Articles | Volume 21, issue 15
https://doi.org/10.5194/acp-21-11979-2021
https://doi.org/10.5194/acp-21-11979-2021
Research article
 | 
10 Aug 2021
Research article |  | 10 Aug 2021

Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO

Xin Lu, Feiyue Mao, Daniel Rosenfeld, Yannian Zhu, Zengxin Pan, and Wei Gong

Related authors

Retrieving instantaneous extinction of aerosol undetected by the CALIPSO layer detection algorithm
Feiyue Mao, Ruixing Shi, Daniel Rosenfeld, Zengxin Pan, Lin Zang, Yannian Zhu, and Xin Lu
Atmos. Chem. Phys., 22, 10589–10602, https://doi.org/10.5194/acp-22-10589-2022,https://doi.org/10.5194/acp-22-10589-2022, 2022
Short summary
Estimating the effects of aerosol, cloud, and water vapor on the recent brightening in India during the monsoon season
Feiyue Mao, Zengxin Pan, Wei Wang, Xin Lu, and Wei Gong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-429,https://doi.org/10.5194/acp-2017-429, 2017
Revised manuscript not accepted

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Air mass history linked to the development of Arctic mixed-phase clouds
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024,https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024,https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
The correlation between Arctic sea ice, cloud phase and radiation using A-Train satellites
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024,https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024,https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383, https://doi.org/10.5194/acp-24-7359-2024,https://doi.org/10.5194/acp-24-7359-2024, 2024
Short summary

Cited articles

Adam, O.: Dynamic and energetic constraints on the modality and position of the intertropical convergence zone in an aquaplanet, J. Climate, 34, 527–543, 2021. 
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Andersen, H., Cermak, J., Solodovnik, I., Lelli, L., and Vogt, R.: Spatiotemporal dynamics of fog and low clouds in the Namib unveiled with ground- and space-based observations, Atmos. Chem. Phys., 19, 4383–4392, https://doi.org/10.5194/acp-19-4383-2019, 2019. 
ARM: Ceilometer (CEIL): cloud-base heights, ARM Data Center [data set], Oak Ridge, Tennessee, USA, available at: https://adc.arm.gov/discovery/#/results/site_code::ena/meas_category_code::cloud/meas_subcategory_detail::cloud.macro, last access: 5 August 2021. 
ASOS: Automated Surface Observation System: cloud-base heights, Iowa Environmental Mesonet of Iowa State University [data set], https://mesonet.agron.iastate.edu/request/download.phtml, last access: 5 August 2021. 
Download
Short summary
In this paper, a novel method for retrieving cloud base height and geometric thickness is developed and applied to produce a global climatology of boundary layer clouds with a high accuracy. The retrieval is based on the 333 m resolution low-level cloud distribution as obtained from the CALIPSO lidar data. The main part of the study describes the variability of cloud vertical geometrical properties in space, season, and time of the day. Resultant new insights are presented.
Altmetrics
Final-revised paper
Preprint