corrigan, C. E., Nguyen, H., Stone, E. A., Schauer, J. J., and Carmichael, G. R.: Atmospheric brown clouds: Hemispherical and regional variations in long‐range transport, absorption, and radiative forcing, J. Geophys. Res., 112, D22S21, https://doi.org/10.1029/2006JD008124, 2007.
Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A.,
Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka,
Y., and Flynn, C. J.: The MERRA-2 aerosol reanalysis, 1980 onward. Part I:
System description and data assimilation evaluation, J. Climate, 30, 6823–6850, https://doi.org/10.1175/JCLI-D-16-0609.1, 2017.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M. O.: Flood or Drought: How Do Aerosols Affect Precipitation?, Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606, 2008.
Rosenfeld, D., Wood, R., Donner, L. J., and Sherwood, S. C.: Aerosol
Cloud-Mediated Radiative Forcing: Highly Uncertain and Opposite Effects from
Shallow and Deep Clouds, in: Climate Science for Serving Society: Research,
Modeling and Prediction Priorities, edited by: Asrar, G. R. and Hurrell, J.
W., Springer Netherlands, Dordrecht, 105–149,
https://doi.org/10.1007/978-94-007-6692-1_5, 2013.
Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., Leeuw, G., Donovan, D.
P., Kahn, R., Kinne, S., Kivekäs, N., Kulmala, M., Lau, W., Schmidt, K.
S., Suni, T., Wagner, T., Wild, M., and Quaas, J.: Global observations of
aerosol-cloud-precipitation-climate interactions, Rev. Geophys., 52, 750–808,
https://doi.org/10.1002/2013RG000441, 2014.
Rosenfeld, D., Zheng, Y., Hashimshoni, E., Pöhlker, M. L., Jefferson,
A., Pöhlker, C., Yu, X., Zhu, Y., Liu, G., Yue, Z., Fischman, B., Li,
Z., Giguzin, D., Goren, T., Artaxo, P., Barbosa, H. M. J., Pöschl, U.,
and Andreae, M. O.: Satellite retrieval of cloud condensation nuclei
concentrations by using clouds as CCN chambers, P. Natl. Acad. Sci. USA, 113, 5828–5834, https://doi.org/10.1073/pnas.1514044113, 2016.
Satheesh, S. K. and Ramanathan, V.: Large differences in tropical aerosol
forcing at the top of the atmosphere and Earth's surface, Nature, 405, 60–63, https://doi.org/10.1038/35011039, 2000.
Sciare, J., Oikonomou, K., Favez, O., Liakakou, E., Markaki, Z., Cachier, H., and Mihalopoulos, N.: Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning, Atmos. Chem. Phys., 8, 5551–5563, https://doi.org/10.5194/acp-8-5551-2008, 2008.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K.
A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol–cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790, https://doi.org/10.1073/pnas.1514043113, 2016.
Sharma, A. R. and Déry, S. J.: Variability and trends of landfalling
atmospheric rivers along the Pacific Coast of northwestern North America, Int. J. Climatol., 40, 544–558, https://doi.org/10.1002/joc.6227, 2020.
Sitnov, S. A., Mokhov, I. I., and Likhosherstova, A. A.: Exploring
large-scale black-carbon air pollution over Northern Eurasia in summer
2016 using MERRA-2 reanalysis data, Atmos. Res., 235, 104763, https://doi.org/10.1016/j.atmosres.2019.104763, 2020.
Sofiev, M., Soares, J., Prank, M., de Leeuw, G., and Kukkonen, J.: A
regional-to-global model of emission and transport of sea salt particles in
the atmosphere, J. Geophys. Res., 116, D21302, https://doi.org/10.1029/2010JD014713, 2011.
Song, C. H. and Carmichael, G. R.: The aging process of naturally emitted aerosol (sea-salt and mineral aerosol) during long range transport, Atmos. Environ., 33, 2203–2218, https://doi.org/10.1016/S1352-2310(98)00301-X, 1999.
Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and
precipitation in a buffered system, Nature, 461, 607–613, https://doi.org/10.1038/nature08281, 2009.
Swap, R., Garstang, M., Macko, S. A., Tyson, P. D., Maenhaut, W., Artaxo, P., Kållberg, P., and Talbot, R.: The long‐range transport of southern African aerosols to the tropical South Atlantic, J. Geophys. Res., 101, 23777–23791, 1996.
Takemura, T., Uno, I., Nakajima, T., Higurashi, A., and Sano, I.: Modeling study of long‐range transport of Asian dust and anthropogenic aerosols from East Asia, Geophys. Res. Lett., 29, 2158, https://doi.org/10.1029/2002GL016251, 2002.
Takemura, T., Nozawa, T., Emori, S., Nakajima, T. Y., and Nakajima, T.:
Simulation of climate response to aerosol direct and indirect effects with
aerosol transport-radiation model, J. Geophys. Res., 110, D02202, https://doi.org/10.1029/2004JD005029, 2005.
Tomasi, C., Vitale, V., Lupi, A., di Carmine, C., Campanelli, M., Herber,
A., Treffeisen, R., Stone, R. S., Andrews, E., and Sharma, S.: Aerosols in
polar regions: A historical overview based on optical depth and in situ
observations, J. Geophys. Res., 112, D16205, https://doi.org/10.1029/2007JD008432, 2007.
Wang, J. and Christopher, S. A.: Intercomparison between satellite-derived
aerosol optical thickness and PM2.5 mass: Implications for air quality
studies, Geophys. Res. Lett., 30, 2095, https://doi.org/10.1029/2003GL018174, 2003.
Wang, S.-H., Tsay, S.-C., Lin, N.-H., Hsu, N. C., Bell, S. W., Li, C., Ji,
Q., Jeong, M.-J., Hansell, R. A., and Welton, E. J.: First detailed
observations of long-range transported dust over the northern South China
Sea, Atmos. Environ., 45, 4804–4808, 2011.
Wang, Y., Zhang, Q. Q., He, K., Zhang, Q., and Chai, L.: Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia, Atmos. Chem. Phys., 13, 2635–2652, https://doi.org/10.5194/acp-13-2635-2013, 2013.
Wang, Y., Zheng, X., Dong, X., Xi, B., Wu, P., Logan, T., and Yung, Y. L.: Impacts of long-range transport of aerosols on marine-boundary-layer clouds in the eastern North Atlantic, Atmos. Chem. Phys., 20, 14741–14755, https://doi.org/10.5194/acp-20-14741-2020, 2020.
Wang, Z., Walsh, J., Szymborski, S., and Peng, M.: Rapid arctic sea ice loss
on the synoptic time scale and related atmospheric circulation anomalies, J. Climate, 33, 1597–1617, https://doi.org/10.1175/JCLI-D-19-0528.1, 2020.
Weinzierl, B., Ansmann, A., Prospero, J. M., Althausen, D., Benker, N., Chouza, F., Dollner, M., Farrell, D., Fomba, W. K., Freudenthaler, V., Gasteiger, J., Groß, S., Haarig, M., Heinold, B., Kandler, K., Kristensen, T. B., Mayol-Bracero, O. L., Müller, T., Reitebuch, O., Sauer, D., Schäfler, A., Schepanski, K., Spanu, A., Tegen, I., Toledano, C., and Walser, A.: The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment: Overview and Selected Highlights, B. Am. Meteorol. Soc., 98, 1427–1451, https://doi.org/10.1175/BAMS-D-15-00142.1, 2017.
Wu, M. L. C., Reale, O., Schubert, S. D., Suarez, M. J., Koster, R. D., and
Pegion, P. J.: African easterly jet: Structure and maintenance, J. Climate, 22, 4459–4480, https://doi.org/10.1175/2009JCLI2584.1, 2009.
Xi, X. and Sokolik, I. N.: Impact of Asian Dust Aerosol and Surface Albedo
on Photosynthetically Active Radiation and Surface Radiative Balance in
Dryland Ecosystems, Adv. Meteorol., 2012, 276207, https://doi.org/10.1155/2012/276207, 2012.
Xu, X., Wu, H., Yang, X., and Xie, L.: Distribution and transport
characteristics of dust aerosol over Tibetan Plateau and Taklimakan Desert
in China using MERRA-2 and CALIPSO data, Atmos. Environ., 237, 117670, https://doi.org/10.1016/j.atmosenv.2020.117670, 2020.
Zhou, Y. and Kim, H.: Impact of Distinct Origin Locations on the Life Cycles
of Landfalling Atmospheric Rivers Over the U.S. West Coast, J. Geophys. Res.-Atmos., 124, 11897–11909, https://doi.org/10.1029/2019JD031218, 2019.
Zhu, Y. and Newell, R. E.: Atmospheric rivers and bombs, Geophys. Res. Lett., 21, 1999–2002, https://doi.org/10.1029/94GL01710, 1994.
Zhu, Y. and Newell, R. E.: A proposed algorithm for moisture fluxes from
atmospheric rivers, Mon. Weather Rev., 126, 725–735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2, 1998.
Short summary
This study explores extreme aerosol transport events by aerosol atmospheric rivers (AARs) and shows the characteristics of individual AARs such as length, width, length-to-width ratio, transport strength, and dominant transport direction, the seasonal variations, the relationship to the spatial distribution of surface emissions, the vertical profiles of wind, aerosol mixing ratio, and aerosol mass fluxes, and the major planetary-scale aerosol transport pathways.
This study explores extreme aerosol transport events by aerosol atmospheric rivers (AARs) and...
Altmetrics
Final-revised paper
Preprint