Articles | Volume 21, issue 16
https://doi.org/10.5194/acp-21-12613-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-12613-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Biogenic volatile organic compound emission profiles of rapeseed leaf litter and its secondary organic aerosol formation potential
Letizia Abis
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON,
69626, Villeurbanne, France
now at: Technische Universität Berlin, Umweltchemie und
Luftrinhaltunz, Straße des 17. Juni 135, 10623 Berlin, Germany
Carmen Kalalian
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON,
69626, Villeurbanne, France
Bastien Lunardelli
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON,
69626, Villeurbanne, France
Tao Wang
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science & Engineering, Fudan
University, Shanghai, 200433, PR China
Liwu Zhang
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science & Engineering, Fudan
University, Shanghai, 200433, PR China
Jianmin Chen
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention, Department of Environmental Science & Engineering, Fudan
University, Shanghai, 200433, PR China
Sébastien Perrier
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON,
69626, Villeurbanne, France
Benjamin Loubet
INRAE, UMR ECOSYS, AgroParisTech, Université Paris-Saclay, 78850,
Thiverval-Grignon, France
Raluca Ciuraru
INRAE, UMR ECOSYS, AgroParisTech, Université Paris-Saclay, 78850,
Thiverval-Grignon, France
Christian George
CORRESPONDING AUTHOR
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON,
69626, Villeurbanne, France
Related authors
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Preprint archived
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Benjamin Loubet, Pauline Buysse, Lais Gonzaga-Gomez, Florence Lafouge, Raluca Ciuraru, Céline Decuq, Julien Kammer, Sandy Bsaibes, Christophe Boissard, Brigitte Durand, Jean-Christophe Gueudet, Olivier Fanucci, Olivier Zurfluh, Letizia Abis, Nora Zannoni, François Truong, Dominique Baisnée, Roland Sarda-Estève, Michael Staudt, and Valérie Gros
Atmos. Chem. Phys., 22, 2817–2842, https://doi.org/10.5194/acp-22-2817-2022, https://doi.org/10.5194/acp-22-2817-2022, 2022
Short summary
Short summary
Volatile organic compounds (VOCs) are precursors of tropospheric pollutants like ozone or aerosols. Emission by agricultural land was still poorly characterized. We report experimental measurements of ecosystem-scale VOC fluxes above a wheat field with a highly sensitive proton transfer mass spectrometer. We report the fluxes of 123 compounds and confirm that methanol is the most emitted VOC by wheat. The second most emitted compound was C6H4O. Around 75 % of the compounds were deposited.
Jie Hu, Jianlong Li, Narcisse Tsona Tchinda, Christian George, Feng Xu, Min Hu, and Lin Du
EGUsphere, https://doi.org/10.5194/egusphere-2025-4207, https://doi.org/10.5194/egusphere-2025-4207, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Phytoplankton blooms dynamically enrich dissolved organic carbon (DOC) in sea spray aerosol by 10-30 times, with proteins and saccharides transferring at different bloom stages. The sea-to-air transfer of DOC is driven by the synergy of biological and the interaction between DOC and bubble rupture. This synergistically-driven DOC flux affects aerosol properties and climate, highlighting the ocean-atmosphere link in organic carbon cycling.
Linyu Gao, Imad Zgheib, Evangelos Stergiou, Cecilie Carstens, Félix Sari Doré, Michel Dupanloup, Frederic Bourgain, Sebastien Perrier, and Matthieu Riva
EGUsphere, https://doi.org/10.5194/egusphere-2025-1072, https://doi.org/10.5194/egusphere-2025-1072, 2025
Short summary
Short summary
In this work, we introduce WALL-E, a newly designed Wall-Free Particle Evaporator that enables real-time, online aerosol analysis while minimizing wall interactions and fragmentation, offering a more accurate and efficient approach to studying aerosol properties. WALL-E provides molecular-level insights into aerosol composition, quantification, and volatility distributions.
Benjamin Loubet, Nicolas P. Saby, Maryam Gebleh, Pauline Buysse, Jean-Philippe Chenu, Céline Ratie, Claudy Jolivet, Carmen Kalalian, Florent Levavasseur, Jose-Luis Munera-Echeverri, Sebastien Lafont, Denis Loustau, Dario Papale, Giacomo Nicolini, Bruna Winck, and Dominique Arrouays
EGUsphere, https://doi.org/10.5194/egusphere-2025-592, https://doi.org/10.5194/egusphere-2025-592, 2025
Short summary
Short summary
Soil is a large pool of carbon storing globally from two to three times more carbon than the atmosphere and vegetation. We compute the soil stock evolution from 2005 to 2019 for a wheat-maize-barley-oilseed-rape crop rotation at a French crop site. The soil carbon stock decreased by around 70 ± 16 g C m-2 yr-1 over the period, leading to a total loss of around 8 % of the initial soil stock. This strong destocking is primarily explained by a decrease in the residue return to the site.
Qianqian Gao, Guochao Chen, Xiaohui Lu, Jianmin Chen, Hongliang Zhang, and Xiaofei Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-596, https://doi.org/10.5194/egusphere-2025-596, 2025
Short summary
Short summary
Numerous lakes are shrinking due to climate change and human activities, releasing pollutants from dried lakebeds as dust aerosols. The health risks remain unclear. Recently, Poyang and Dongting Lakes faced record droughts, exposing 99 % and 88 % of their areas. We show lakebed dust can raise PM10 to 637.5 μg/m³ and exceed non-carcinogenic (HQ=4.13) and Cr carcinogenic (~2.10×10⁻⁶) risk thresholds, posing growing health threats.
Pedro Henrique Herig Coimbra, Benjamin Loubet, Olivier Laurent, Laura Bignotti, Mathis Lozano, and Michel Ramonet
Atmos. Meas. Tech., 17, 6625–6645, https://doi.org/10.5194/amt-17-6625-2024, https://doi.org/10.5194/amt-17-6625-2024, 2024
Short summary
Short summary
This study presents direct flux measurements in tall towers using existing slow-response analysers and adding 3D sonic anemometers. This way, we can significantly improve greenhouse gas monitoring with little extra instrumental effort. Slow-response analysers may be used here as the relevant frequency ranges depend on measuring height. Tall towers offer a large footprint, amplifying spatial coverage. The presented concept is a valuable bridge between atmospheric and ecosystem communities.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Matthieu Riva, Veronika Pospisilova, Carla Frege, Sebastien Perrier, Priyanka Bansal, Spiro Jorga, Patrick Sturm, Joel A. Thornton, Urs Rohner, and Felipe Lopez-Hilfiker
Atmos. Meas. Tech., 17, 5887–5901, https://doi.org/10.5194/amt-17-5887-2024, https://doi.org/10.5194/amt-17-5887-2024, 2024
Short summary
Short summary
We present a newly designed reduced-pressure chemical ionization reactor for detection of gas-phase organic and inorganic species. The system operates through the combined use of vacuum ultraviolet ionization and photosensitizers to generate numerous adduct ionization schemes. As a result, it offers the ability to simultaneously measure a wide variety of organic and inorganic species in terms of compound volatility and functionality, while being largely independent of changes in sample humidity.
Dandan Li, Dongyu Wang, Lucia Caudillo, Wiebke Scholz, Mingyi Wang, Sophie Tomaz, Guillaume Marie, Mihnea Surdu, Elias Eccli, Xianda Gong, Loic Gonzalez-Carracedo, Manuel Granzin, Joschka Pfeifer, Birte Rörup, Benjamin Schulze, Pekka Rantala, Sébastien Perrier, Armin Hansel, Joachim Curtius, Jasper Kirkby, Neil M. Donahue, Christian George, Imad El-Haddad, and Matthieu Riva
Atmos. Meas. Tech., 17, 5413–5428, https://doi.org/10.5194/amt-17-5413-2024, https://doi.org/10.5194/amt-17-5413-2024, 2024
Short summary
Short summary
Due to the analytical challenges of measuring organic vapors, it remains challenging to identify and quantify organic molecules present in the atmosphere. Here, we explore the performance of the Orbitrap chemical ionization mass spectrometer (CI-Orbitrap) using ammonium ion chemistry. This study shows that ammonium-ion-based chemistry associated with the high mass resolution of the Orbitrap mass analyzer can measure almost all inclusive compounds.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Changxing Lan, Matthias Mauder, Stavros Stagakis, Benjamin Loubet, Claudio D'Onofrio, Stefan Metzger, David Durden, and Pedro-Henrique Herig-Coimbra
Atmos. Meas. Tech., 17, 2649–2669, https://doi.org/10.5194/amt-17-2649-2024, https://doi.org/10.5194/amt-17-2649-2024, 2024
Short summary
Short summary
Using eddy-covariance systems deployed in three cities, we aimed to elucidate the sources of discrepancies in flux estimations from different software packages. One crucial finding is the impact of low-frequency spectral loss corrections on tall-tower flux estimations. Our findings emphasize the significance of a standardized measurement setup and consistent postprocessing configurations in minimizing the systematic flux uncertainty resulting from the usage of different software packages.
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Preprint archived
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Victor Moinard, Antoine Savoie, Catherine Pasquier, Adeline Besnault, Yolaine Goubard-Delaunay, Baptiste Esnault, Marco Carozzi, Polina Voylokov, Sophie Génermont, Benjamin Loubet, Catherine Hénault, Florent Levavasseur, Jean-Marie Paillat, and Sabine Houot
EGUsphere, https://doi.org/10.5194/egusphere-2024-161, https://doi.org/10.5194/egusphere-2024-161, 2024
Preprint archived
Short summary
Short summary
Anaerobic digestion is used for biogas production. The resulting digestates may be associated with different crop performances and N losses compared to undigested animal effluents. We monitored N flows during a three-year field experiment with different fertilizations based on cattle effluents, digestates, or mineral fertilizers. Digestates were effective N fertilizer but required attention to NH3 volatilization. We identified no additional risks of N2O emissions with digestates.
Pauline Buysse, Benjamin Loubet, Raluca Ciuraru, Florence Lafouge, Brigitte Durand, Olivier Zurfluh, Céline Décuq, Olivier Fanucci, Lais Gonzaga Gomez, Jean-Christophe Gueudet, Sandy Bsaibes, Nora Zannoni, and Valérie Gros
EGUsphere, https://doi.org/10.5194/egusphere-2023-2438, https://doi.org/10.5194/egusphere-2023-2438, 2024
Preprint withdrawn
Short summary
Short summary
This research aimed at quantifying biogenic volatile organic compounds (BVOCs) emissions by a rapeseed crop field. Such compounds are precursors of atmospheric pollutants. Our study revealed that methanol, a BVOC that is not very reactive in the atmosphere, is by far the most emitted BVOC, while monoterpenes, being highly reactive, were emitted in larger quantities than expected. Our study therefore points out the potentially more significant contribution of croplands to atmospheric pollution.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Jianyan Lu, Sunling Gong, Jian Zhang, Jianmin Chen, Lei Zhang, and Chunhong Zhou
Atmos. Chem. Phys., 23, 8021–8037, https://doi.org/10.5194/acp-23-8021-2023, https://doi.org/10.5194/acp-23-8021-2023, 2023
Short summary
Short summary
WRF/CUACE was used to assess the cloud chemistry contribution in China. Firstly, the CUACE cloud chemistry scheme was found to reproduce well the cloud processing and consumption of H2O2, O3, and SO2, as well as the increase of sulfate. Secondly, during cloud availability in December under a heavy pollution episode, sulfate production increased 60–95 % and SO2 was reduced by over 80 %. This study provides a way to analyze the phenomenon of overestimation of SO2 in many chemical transport models.
Leïla Simon, Valérie Gros, Jean-Eudes Petit, François Truong, Roland Sarda-Estève, Carmen Kalalian, Alexia Baudic, Caroline Marchand, and Olivier Favez
Earth Syst. Sci. Data, 15, 1947–1968, https://doi.org/10.5194/essd-15-1947-2023, https://doi.org/10.5194/essd-15-1947-2023, 2023
Short summary
Short summary
Long-term measurements of volatile organic compounds (VOCs) have been set up to better characterize the atmospheric chemistry at the SIRTA national facility (Paris area, France). Results obtained from the first 2 years (2020–2021) confirm the importance of local sources for short-lived compounds and the role played by meteorology and air mass origins in the long-term analysis of VOCs. They also point to a substantial influence of anthropogenic on the monoterpene loadings.
Jinlong Ma, Shengqiang Zhu, Siyu Wang, Peng Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 23, 4311–4325, https://doi.org/10.5194/acp-23-4311-2023, https://doi.org/10.5194/acp-23-4311-2023, 2023
Short summary
Short summary
An updated version of the CMAQ model with biogenic volatile organic compound (BVOC) emissions from MEGAN was applied to study the impacts of different land cover inputs on O3 and secondary organic aerosol (SOA) in China. The estimated BVOC emissions ranged from 25.42 to 37.39 Tg using different leaf area index (LAI) and land cover (LC) inputs. Those differences further induced differences of 4.8–6.9 ppb in O3 concentrations and differences of 5.3–8.4 µg m−3 in SOA concentrations in China.
Yiqun Lu, Yingge Ma, Dan Dan Huang, Shengrong Lou, Sheng'ao Jing, Yaqin Gao, Hongli Wang, Yanjun Zhang, Hui Chen, Yunhua Chang, Naiqiang Yan, Jianmin Chen, Christian George, Matthieu Riva, and Cheng Huang
Atmos. Chem. Phys., 23, 3233–3245, https://doi.org/10.5194/acp-23-3233-2023, https://doi.org/10.5194/acp-23-3233-2023, 2023
Short summary
Short summary
N-containing oxygenated organic molecules have been identified as important precursors of aerosol particles. We used an ultra-high-resolution mass spectrometer coupled with an online sample inlet to accurately measure their molecular composition, concentration level and variation patterns. We show their formation process and influencing factors in a Chinese megacity involving various volatile organic compound precursors and atmospheric oxidants, and we highlight the influence of PM2.5 episodes.
Yu Han, Tao Wang, Rui Li, Hongbo Fu, Yusen Duan, Song Gao, Liwu Zhang, and Jianmin Chen
Atmos. Chem. Phys., 23, 2877–2900, https://doi.org/10.5194/acp-23-2877-2023, https://doi.org/10.5194/acp-23-2877-2023, 2023
Short summary
Short summary
Limited knowledge is available on volatile organic compound (VOC) multi-site research of different land-use types at city level. This study performed a concurrent multi-site observation campaign on the three typical land-use types of Shanghai, East China. The results showed that concentrations, sources and ozone and secondary organic aerosol formation potentials of VOCs varied with the land-use types.
Jian-yan Lu, Sunling Gong, Chun-hong Zhou, Jian Zhang, Jian-min Chen, and Lei Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-716, https://doi.org/10.5194/acp-2022-716, 2022
Revised manuscript not accepted
Short summary
Short summary
A regional online chemical weather model WRF/ CUACE was used to assess the contributions of cloud chemistry to the SO2 and sulfate levels in typical regions in China. The cloud chemistry scheme in CUACE was evaluated, and well reproduces the cloud chemistry processes. During cloud availability in a heavy pollution episode, the sulfate production increases 40–80 % and SO2 reduces over 80 %. This study provides a way to analyze the over-estimate phenomenon of SO2 in many chemical transport models.
Tao Wang, Yangyang Liu, Hanyun Cheng, Zhenzhen Wang, Hongbo Fu, Jianmin Chen, and Liwu Zhang
Atmos. Chem. Phys., 22, 13467–13493, https://doi.org/10.5194/acp-22-13467-2022, https://doi.org/10.5194/acp-22-13467-2022, 2022
Short summary
Short summary
This study compared the gas-phase, aqueous-phase, and heterogeneous SO2 oxidation pathways by combining laboratory work with a modelling study. The heterogeneous oxidation, particularly that induced by the dust surface drivers, presents positive implications for the removal of airborne SO2 and formation of sulfate aerosols. This work highlighted the atmospheric significance of heterogeneous oxidation and suggested a comparison model to evaluate the following heterogeneous laboratory research.
Yangyang Liu, Yue Deng, Jiarong Liu, Xiaozhong Fang, Tao Wang, Kejian Li, Kedong Gong, Aziz U. Bacha, Iqra Nabi, Qiuyue Ge, Xiuhui Zhang, Christian George, and Liwu Zhang
Atmos. Chem. Phys., 22, 9175–9197, https://doi.org/10.5194/acp-22-9175-2022, https://doi.org/10.5194/acp-22-9175-2022, 2022
Short summary
Short summary
Both CO2 and carbonate salt work as the precursor of carbonate radicals, which largely promotes sulfate formation during the daytime. This study provides the first indication that the carbonate radical not only plays a role as an intermediate in tropospheric anion chemistry but also as a strong oxidant for the surface processing of trace gas in the atmosphere. CO2, carbponate radicals, and sulfate receive attention from those looking at the environment, atmosphere, aerosol, and photochemistry.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Chenglong Zhang, Valéry Catoire, Fengxia Bao, Abdelwahid Mellouki, Likun Xue, Jianmin Chen, Keding Lu, Yong Zhao, Hengde Liu, Zhaoxin Guo, and Yujing Mu
Atmos. Chem. Phys., 22, 3149–3167, https://doi.org/10.5194/acp-22-3149-2022, https://doi.org/10.5194/acp-22-3149-2022, 2022
Short summary
Short summary
Summertime measurements of nitrous acid (HONO) and related parameters were conducted at the foot and the summit of Mt. Tai (1534 m above sea level). We proposed a rapid vertical air mass exchange between the foot and the summit level, which enhances the role of HONO in the oxidizing capacity of the upper boundary layer. Kinetics for aerosol-derived HONO sources were constrained. HONO formation from different paths was quantified and discussed.
Benjamin Loubet, Pauline Buysse, Lais Gonzaga-Gomez, Florence Lafouge, Raluca Ciuraru, Céline Decuq, Julien Kammer, Sandy Bsaibes, Christophe Boissard, Brigitte Durand, Jean-Christophe Gueudet, Olivier Fanucci, Olivier Zurfluh, Letizia Abis, Nora Zannoni, François Truong, Dominique Baisnée, Roland Sarda-Estève, Michael Staudt, and Valérie Gros
Atmos. Chem. Phys., 22, 2817–2842, https://doi.org/10.5194/acp-22-2817-2022, https://doi.org/10.5194/acp-22-2817-2022, 2022
Short summary
Short summary
Volatile organic compounds (VOCs) are precursors of tropospheric pollutants like ozone or aerosols. Emission by agricultural land was still poorly characterized. We report experimental measurements of ecosystem-scale VOC fluxes above a wheat field with a highly sensitive proton transfer mass spectrometer. We report the fluxes of 123 compounds and confirm that methanol is the most emitted VOC by wheat. The second most emitted compound was C6H4O. Around 75 % of the compounds were deposited.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Men Xia, Xiang Peng, Weihao Wang, Chuan Yu, Zhe Wang, Yee Jun Tham, Jianmin Chen, Hui Chen, Yujing Mu, Chenglong Zhang, Pengfei Liu, Likun Xue, Xinfeng Wang, Jian Gao, Hong Li, and Tao Wang
Atmos. Chem. Phys., 21, 15985–16000, https://doi.org/10.5194/acp-21-15985-2021, https://doi.org/10.5194/acp-21-15985-2021, 2021
Short summary
Short summary
ClNO2 is an important precursor of chlorine radical that affects photochemistry. However, its production and impact are not well understood. Our study presents field observations of ClNO2 at three sites in northern China. These observations provide new insights into nighttime processes that produce ClNO2 and the significant impact of ClNO2 on secondary pollutions during daytime. The results improve the understanding of photochemical pollution in the lower part of the atmosphere.
Zhenzhen Wang, Di Wu, Zhuoyu Li, Xiaona Shang, Qing Li, Xiang Li, Renjie Chen, Haidong Kan, Huiling Ouyang, Xu Tang, and Jianmin Chen
Atmos. Chem. Phys., 21, 12227–12241, https://doi.org/10.5194/acp-21-12227-2021, https://doi.org/10.5194/acp-21-12227-2021, 2021
Short summary
Short summary
This study firstly investigates the composition of sugars in the fine fraction of aerosol over three sites in southwest China. The result suggested no significant reduction in biomass burning emissions in southwest Yunnan Province to some extent. The result shown sheds light on the contributions of biomass burning and the characteristics of biogenic saccharides in these regions, which could be further applied to regional source apportionment models and global climate models.
Rui Li, Yilong Zhao, Hongbo Fu, Jianmin Chen, Meng Peng, and Chunying Wang
Atmos. Chem. Phys., 21, 8677–8692, https://doi.org/10.5194/acp-21-8677-2021, https://doi.org/10.5194/acp-21-8677-2021, 2021
Short summary
Short summary
Based on a random forest model, the strict lockdown measures significantly decreased primary components such as Cr (−67 %) and Fe (−61 %) in PM2.5 (p < 0.01), whereas the higher relative humidity (RH) and NH3 level and the lower air temperature (T) remarkably enhanced the production of secondary aerosol including SO42− (29 %), NO3− (29 %), and NH4+ (21 %) (p < 0.05). The natural experiment suggested that the NH3 emission should be strictly controlled.
Jinlong Ma, Juanyong Shen, Peng Wang, Shengqiang Zhu, Yu Wang, Pengfei Wang, Gehui Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 21, 7343–7355, https://doi.org/10.5194/acp-21-7343-2021, https://doi.org/10.5194/acp-21-7343-2021, 2021
Short summary
Short summary
Due to the reduced anthropogenic emissions during the COVID-19 lockdown, mainly from the transportation and industrial sectors, PM2.5 decreased significantly in the whole Yangtze River Delta (YRD) and its major cities. However, the contributions and relative importance of different source sectors and regions changed differently, indicating that control strategies should be adjusted accordingly for further pollution control.
Runlong Cai, Yihao Li, Yohann Clément, Dandan Li, Clément Dubois, Marlène Fabre, Laurence Besson, Sebastien Perrier, Christian George, Mikael Ehn, Cheng Huang, Ping Yi, Yingge Ma, and Matthieu Riva
Atmos. Meas. Tech., 14, 2377–2387, https://doi.org/10.5194/amt-14-2377-2021, https://doi.org/10.5194/amt-14-2377-2021, 2021
Short summary
Short summary
Orbitool is an open-source software tool, mainly coded in Python, with a graphical user interface (GUI), specifically developed to facilitate the analysis of online Orbitrap mass spectrometric data. It is notably optimized for long-term atmospheric measurements and laboratory studies.
Xiaona Shang, Ling Li, Xinlian Zhang, Huihui Kang, Guodong Sui, Gehui Wang, Xingnan Ye, Hang Xiao, and Jianmin Chen
Atmos. Meas. Tech., 14, 1037–1045, https://doi.org/10.5194/amt-14-1037-2021, https://doi.org/10.5194/amt-14-1037-2021, 2021
Short summary
Short summary
Oxidative stress can be used to evaluate not only adverse health effects but also adverse ecological effects. However, little research uses eco-toxicological assay to assess the risks posed by particle matter to non-human biomes. One important reason might be that the concentration of toxic components of atmospheric particles is far below the high detection limit of eco-toxic measurement. To solve the rapid detection problem, we extended a VACES for ecotoxicity aerosol measurement.
Yujiao Zhu, Likun Xue, Jian Gao, Jianmin Chen, Hongyong Li, Yong Zhao, Zhaoxin Guo, Tianshu Chen, Liang Wen, Penggang Zheng, Ye Shan, Xinfeng Wang, Tao Wang, Xiaohong Yao, and Wenxing Wang
Atmos. Chem. Phys., 21, 1305–1323, https://doi.org/10.5194/acp-21-1305-2021, https://doi.org/10.5194/acp-21-1305-2021, 2021
Short summary
Short summary
This work investigates the long-term changes in new particle formation (NPF) events under reduced SO2 emissions at the summit of Mt. Tai during seven campaigns from 2007 to 2018. We found the NPF intensity increased 2- to 3-fold in 2018 compared to 2007. In contrast, the probability of new particles growing to CCN size largely decreased. Changes to biogenic VOCs and anthropogenic emissions are proposed to explain the distinct NPF characteristics.
Jiarong Li, Chao Zhu, Hui Chen, Defeng Zhao, Likun Xue, Xinfeng Wang, Hongyong Li, Pengfei Liu, Junfeng Liu, Chenglong Zhang, Yujing Mu, Wenjin Zhang, Luming Zhang, Hartmut Herrmann, Kai Li, Min Liu, and Jianmin Chen
Atmos. Chem. Phys., 20, 13735–13751, https://doi.org/10.5194/acp-20-13735-2020, https://doi.org/10.5194/acp-20-13735-2020, 2020
Short summary
Short summary
Based on a field study at Mt. Tai, China, the simultaneous variations of cloud microphysics, aerosol microphysics and their potential interactions during cloud life cycles were discussed. Results demonstrated that clouds on clean days were more susceptible to the concentrations of particle number, while clouds formed on polluted days might be more sensitive to meteorological parameters. Particles larger than 150 nm played important roles in forming cloud droplets with sizes of 5–10 μm.
Cited articles
Alpert, P. A., Ciuraru, R., Rossignol, S., Passananti, M., Tinel, L.,
Perrier, S., Dupart, Y., Steimer, S. S., Ammann, M., Donaldson, D. J., and
George, C.: Fatty Acid Surfactant Photochemistry Results in New Particle
Formation, Sci. Rep., 7, 12693, https://doi.org/10.1038/s41598-017-12601-2,
2017.
Bachy, A., Aubinet, M., Schoon, N., Amelynck, C., Bodson, B., Moureaux, C.,
and Heinesch, B.: Are BVOC exchanges in agricultural ecosystems
overestimated? Insights from fluxes measured in a maize field over a whole
growing season, Atmos. Chem. Phys., 16, 5343–5356,
https://doi.org/10.5194/acp-16-5343-2016, 2016.
Barsanti, K. C. and Pankow, J. F.: Thermodynamics of the formation of
atmospheric organic particulate matter by accretion reactions – Part 1:
aldehydes and ketones, Atmos. Environ., 38, 4371–4382,
https://doi.org/10.1016/j.atmosenv.2004.03.035, 2004.
Bernard, F., Ciuraru, R., Boréave, A., and George, C.: Photosensitized
Formation of Secondary Organic Aerosols above the Air/Water Interface,
Environ. Sci. Technol., 50, 8678–8686,
https://doi.org/10.1021/acs.est.6b03520, 2016.
Bigg, E. K.: Gas emissions from soil and leaf litter as a source of new
particle formation, Atmos. Res., 70, 33–42,
https://doi.org/10.1016/j.atmosres.2003.10.003, 2004.
Bracho-Nunez, A., Welter, S., Staudt, M., and Kesselmeier, J.:
Plant-specific volatile organic compound emission rates from young and
mature leaves of Mediterranean vegetation, J. Geophys. Res.-Atmos.,
116, D16, https://doi.org/10.1029/2010JD015521, 2011.
Cappellin, L., Biasioli, F., Granitto, P. M., Schuhfried, E., Soukoulis, C.,
Costa, F., Märk, T. D., and Gasperi, F.: On data analysis in PTR-TOF-MS:
From raw spectra to data mining, Sens. Actuat. B, 155, 183–190,
https://doi.org/10.1016/j.snb.2010.11.044, 2011.
Cojocariu, C., Escher, P., Häberle, K.-H., Matyssek, R., Rennenberg, H.,
and Kreuzwieser, J.: The effect of ozone on the emission of carbonyls from
leaves of adult Fagus sylvatica, Plant Cell Environ., 28, 603–611,
https://doi.org/10.1111/j.1365-3040.2005.01305.x, 2005.
Colmenar, I., Martín, P., Cabañas, B., Salgado, S., Villanueva, F.,
and Ballesteros, B.: Evaluation of the SOA Formation in the Reaction of
Furfural with Atmospheric Oxidants, Atmosphere, 11, 927,
https://doi.org/10.3390/atmos11090927, 2020.
Das, M., Kang, D., Aneja, V. P., Lonneman, W., Cook, D. R., and Wesely, M.
L.: Measurements of hydrocarbon air–surface exchange rates over maize,
Atmos. Environ., 37, 2269–2277,
https://doi.org/10.1016/S1352-2310(03)00076-1, 2003.
De Gouw, J. and Jimenez, J. L.: Organic Aerosols in the Earth's Atmosphere,
Environ. Sci. Technol., 43, 7614–7618, https://doi.org/10.1021/es9006004,
2009.
Derendorp, L., Holzinger, R., and Röckmann, T.: UV-induced emissions of
C2–C5 hydrocarbons from leaf litter, Environ. Chem., 8, 602–611,
https://doi.org/10.1071/EN11024, 2011.
Diaz-de-Quijano, M., Kefauver, S., Ogaya, R., Vollenweider, P., Ribas,
À., and Peñuelas, J.: Visible ozone-like injury, defoliation, and
mortality in two Pinus uncinata stands in the Catalan Pyrenees (NE Spain),
Eur. J. Forest Res., 135, 687–696, https://doi.org/10.1007/s10342-016-0964-9,
2016.
Faiola, C. L., VanderSchelden, G. S., Wen, M., Elloy, F. C., Cobos, D. R.,
Watts, R. J., Jobson, B. T., and VanReken, T. M.: SOA Formation Potential.
of Emissions from Soil and Leaf Litter, Environ. Sci. Technol., 48,
938–946, https://doi.org/10.1021/es4040045, 2014.
Fall, R. and Benson, A. A.: Leaf methanol – the simplest natural product
from plants, Trends Plant Sci., 1, 296–301,
https://doi.org/10.1016/S1360-1385(96)88175-0, 1996.
Fischer, R. A., Byerlee, D., and Edmeades, G.: Crop yields and global food
security: will yield increase continue to feed the world? ACIAR Monograph
No. 158, Australian Centre for International Agricultural Research,
Canberra, 2014.
FranceAgriMer: L'Observatoire National des Ressources en Biomasse (ONRB):
Evaluation des ressources disponibles en France, FranceAgriMer, 2016.
French National Statistics: Chiffres et analyses: la statistique agricole, available at:
https://agreste.agriculture.gouv.fr/agreste-web/ (last access: 20 August 2021), 2019.
George, C.: Atmospheric simulation chamber study: rapseed litter + None – Modelled data, AERIS [data set], https://doi.org/10.25326/0JXT-M252, 2021.
Gonzaga Gomez, L., Loubet, B., Lafouge, F., Ciuraru, R., Buysse, P., Durand,
B., Gueudet, J. C., Fanucci, O., Fortineau, A., Zurfluh, O., Decuq, C.,
Kammer, J., Duprix, P., Bsaibes, S., Truong, F., Gros, V., and Boissard, C.:
Comparative study of biogenic volatile organic compounds fluxes by wheat,
maize and rapeseed with dynamic chambers over a short period in northern
France, Atmos. Environ., 214, 116855,
https://doi.org/10.1016/j.atmosenv.2019.116855, 2019.
Granier, C., Pétron, G., Müller, J.-F., and Brasseur, G.: The impact
of natural and anthropogenic hydrocarbons on the tropospheric budget of
carbon monoxide, Atmos. Environ., 34, 5255–5270,
https://doi.org/10.1016/S1352-2310(00)00299-5, 2000.
Greenberg, J. P., Asensio, D., Turnipseed, A., Guenther, A. B., Karl, T.,
and Gochis, D.: Contribution of leaf and needle litter to whole ecosystem
BVOC fluxes, Atmos. Environ., 59, 302–311,
https://doi.org/10.1016/j.atmosenv.2012.04.038, 2012.
Griffin, R. J., Cocker, D. R., Seinfeld, J. H., and Dabdub, D.: Estimate of
global atmospheric organic aerosol from oxidation of biogenic hydrocarbons,
Geophys. Res. Lett., 26, 2721–2724, https://doi.org/10.1029/1999GL900476,
1999.
Guenther, A.: A global model of natural volatile organic compound emissions,
J. Geophys. Res., 100, 8873–8892, https://doi.org/10.1029/94JD02950, 1995.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D.,
Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H.,
Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin,
M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G.,
Mentel, T. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H.,
Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties
and impact of secondary organic aerosol: current and emerging issues,
Atmos. Chem. Phys., 9, 5155–5236,
https://doi.org/10.5194/acp-9-5155-2009, 2009.
Harley, P., Greenberg, J., Niinemets, Ü., and Guenther, A.: Environmental controls over methanol emission from leaves, Biogeosciences, 4, 1083–1099, https://doi.org/10.5194/bg-4-1083-2007, 2007.
Hatfield, M. L. and Huff Hartz, K. E.: Secondary organic aerosol from
biogenic volatile organic compound mixtures, Atmos. Environ., 45,
2211–2219, https://doi.org/10.1016/j.atmosenv.2011.01.065, 2011.
Henze, D. K. and Seinfeld, J. H.: Global secondary organic aerosol from
isoprene oxidation, Geophys. Res. Lett., 33, 9,
https://doi.org/10.1029/2006GL025976, 2006.
Hess, B. M., Xue, J., Markillie, L. M., Taylor, R. C., Wiley, H. S., Ahring,
B. K., and Linggi, B.: Coregulation of Terpenoid Pathway Genes and
Prediction of Isoprene Production in Bacillus subtilis Using
Transcriptomics, PLOS ONE, 8, e66104,
https://doi.org/10.1371/journal.pone.0066104, 2013.
Hörtnagl, L., Bamberger, I., Graus, M., Ruuskanen, T. M., Schnitzhofer,
R., Walser, M., Unterberger, A., Hansel, A., and Wohlfahrt, G.: Acetaldehyde
exchange above a managed temperate mountain grassland, Atmos. Chem.
Phys., 14, 5369–5391, https://doi.org/10.5194/acp-14-5369-2014, 2014.
Isidorov, V. and Jdanova, M.: Volatile organic compounds from leaves litter,
Chemosphere, 48, 975–979, https://doi.org/10.1016/S0045-6535(02)00074-7,
2002.
Jacob, D. J., Field, B. D., Jin, E. M., Bey, I., Li, Q., Logan, J. A.,
Yantosca, R. M., and Singh, H. B.: Atmospheric budget of acetone, J.
Geophys. Res.-Atmos., 107, D10,
https://doi.org/10.1029/2001JD000694, 2002.
Karl, T., Guenther, A., Spirig, C., Hansel, A., and Fall, R.: Seasonal
variation of biogenic VOC emissions above a mixed hardwood forest in
northern Michigan, Geophys. Res. Lett., 30, 23,
https://doi.org/10.1029/2003GL018432, 2003.
Kesselmeier, J. and Staudt, M.: Biogenic Volatile Organic Compounds (VOC):
An Overview on Emission, Physiology and Ecology, J. Atmos. Chem., 33,
23–88, https://doi.org/10.1023/A:1006127516791, 1999.
Limbeck, A., Kulmala, M., and Puxbaum, H.: Secondary organic aerosol
formation in the atmosphere via heterogeneous reaction of gaseous isoprene
on acidic particles, Geophys. Res. Lett., 30, 19,
https://doi.org/10.1029/2003GL017738, 2003.
Matthews, E.: Global litter production, pools, and turnover times: Estimates
from measurement data and regression models, J. Geophys. Res.-Atmos.,
102, 18771–18800, https://doi.org/10.1029/97JD02956, 1997.
Mceldowney, S. and Fletcher, M.: The effect of temperature and relative
humidity on the survival of bacteria attached to dry solid surfaces, Lett.
Appl. Microbiol., 7, 83–86,
https://doi.org/10.1111/j.1472-765X.1988.tb01258.x, 2008.
Membre, J., Leporq, B., Vialette, M., Mettler, E., Perrier, L., Thuault, D.,
and Zwietering, M.: Temperature effect on bacterial growth rate:
quantitative microbiology approach including cardinal values and variability
estimates to perform growth simulations on/in food, Int. J. Food Microbiol.,
100, 179–186, https://doi.org/10.1016/j.ijfoodmicro.2004.10.015, 2005.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent,
R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S.,
Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O.,
and Williams, M. L.: Tropospheric ozone and its precursors from the urban to
the global scale from air quality to short-lived climate forcer, Atmos.
Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015.
Morrison, E. C., Drewer, J., and Heal, M. R.: A comparison of isoprene and
monoterpene emission rates from the perennial bioenergy crops short-rotation
coppice willow and Miscanthus and the annual arable crops wheat and oilseed
rape, GCB Bioenergy, 8, 211–225, https://doi.org/10.1111/gcbb.12257, 2016.
Mozaffar, A., Schoon, N., Bachy, A., Digrado, A., Heinesch, B., Aubinet, M.,
Fauconnier, M.-L., Delaplace, P., du Jardin, P., and Amelynck, C.: Biogenic
volatile organic compound emissions from senescent maize leaves and a
comparison with other leaf developmental stages, Atmos. Environ., 176,
71–81, https://doi.org/10.1016/j.atmosenv.2017.12.020, 2018.
Müller, M., Mikoviny, T., Feil, S., Haidacher, S., Hanel, G., Hartungen,
E., Jordan, A., Märk, L., Mutschlechner, P., Schottkowsky, R., Sulzer,
P., Crawford, J. H., and Wisthaler, A.: A compact PTR-ToF-MS instrument for
airborne measurements of volatile organic compounds at high spatiotemporal
resolution, Atmos. Meas. Tech., 7, 3763–3772,
https://doi.org/10.5194/amt-7-3763-2014, 2014.
Murphy, J. G., Oram, D. E., and Reeves, C. E.: Measurements of volatile
organic compounds over West Africa, Atmos. Chem. Phys., 10, 5281–5294,
https://doi.org/10.5194/acp-10-5281-2010, 2010.
Niinemets, Ü. and Reichstein, M.: Controls on the emission of plant
volatiles through stomata: A sensitivity analysis, J. Geophys. Res.-Atmos., 108, D7, https://doi.org/10.1029/2002JD002626, 2003.
Niinemets, Ü., Fares, S., Harley, P., and Jardine, K. J.: Bidirectional
exchange of biogenic volatiles with vegetation: emission sources, reactions,
breakdown and deposition, Plant Cell Environ., 37, 1790–1809,
https://doi.org/10.1111/pce.12322, 2014.
Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo,
P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J.,
Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De
Mazière, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., and
Wennberg, P. O.: Importance of secondary sources in the atmospheric budgets
of formic and acetic acids, Atmos. Chem. Phys., 11, 1989–2013,
https://doi.org/10.5194/acp-11-1989-2011, 2011.
Pfister, G., Emmons, L., Hess, P., Lamarque, J.-F., Orlando, J., Walters,
S., Guenther, A., Palmer, P., and Lawrence, P.: Contribution of isoprene to
chemical budgets: a model tracer study with the NCAR CTM MOZART-4, J.
Geophys. Res., 113, D05308, https://doi.org/10.1029/2007JD008948, 2008.
Poisson, N., Kanakidou, M., and Crutzen, P. J.: Impact of Non-Methane
Hydrocarbons on Tropospheric Chemistry and the Oxidizing Power of the Global
Troposphere: 3-Dimensional Modelling Results, J. Atmos. Chem., 36,
157–230, https://doi.org/10.1023/A:1006300616544, 2000.
Potard, K., Monard, C., Le Garrec, J.-L., Caudal, J.-P., Le Bris, N., and
Binet, F.: Organic amendment practices as possible drivers of biogenic
Volatile Organic Compounds emitted by soils in agrosystems, Agr. Ecosyst.
Environ., 250, 25–36, https://doi.org/10.1016/j.agee.2017.09.007, 2017.
Prats, E., Gay, A. P., Mur, L. A. J., Thomas, B. J., and Carver, T. L. W.:
Stomatal lock-open, a consequence of epidermal cell death, follows transient
suppression of stomatal opening in barley attacked by Blumeria graminis, J.
Exp. Bot., 57, 2211–2226, https://doi.org/10.1093/jxb/erj186, 2006.
Sakulyanontvittaya, T., Guenther, A., Helmig, D., Milford, J., and
Wiedinmyer, C.: Secondary Organic Aerosol from Sesquiterpene and Monoterpene
Emissions in the United States, Environ. Sci. Technol., 42, 8784–8790,
https://doi.org/10.1021/es800817r, 2008.
Schulz, S. and Dickschat, J. S.: Bacterial volatiles: the smell of small
organisms, Nat. Prod. Rep., 24, 814–842, https://doi.org/10.1039/B507392H,
2007.
Seco, R., Penuelas, J., and Filella, I.: Short-chain oxygenated VOCs:
Emission and uptake by plants and atmospheric sources, sinks, and
concentrations, Atmos. Environ., 41, 2477–2499,
https://doi.org/10.1016/j.atmosenv.2006.11.029, 2007.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S.,
Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.:
Global data set of biogenic VOC emissions calculated by the MEGAN model over
the last 30 years, Atmos. Chem. Phys., 14, 9317–9341,
https://doi.org/10.5194/acp-14-9317-2014, 2014.
Tiefenbacher, A., Sandén, T., Haslmayr, H.-P., Miloczki, J., Wenzel, W.,
and Spiegel, H.: Optimizing Carbon Sequestration in Croplands: A Synthesis,
Agronomy, 11, 882, https://doi.org/10.3390/agronomy11050882, 2021.
Tong, C., Blanco, M., Goddard, W. A., and Seinfeld, J. H.: Secondary Organic
Aerosol Formation by Heterogeneous Reactions of Aldehydes and Ketones: A
Quantum Mechanical Study, Environ. Sci. Technol., 40, 2333–2338,
https://doi.org/10.1021/es0519785, 2006.
Viros, J., Santonja, M., Temime-Roussel, B., Wortham, H., Fernandez, C., and Ormeno, E.: Volatilome of Aleppo Pine litter over decomposition process, Ecol. Evol., 11, 6862–6880, https://doi.org/10.1002/ece3.7533, 2021.
Wagner, C., Bonte, A., Brühl, L., Niehaus, K., Bednarz, H., and
Matthäus, B.: Micro-organisms growing on rapeseed during storage affect
the profile of volatile compounds of virgin rapeseed oil, J. Sci. Food
Agric., 98, 2147–2155, https://doi.org/10.1002/jsfa.8699, 2018.
Warneke, C., Karl, T., Judmaier, H., Hansel, A., Jordan, A., Lindinger, W.,
and Crutzen, P.: Acetone, methanol, and other partially oxidized volatile
organic emissions from dead plant matter by abiological processes:
Significance for atmospheric HO(X) chemistry, Global Biogeochem. Cy., 13,
9–15 https://doi.org/10.1029/98GB02428, 1999.
Wiß, F., Ghirardo, A., Schnitzler, J.-P., Nendel, C., Augustin, J.,
Hoffmann, M., and Grote, R.: Net ecosystem fluxes and composition of
biogenic volatile organic compounds over a maize field–interaction of
meteorology and phenological stages, GCB Bioenergy, 9, 1627–1643,
https://doi.org/10.1111/gcbb.12454, 2017.
Yendrek, C. R., Erice, G., Montes, C. M., Tomaz, T., Sorgini, C. A., Brown,
P. J., McIntyre, L. M., Leakey, A. D. B., and Ainsworth, E. A.: Elevated
ozone reduces photosynthetic carbon gain by accelerating leaf senescence of
inbred and hybrid maize in a genotype-specific manner, Plant Cell Environ.,
40, 3088–3100, https://doi.org/10.1111/pce.13075, 2017.
Yuan, J., Zhao, M., Li, R., Huang, Q., Raza, W., Rensing, C., and Shen, Q.:
Microbial volatile compounds alter the soil microbial community, Environ.
Sci. Pollut. Res., 24, 22485–22493,
https://doi.org/10.1007/s11356-017-9839-y, 2017.
Yuan, X., Calatayud, V., Gao, F., Fares, S., Paoletti, E., Tian, Y., and
Feng, Z.: Interaction of drought and ozone exposure on isoprene emission
from extensively cultivated poplar, Plant Cell Environ., 39, 2276–2287,
https://doi.org/10.1111/pce.12798, 2016.
Yuan, X., Feng, Z., Liu, S., Shang, B., Li, P., Xu, Y., and Paoletti, E.:
Concentration- and flux-based dose–responses of isoprene emission from
poplar leaves and plants exposed to an ozone concentration gradient, Plant
Cell Environ., 40, 1960–1971, https://doi.org/10.1111/pce.13007, 2017.
Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of
secondary organic aerosol formation, Chem. Soc. Rev., 41, 6582–6605,
https://doi.org/10.1039/C2CS35122F, 2012.
Short summary
Biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter have been investigated by means of a controlled atmospheric simulation chamber. The diversity of emitted VOCs increased also in the presence of UV light irradiation. SOA formation was observed when leaf litter was exposed to both UV light and ozone, indicating a potential contribution to particle formation or growth at local scales.
Biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter have been...
Altmetrics
Final-revised paper
Preprint