Articles | Volume 22, issue 21
https://doi.org/10.5194/acp-22-14323-2022
https://doi.org/10.5194/acp-22-14323-2022
Research article
 | Highlight paper
 | 
08 Nov 2022
Research article | Highlight paper |  | 08 Nov 2022

The climate impact of hydrogen-powered hypersonic transport

Johannes Pletzer, Didier Hauglustaine, Yann Cohen, Patrick Jöckel, and Volker Grewe

Related authors

Sensitivities of atmospheric composition and climate to altitude and latitude of hypersonic aircraft emissions
Johannes Pletzer and Volker Grewe
Atmos. Chem. Phys., 24, 1743–1775, https://doi.org/10.5194/acp-24-1743-2024,https://doi.org/10.5194/acp-24-1743-2024, 2024
Short summary

Related subject area

Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Comment on “An approach to sulfate geoengineering with surface emissions of carbonyl sulfide” by Quaglia et al. (2022)
Marc von Hobe, Christoph Brühl, Sinikka T. Lennartz, Mary E. Whelan, and Aleya Kaushik
Atmos. Chem. Phys., 23, 6591–6598, https://doi.org/10.5194/acp-23-6591-2023,https://doi.org/10.5194/acp-23-6591-2023, 2023
Short summary
Quantifying uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: Annual mean response in heating rates, temperature, and ozone
Markus Kunze, Tim Kruschke, Ulrike Langematz, Miriam Sinnhuber, Thomas Reddmann, and Katja Matthes
Atmos. Chem. Phys., 20, 6991–7019, https://doi.org/10.5194/acp-20-6991-2020,https://doi.org/10.5194/acp-20-6991-2020, 2020
Short summary
Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019,https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Effects of Arctic stratospheric ozone changes on spring precipitation in the northwestern United States
Xuan Ma, Fei Xie, Jianping Li, Xinlong Zheng, Wenshou Tian, Ruiqiang Ding, Cheng Sun, and Jiankai Zhang
Atmos. Chem. Phys., 19, 861–875, https://doi.org/10.5194/acp-19-861-2019,https://doi.org/10.5194/acp-19-861-2019, 2019
Key drivers of ozone change and its radiative forcing over the 21st century
Fernando Iglesias-Suarez, Douglas E. Kinnison, Alexandru Rap, Amanda C. Maycock, Oliver Wild, and Paul J. Young
Atmos. Chem. Phys., 18, 6121–6139, https://doi.org/10.5194/acp-18-6121-2018,https://doi.org/10.5194/acp-18-6121-2018, 2018
Short summary

Cited articles

Archer, D. and Brovkin, V.: The millennial atmospheric lifetime of anthropogenic CO2, Climatic Change, 90, 283–297, https://doi.org/10.1007/s10584-008-9413-1, 2008. a
Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U., Caldeira, K., Matsumoto, K., Munhoven, G., Montenegro, A., and Tokos, K.: Atmospheric Lifetime of Fossil Fuel Carbon Dioxide, Annu. Rev. Earth Pl. Sc., 37, 117–134, https://doi.org/10.1146/annurev.earth.031208.100206, 2009. a
Blanvillain, E. and Gallic, G.: HIKARI: Paving the way towards High Speed Air Transport, 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 6–9 July 2015, Glasgow, Scotland, https://doi.org/10.2514/6.2015-3676, 2015. a, b, c
Brasseur, G. and Solomon, S.: Aeronomy of the middle atmosphere: chemistry and physics of the stratosphere and mesosphere, no. v. 32 in Atmospheric and oceanographic sciences library, edited by: Mysak, L. A. and Hamilton, K., Springer, Dordrecht, 3rd rev. and enlarged Edn., oCLC: ocm62343740, 2005. a, b, c, d, e
Bundke, U., Smit, H., Sauvage, B., Gerbig, C., Hermann, M., Berkes, F., Nédélec, P., Gallagher, M., Ziereis, H., Boulanger, D., Thouret, V., and Petzold, A.: IAGOS time series, AERIS [data set], https://doi.org/10.25326/06, 2018. a
Executive editor
Emissions from conventional aircraft contribute to climate change by forming contrails and by increasing atmospheric CO2 concentrations. To fly faster and reduce the climate impact, super- or hypersonic aircraft fuelled by liquid hydrogen or natural gas are being considered. Hypersonic aircraft would fly at more than Mach 4 in the stratosphere, up to 35 km altitude, where the peak of the ozone layer resides. The paper by Pletzer et al. presents a thorough study of the chemical and radiative impacts of such high-speed aircraft using two chemistry-climate models. The study shows that hypersonic aircraft fuelled by liquid hydrogen and cruising at such altitudes would contribute to a significant global warming although they do not emit CO2. The main radiative effect comes from additional water vapour, with only a small effect from depletion of the ozone layer. Importantly, the authors discovered that although water vapour is destroyed in the stratosphere, perturbation of local photochemistry also creates water vapour. The authors estimate that the mean surface temperature change caused by a hypersonic transport fleet would be roughly 8-20 times larger than for a subsonic reference aircraft with the same transport volume. This comprehensive study provides convincing calculations for a large climatic effect of any future hydrogen-fuelled hypersonic aircraft fleet.
Short summary
Very fast aircraft can travel long distances in extremely short times and can fly at high altitudes (15 to 35 km). These aircraft emit water vapour, nitrogen oxides, and hydrogen. Water vapour emissions remain for months to several years at these altitudes and have an important impact on temperature. We investigate two aircraft fleets flying at 26 and 35 km. Ozone is depleted more, and the water vapour perturbation and temperature change are larger for the aircraft flying at 35 km.
Altmetrics
Final-revised paper
Preprint