Articles | Volume 21, issue 15
https://doi.org/10.5194/acp-21-11979-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-11979-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO
Xin Lu
State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, 430079, China
Feiyue Mao
State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, 430079, China
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan, 430079, China
Collaborative Innovation Center for Geospatial Technology, Wuhan,
430079, China
Daniel Rosenfeld
State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, 430079, China
Institute of Earth Sciences, The Hebrew University of Jerusalem,
Jerusalem, 91904, Israel
School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
Joint International Research Laboratory of Atmospheric and Earth
System Sciences and Institute for Climate and Global Change Research,
Nanjing University, Nanjing, 210023, China
Zengxin Pan
Institute of Earth Sciences, The Hebrew University of Jerusalem,
Jerusalem, 91904, Israel
Wei Gong
Electronic Information School, Wuhan University, Wuhan, 430072, China
Related authors
Feiyue Mao, Ruixing Shi, Daniel Rosenfeld, Zengxin Pan, Lin Zang, Yannian Zhu, and Xin Lu
Atmos. Chem. Phys., 22, 10589–10602, https://doi.org/10.5194/acp-22-10589-2022, https://doi.org/10.5194/acp-22-10589-2022, 2022
Short summary
Short summary
Previous studies generally ignored the faint aerosols undetected by the CALIPSO layer detection algorithm because they are too optically thin. Here, we retrieved the faint aerosol extinction based on instantaneous CALIPSO observations with the constraint of SAGE data. The correlation and normalized root-mean-square error of the retrievals with independent SAGE data are 0.66 and 100.6 %, respectively. The minimum retrieved extinction at night can be extended to 10-4 km-1 with 125 % uncertainty.
Wanqin Zhong, Xin Ma, Yingxu Wu, Chenglong Li, Tianqi Shi, Wei Gong, and Di Qi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-473, https://doi.org/10.5194/essd-2025-473, 2025
Preprint under review for ESSD
Short summary
Short summary
This work addresses a critical observational gap in the Southern Ocean—one of the most important regions for carbon uptake—by integrating comprehensive Argo float observations with historical ship-based measurements. Our findings demonstrate the feasibility of using machine learning models to integrate observations, and support in-depth analyses of carbon transport and storage mechanisms. This can foster broader utilization of Argo floats data in ocean carbon research.
Yuanyuan Wu, Jihu Liu, Yannian Zhu, Yu Zhang, Yang Cao, Kang-En Huang, Boyang Zheng, Yichuan Wang, Yanyun Li, Quan Wang, Chen Zhou, Yuan Liang, Jianning Sun, Minghuai Wang, and Daniel Rosenfeld
Earth Syst. Sci. Data, 17, 3243–3258, https://doi.org/10.5194/essd-17-3243-2025, https://doi.org/10.5194/essd-17-3243-2025, 2025
Short summary
Short summary
Based on a deep-learning method, we established a global classification dataset of daytime and nighttime marine low-cloud mesoscale morphology. This aims to promote a comprehensive understanding of cloud dynamics and cloud–climate feedback. Closed mesoscale cellular convection (MCC) clouds occur more frequently at night, while suppressed cumulus clouds exhibit remarkable decreases. Solid stratus and MCC cloud types show clear seasonal variations.
Chris J. Wright, Joel A. Thornton, Lyatt Jaeglé, Yang Cao, Yannian Zhu, Jihu Liu, Randall Jones II, Robert Holzworth, Daniel Rosenfeld, Robert Wood, Peter Blossey, and Daehyun Kim
Atmos. Chem. Phys., 25, 2937–2946, https://doi.org/10.5194/acp-25-2937-2025, https://doi.org/10.5194/acp-25-2937-2025, 2025
Short summary
Short summary
Aerosol particles influence clouds, which exert a large forcing on solar radiation and freshwater. To better understand the mechanisms by which aerosol influences thunderstorms, we look at the two busiest shipping lanes in the world, where recent regulations have reduced sulfur emissions by nearly an order of magnitude. We find that the reduction in emissions has been accompanied by a dramatic decrease in both lightning and the number of droplets in clouds over the shipping lanes.
Zhe Song, Shaocai Yu, Pengfei Li, Ningning Yao, Lang Chen, Yuhai Sun, Boqiong Jiang, and Daniel Rosenfeld
Atmos. Chem. Phys., 25, 2473–2494, https://doi.org/10.5194/acp-25-2473-2025, https://doi.org/10.5194/acp-25-2473-2025, 2025
Short summary
Short summary
Our results with injected sea salt aerosols for five open oceans show that sea salt aerosols with low injection amounts dominate shortwave radiation, mainly through indirect effects. As indirect aerosol effects saturate with increasing injection rates, direct effects exceed indirect effects. This implies that marine cloud brightening is best implemented in areas with extensive cloud cover, while aerosol direct scattering effects remain dominant when clouds are scarce.
Jie Song, Lin Zang, Feiyue Mao, Yi Zhang, and Jiangping Chen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 599–604, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-599-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-599-2024, 2024
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023, https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Short summary
To better understand the Asian aerosol environment, we studied distributions and trends of aerosol with different sizes and types. Over the past 2 decades, dust, sulfate, and sea salt aerosol decreased by 5.51 %, 3.07 %, and 9.80 %, whereas organic carbon and black carbon aerosol increased by 17.09 % and 6.23 %, respectively. The increase in carbonaceous aerosols was a feature of Asia. An exception is found in East Asia, where the carbonaceous aerosols reduced, owing largely to China's efforts.
Yuchen Wang, Xvli Guo, Yajie Huo, Mengying Li, Yuqing Pan, Shaocai Yu, Alexander Baklanov, Daniel Rosenfeld, John H. Seinfeld, and Pengfei Li
Atmos. Chem. Phys., 23, 5233–5249, https://doi.org/10.5194/acp-23-5233-2023, https://doi.org/10.5194/acp-23-5233-2023, 2023
Short summary
Short summary
Substantial advances have been made in recent years toward detecting and quantifying methane super-emitters from space. However, such advances have rarely been expanded to measure the global methane pledge because large-scale swaths and high-resolution sampling have not been coordinated. Here we present a versatile spaceborne architecture that can juggle planet-scale and plant-level methane retrievals, challenge official emission reports, and remain relevant for stereoscopic measurements.
Boming Liu, Xin Ma, Jianping Guo, Hui Li, Shikuan Jin, Yingying Ma, and Wei Gong
Atmos. Chem. Phys., 23, 3181–3193, https://doi.org/10.5194/acp-23-3181-2023, https://doi.org/10.5194/acp-23-3181-2023, 2023
Short summary
Short summary
Wind energy is one of the most essential clean and renewable forms of energy in today’s world. However, the traditional power law method generally estimates the hub-height wind speed by assuming a constant exponent between surface and hub-height wind speeds. This inevitably leads to significant uncertainties in estimating the wind speed profile. To minimize the uncertainties, we here use a machine learning algorithm known as random forest to estimate the wind speed at hub height.
Tianqi Shi, Zeyu Han, Ge Han, Xin Ma, Huilin Chen, Truls Andersen, Huiqin Mao, Cuihong Chen, Haowei Zhang, and Wei Gong
Atmos. Chem. Phys., 22, 13881–13896, https://doi.org/10.5194/acp-22-13881-2022, https://doi.org/10.5194/acp-22-13881-2022, 2022
Short summary
Short summary
CH4 works as the second-most important greenhouse gas, its reported emission inventories being far less than CO2. In this study, we developed a self-adjusted model to estimate the CH4 emission rate from strong point sources by the UAV-based AirCore system. This model would reduce the uncertainty in CH4 emission rate quantification accrued by errors in measurements of wind and concentration. Actual measurements on Pniówek coal demonstrate the high accuracy and stability of our developed model.
Paolo Dandini, Céline Cornet, Renaud Binet, Laetitia Fenouil, Vadim Holodovsky, Yoav Y. Schechner, Didier Ricard, and Daniel Rosenfeld
Atmos. Meas. Tech., 15, 6221–6242, https://doi.org/10.5194/amt-15-6221-2022, https://doi.org/10.5194/amt-15-6221-2022, 2022
Short summary
Short summary
3D cloud envelope and development velocity are retrieved from realistic simulations of multi-view
CLOUD (C3IEL) images. Cloud development velocity is derived by finding matching features
between acquisitions separated by 20 s. The tie points are then mapped from image to space via 3D
reconstruction of the cloud envelope obtained from 2 simultaneous images. The retrieved cloud
topography as well as the velocities are in good agreement with the estimates obtained from the
physical models.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Feiyue Mao, Ruixing Shi, Daniel Rosenfeld, Zengxin Pan, Lin Zang, Yannian Zhu, and Xin Lu
Atmos. Chem. Phys., 22, 10589–10602, https://doi.org/10.5194/acp-22-10589-2022, https://doi.org/10.5194/acp-22-10589-2022, 2022
Short summary
Short summary
Previous studies generally ignored the faint aerosols undetected by the CALIPSO layer detection algorithm because they are too optically thin. Here, we retrieved the faint aerosol extinction based on instantaneous CALIPSO observations with the constraint of SAGE data. The correlation and normalized root-mean-square error of the retrievals with independent SAGE data are 0.66 and 100.6 %, respectively. The minimum retrieved extinction at night can be extended to 10-4 km-1 with 125 % uncertainty.
Shikuan Jin, Yingying Ma, Cheng Chen, Oleg Dubovik, Jin Hong, Boming Liu, and Wei Gong
Atmos. Meas. Tech., 15, 4323–4337, https://doi.org/10.5194/amt-15-4323-2022, https://doi.org/10.5194/amt-15-4323-2022, 2022
Short summary
Short summary
Aerosol parameter retrievals have always been a research focus. In this study, we used an advanced aerosol algorithms (GRASP, developed by Oleg Dubovik) to test the ability of DPC/Gaofen-5 (the first polarized multi-angle payload developed in China) images to obtain aerosol parameters. The results show that DPC/GRASP achieves good results (R > 0.9). This research will contribute to the development of hardware and algorithms for aerosols
Haowei Zhang, Boming Liu, Xin Ma, Ge Han, Qinglin Yang, Yichi Zhang, Tianqi Shi, Jianye Yuan, Wanqi Zhong, Yanran Peng, Jingjing Xu, and Wei Gong
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-215, https://doi.org/10.5194/essd-2022-215, 2022
Preprint withdrawn
Short summary
Short summary
Obtaining highly accurate and high-resolution spatiotemporal maps of carbon dioxide concentration distributions is crucial for promoting the study of the carbon cycle, and carbon emissions assessed by top-down theory. The official discrete satellite data provided by Gosat-2, OCO-2, and OCO-3 have data voids and relatively low efficiency. Here, we present carbon dioxide cover dataset, an innovative methodology to obtain XCO2 maps of high spatiotemporal resolution by using satellite data.
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Suleiman Mostamandi, Paul A. Kucera, Duncan Axisa, William I. Gustafson Jr., and Yannian Zhu
Atmos. Chem. Phys., 22, 8659–8682, https://doi.org/10.5194/acp-22-8659-2022, https://doi.org/10.5194/acp-22-8659-2022, 2022
Short summary
Short summary
Rainfall affects the distribution of surface- and groundwater resources, which are constantly declining over the Middle East and North Africa (MENA) due to overexploitation. Here, we explored the effects of dust on rainfall using WRF-Chem model simulations. Although dust is considered a nuisance from an air quality perspective, our results highlight the positive fundamental role of dust particles in modulating rainfall formation and distribution, which has implications for cloud seeding.
X. Xia, Z. Zhu, T. Zhang, G. Wei, and Y. Ji
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 545–550, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-545-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-545-2022, 2022
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-26, https://doi.org/10.5194/amt-2022-26, 2022
Publication in AMT not foreseen
Short summary
Short summary
Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is the comparison of wind speed on a large scale between the Aeolus, ERA5 and RS , shedding important light on the data application of Aeolus wind products.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Ramon Campos Braga, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, Bruna A. Holanda, Tina Jurkat-Witschas, Ovid O. Krüger, Oliver Lauer, Luiz A. T. Machado, Christopher Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Manfred Wendisch, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 17513–17528, https://doi.org/10.5194/acp-21-17513-2021, https://doi.org/10.5194/acp-21-17513-2021, 2021
Short summary
Short summary
Interactions of aerosol particles with clouds represent a large uncertainty in estimates of climate change. Properties of aerosol particles control their ability to act as cloud condensation nuclei. Using aerosol measurements in the Amazon, we performed model studies to compare predicted and measured cloud droplet number concentrations at cloud bases. Our results confirm previous estimates of particle hygroscopicity in this region.
Yingying Ma, Yang Zhu, Boming Liu, Hui Li, Shikuan Jin, Yiqun Zhang, Ruonan Fan, and Wei Gong
Atmos. Chem. Phys., 21, 17003–17016, https://doi.org/10.5194/acp-21-17003-2021, https://doi.org/10.5194/acp-21-17003-2021, 2021
Short summary
Short summary
The vertical distribution of the aerosol extinction coefficient (EC) measured by lidar systems has been used to retrieve the profile of particle matter with a diameter of less than 2.5 μm (PM2.5). However, the traditional linear model cannot consider the influence of multiple meteorological variables sufficiently, which then causes low inversion accuracy. In this study, the machine learning algorithms which can input multiple features are used to solve this constraint.
Linhui Jiang, Yan Xia, Lu Wang, Xue Chen, Jianjie Ye, Tangyan Hou, Liqiang Wang, Yibo Zhang, Mengying Li, Zhen Li, Zhe Song, Yaping Jiang, Weiping Liu, Pengfei Li, Daniel Rosenfeld, John H. Seinfeld, and Shaocai Yu
Atmos. Chem. Phys., 21, 16985–17002, https://doi.org/10.5194/acp-21-16985-2021, https://doi.org/10.5194/acp-21-16985-2021, 2021
Short summary
Short summary
This paper establishes a bottom-up approach to reveal a unique pattern of urban on-road vehicle emissions at a spatial resolution 1–3 orders of magnitude higher than current inventories. The results show that the hourly average on-road vehicle emissions of CO, NOx, HC, and PM2.5 are 74 kg, 40 kg, 8 kg, and 2 kg, respectively. Integrating our traffic-monitoring-based approach with urban measurements, we could address major data gaps between urban air pollutant emissions and concentrations.
Ramon Campos Braga, Daniel Rosenfeld, Ovid O. Krüger, Barbara Ervens, Bruna A. Holanda, Manfred Wendisch, Trismono Krisna, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 14079–14088, https://doi.org/10.5194/acp-21-14079-2021, https://doi.org/10.5194/acp-21-14079-2021, 2021
Short summary
Short summary
Quantifying the precipitation within clouds is crucial for our understanding of the Earth's hydrological cycle. Using in situ measurements of cloud and rain properties over the Amazon Basin and Atlantic Ocean, we show here a linear relationship between the effective radius (re) and precipitation water content near the tops of convective clouds for different pollution states and temperature levels. Our results emphasize the role of re to determine both initiation and amount of precipitation.
Hui Li, Boming Liu, Xin Ma, Shikuan Jin, Yingying Ma, Yuefeng Zhao, and Wei Gong
Atmos. Meas. Tech., 14, 5977–5986, https://doi.org/10.5194/amt-14-5977-2021, https://doi.org/10.5194/amt-14-5977-2021, 2021
Short summary
Short summary
Radiosonde (RS) is widely used to detect the vertical structures of the planetary boundary layer (PBL), and numerous methods have been proposed for retrieving PBL height (PBLH) from RS data. However, an algorithm that is suitable under all atmospheric conditions does not exist. This study evaluates the performance of four common PBLH algorithms under different thermodynamic stability conditions based on RS data.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Jianping Guo, Boming Liu, Wei Gong, Lijuan Shi, Yong Zhang, Yingying Ma, Jian Zhang, Tianmeng Chen, Kaixu Bai, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021, https://doi.org/10.5194/acp-21-2945-2021, 2021
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China have thus far not been evaluated by in situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future research and applications.
Yuwei Zhang, Jiwen Fan, Zhanqing Li, and Daniel Rosenfeld
Atmos. Chem. Phys., 21, 2363–2381, https://doi.org/10.5194/acp-21-2363-2021, https://doi.org/10.5194/acp-21-2363-2021, 2021
Short summary
Short summary
Impacts of anthropogenic aerosols on deep convective clouds (DCCs) and precipitation are examined using both the Morrison bulk and spectral bin microphysics (SBM) schemes. With the SBM scheme, anthropogenic aerosols notably invigorate convective intensity and precipitation, causing better agreement between the simulated DCCs and observations; this effect is absent with the Morrison scheme, mainly due to limitations of the saturation adjustment approach for droplet condensation and evaporation.
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-41, https://doi.org/10.5194/acp-2021-41, 2021
Revised manuscript not accepted
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future researches and applications.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14787–14800, https://doi.org/10.5194/acp-20-14787-2020, https://doi.org/10.5194/acp-20-14787-2020, 2020
Short summary
Short summary
The Chinese government has made major strides in curbing anthropogenic emissions. In this study, we constrain a state-of-the-art CTM by a reliable data assimilation method with extensive chemical and meteorological observations. This comprehensive technical design provides a crucial advance in isolating the influences of emission changes and meteorological perturbations over the Yangtze River Delta (YRD) from 2016 to 2019, thus establishing the first map of the PM2.5 mitigation across the YRD.
Jiwen Fan, Yuwei Zhang, Zhanqing Li, Jiaxi Hu, and Daniel Rosenfeld
Atmos. Chem. Phys., 20, 14163–14182, https://doi.org/10.5194/acp-20-14163-2020, https://doi.org/10.5194/acp-20-14163-2020, 2020
Short summary
Short summary
We investigate the urbanization-induced land and aerosol impacts on convective clouds and precipitation over Houston. We find that Houston urbanization notably enhances storm intensity and precipitation, with the anthropogenic aerosol effect more significant. Urban land effect strengthens sea-breeze circulation, leading to a faster development of warm cloud into mixed-phase cloud and earlier rain. The anthropogenic aerosol effect accelerates the development of storms into deep convection.
Boming Liu, Jianping Guo, Wei Gong, Lijuan Shi, Yong Zhang, and Yingying Ma
Atmos. Meas. Tech., 13, 4589–4600, https://doi.org/10.5194/amt-13-4589-2020, https://doi.org/10.5194/amt-13-4589-2020, 2020
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. However, the wind profile across China remains poorly understood. Here we reveal the salient features of winds from the radar wind profile of China, including the main instruments, spatial coverage and sampling frequency. This work is expected to allow the public and scientific community to be more familiar with the nationwide network and encourage the use of these valuable data in future research and applications.
B. Chen, S. Shi, W. Gong, J. Sun, B. Chen, K. Guo, L. Du, J. Yang, Q. Xu, and S. Song
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 501–505, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-501-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-501-2020, 2020
B. Wang, S. Song, W. Gong, S. Shi, B. Chen, J. Yang, L. Du, and J. Sun
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 547–551, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-547-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-547-2020, 2020
Cited articles
Adam, O.: Dynamic and energetic constraints on the modality and position of
the intertropical convergence zone in an aquaplanet, J. Climate,
34, 527–543, 2021.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
Andersen, H., Cermak, J., Solodovnik, I., Lelli, L., and Vogt, R.: Spatiotemporal dynamics of fog and low clouds in the Namib unveiled with ground- and space-based observations, Atmos. Chem. Phys., 19, 4383–4392, https://doi.org/10.5194/acp-19-4383-2019, 2019.
ARM: Ceilometer (CEIL): cloud-base heights, ARM Data Center [data set], Oak Ridge, Tennessee, USA, available at:
https://adc.arm.gov/discovery/#/results/site_code::ena/meas_category_code::cloud/meas_subcategory_detail::cloud.macro, last access: 5 August 2021.
ASOS: Automated Surface Observation System: cloud-base heights, Iowa Environmental Mesonet of Iowa State University [data set],
https://mesonet.agron.iastate.edu/request/download.phtml, last access: 5 August 2021.
Baker, N.: Joint Polar Satellite System (JPSS) VIIRS cloud base height algorithm theoretical basis document (ATBD), in: Technical Report JPSS Ground Project Code 474-00045, NASA Goddard, Space Flight Center: Greenbelt, MD, USA, 2011.
BCO: The Barbados Cloud Observatory, Repository for Archiving and MAnaging Diverse DAta (RAMADDA) [data set], available at:
https://www.mpimet.mpg.de/en/science/the-atmosphere-in-the-earth-system/working-groups/tropical-cloud-observation/barbadosstation1/instrumentation-and-data/, last access: 5 August 2021.
Böhm, C., Sourdeval, O., Mülmenstädt, J., Quaas, J., and Crewell, S.: Cloud base height retrieval from multi-angle satellite data, Atmos. Meas. Tech., 12, 1841–1860, https://doi.org/10.5194/amt-12-1841-2019, 2019.
Burton, S. P., Ferrare, R. A., Vaughan, M. A., Omar, A. H., Rogers, R. R., Hostetler, C. A., and Hair, J. W.: Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask, Atmos. Meas. Tech., 6, 1397–1412, https://doi.org/10.5194/amt-6-1397-2013, 2013.
Dupont, J. C., Haeffelin, M., Morille, Y., Comstock, J. M., Flynn, C., Long,
C. N., Sivaraman, C., and Newson, R. K.: Cloud properties derived from two
lidars over the ARM SGP site, Geophys. Res. Lett., 38, 99–106, 2011.
Efraim, A., Rosenfeld, D., Schmale, J., and Zhu, Y.: Satellite Retrieval of
Cloud Condensation Nuclei Concentrations in Marine Stratocumulus by Using
Clouds as CCN Chambers, J. Geophys. Res.-Atmos., 125, e2020JD032409, https://doi.org/10.1029/2020JD032409, 2020.
Fitch, K. E., Hutchison, K. D., Bartlett, K. S., Wacker, R. S., and Gross, K. C.: Assessing VIIRS cloud base height products with data collected at the Department of Energy Atmospheric Radiation Measurement sites, Int. J. Remote Sens., 37, 2604-2620. 2016.
Garrett, T. J. and Zhao, C.: Increased Arctic cloud longwave emissivity
associated with pollution from mid-latitudes, Nature, 440, 787–789,
https://doi.org/10.1038/nature04636, 2006.
Goren, T., Rosenfeld, D., Sourdeval, O., and Quaas, J.: Satellite
Observations of Precipitating Marine Stratocumulus Show Greater Cloud
Fraction for Decoupled Clouds in Comparison to Coupled Clouds, Geophys. Res.
Lett., 45, 5126–5134, 2018.
Grosvenor, D. P. and Wood, R.: The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds, Atmos. Chem. Phys., 14, 7291–7321, https://doi.org/10.5194/acp-14-7291-2014, 2014.
Grosvenor, D. P., Field, P. R., Hill, A. A., and Shipway, B. J.: The relative importance of macrophysical and cloud albedo changes for aerosol-induced radiative effects in closed-cell stratocumulus: insight from the modelling of a case study, Atmos. Chem. Phys., 17, 5155–5183, https://doi.org/10.5194/acp-17-5155-2017, 2017.
Hahn, C. J., Rossow, W. B., and Warren, S. G.: ISCCP Cloud Properties
Associated with Standard Cloud Types Identified in Individual Surface
Observations, J. Climate, 14, 11–28, 2001.
Ham, S.-H., Kato, S., Rose, F. G., Winker, D., L'Ecuyer, T., Mace, G. G., Painemal, D., Sun-Mack, S., Chen, Y., and Miller, W. F.: Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products, J. Geophys. Res.-Atmos., 122, 8852–8884, https://doi.org/10.1002/2017JD026725, 2017.
Hartmann, D. L.: Understanding the Importance of Microphysics and
Macrophysics for Warm Rain in Marine Low Clouds. Part II: Heuristic Models
of Rain Formation, J. Atmos. Sci., 66, 2973–2990, 2009.
Lenaerts, J. T., Gettelman, A., Van Tricht, K., van Kampenhout, L., and
Miller, N. B.: Impact of Cloud Physics on the Greenland Ice Sheet
Near-Surface Climate: A Study With the Community Atmosphere Model, J. Geophys. Res.-Atmos., 125, e2019JD031470, https://doi.org/10.1029/2019JD031470, 2020.
Li, J. M., Yi, Y. H., Stamnes, K., Ding, X. D., Wang, T. H., Jin, H. C., and
Wang, S. S.: A new approach to retrieve cloud base height of marine boundary
layer clouds, Geophys. Res. Lett., 40, 4448–4453, https://doi.org/10.1002/grl.50836, 2013.
Ma, Z., Liu, Q., Zhao, C., Shen, X., Wang, Y., Jiang, J. H., Li, Z., and
Yung, Y.: Application and Evaluation of an Explicit Prognostic Cloud-Cover
Scheme in GRAPES Global Forecast System, J. Adv. Model.
Earth Syst., 10, 652–667, https://doi.org/10.1002/2017MS001234, 2018.
Mace, G. G. and Zhang, Q.: The CloudSat radar-lidar geometrical profile
product (RL-GeoProf): Updates, improvements, and selected results, J. Geophys. Res.-Atmos., 119, 9441–9462, 2014.
Merk, D., Deneke, H., Pospichal, B., and Seifert, P.: Investigation of the adiabatic assumption for estimating cloud micro- and macrophysical properties from satellite and ground observations, Atmos. Chem. Phys., 16, 933–952, https://doi.org/10.5194/acp-16-933-2016, 2016.
Mülmenstädt, J., Sourdeval, O., Henderson, D. S., L'Ecuyer, T. S., Unglaub, C., Jungandreas, L., Böhm, C., Russell, L. M., and Quaas, J.: Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset, Earth Syst. Sci. Data, 10, 2279–2293, https://doi.org/10.5194/essd-10-2279-2018, 2018.
NASA/LARC/SD/ASDC: CALIPSO Lidar Level 2 Vertical Feature Mask (VFM), V4-20, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_VFM-STANDARD-V4-20, 2018.
Noh, Y. J., Forsythe, J. M., Miller, S. D., Seaman, C. J., Li, Y.,
Heidinger, A. K., Lindsey, D. T., Rogers, M. A., and Partain, P. T.:
Cloud-Base Height Estimation from VIIRS. Part II: A Statistical Algorithm
Based on A-Train Satellite Data, J. Atmos. Ocean. Tech., 34, 585–598, 2017.
Rosenfeld, D., Zheng, Y., Hashimshoni, E., Pöhlker, M. L., and Andreae,
M. O.: Satellite retrieval of cloud condensation nuclei concentrations by
using clouds as CCN chambers, P. Natl. Acad. Sci. USA, 113, 5828–5834, 2016.
Rosenfeld, D., Zhu, Y., Wang, M., Zheng, Y., Goren, T., and Yu, S.:
Aerosol-driven droplet concentrations dominate coverage and water of oceanic
low-level clouds, Science, 363, eaav0566, https://doi.org/10.1126/science.aav0566, 2019.
Sato, Y. and Suzuki, K.: How do aerosols affect cloudiness?, Science, 363,
580–581, 2019.
Scheirer, R. and Macke, A.: Cloud inhomogeneity and broadband solar fluxes,
J. Geophys. Res.-Atmos., 108, 4599, https://doi.org/10.1029/2002JD003321, 2003.
Seaman, C. J., Noh, Y. J., Miller, S. D., Heidinger, A. K., and Lindsey, D.
T.: Cloud-Base Height Estimation from VIIRS. Part I: Operational Algorithm
Validation against CloudSat, J. Atmos. Ocean. Tech.,
34, 567–583, 2017.
Stephens, G. L. and Webster, P. J.: Cloud Decoupling of the Surface and
Planetary Radiative Budgets, J. Atmos. Sci., 41,
681–686, 2010.
Stephens, G. L., Christensen, M., Andrews, T., Haywood, J., and Sy, O.:
Cloud Physics from Space, Q. J. Roy. Meteor. Soc., 145, 2854–2875, 2019.
Sun-Mack, S., Minnis, P., Yan, C., Kato, S., and Winker, D. M.: Regional
apparent boundary layer lapse rates determined from CALIPSO and MODIS data
for cloud height determination, J. Appl. Meteorol.
Clim., 53, 990–1011, 2014.
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256, 1974.
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds,
J. Atmos. Sci., 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:tiopot>2.0.co;2, 1977.
Vaughan, M. A., Winker, D. M., and Powell, K. A.: CALIOP algorithm
theoretical basis document, part 2: Feature detection and layer properties
algorithms, PC-SCI-202.01, NASA Langley Res. Cent., Hampton, Va, USA, available at: http://www-calipso.larc.nasa.gov/resources/project_documentation.php (last access: 5 August 2021), 2005.
Viúdez-Mora, A., Costa-Surós, M., Calbó, J., and González,
J. A.: Modeling atmospheric longwave radiation at the surface during
overcast skies: The role of cloud base height, J. Geophys.
Res.-Atmos., 120, 199–214, 2015.
Wang, Y., Zhao, C., Dong, Z., Li, Z., Hu, S., Chen, T., Tao, F., and Wang,
Y.: Improved retrieval of cloud base heights from ceilometer using a
non-standard instrument method, Atmos. Res., 202, 148–155, 2018.
Weisz, E., Li, J., Menzel, W. P., Heidinger, A. K., Kahn, B. H., and Liu, C.
Y.: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height
retrievals, Geophys. Res. Lett., 34, L17811, https://doi.org/10.1029/2007GL030676, 2007.
Winker, D. M., Hunt, W. H., and Mcgill, M. J.: Initial performance
assessment of CALIOP, Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135, 2007.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP
Data Processing Algorithms, J. Atmos. Ocean. Tech., 26, 2310–2323, 2009.
Wood, R.: Stratocumulus clouds, Mon. Weather Rev., 140, 2373–2423,
2012.
Yang, Y., Zhao, C., and Fan, H.: Spatiotemporal distributions of cloud
properties over China based on Himawari-8 advanced Himawari imager data,
Atmos. Res., 240, 104927, https://doi.org/10.1016/j.atmosres.2020.104927, 2020.
Yuan, J., Fu, Q., and McFarlane, N.: Tests and improvements of GCM cloud parameterizations using the CCCMA SCM with the SHEBA data set, Atmos. Res., 82, 222–238, 2006.
Zhao, C. F., Xie, S. C., Klein, S. A., Protat, A., Shupe, M. D., McFarlane,
S. A., Comstock, J. M., Delanoe, J., Deng, M., Dunn, M., Hogan, R. J.,
Huang, D., Jensen, M. P., Mace, G. G., McCoy, R., O'Connor, E. J., Turner,
D. D., and Wang, Z.: Toward understanding of differences in current cloud
retrievals of ARM ground-based measurements, J. Geophys.
Res.-Atmos., 117, D10206, https://doi.org/10.1029/2011jd016792, 2012.
Zhao, S. and Suzuki, K.: Differing Impacts of Black Carbon and Sulfate
Aerosols on Global Precipitation and the ITCZ Location via Atmosphere and
Ocean Energy Perturbations, J. Climate, 32, 5567–5582, https://doi.org/10.1175/jcli-d-18-0616.1, 2019.
Zheng, Y.: Theoretical Understanding of the Linear Relationship between
Convective Updrafts and Cloud-Base Height for Shallow Cumulus Clouds. Part
I: Maritime Conditions, J. Atmos. Sci., 76, 2539–2558, https://doi.org/10.1175/jas-d-18-0323.1, 2019.
Zheng, Y. and Rosenfeld, D.: Linear relation between convective cloud base
height and updrafts and application to satellite retrievals, Geophys. Res.
Lett., 42, 6485–6491, 2015.
Zheng, Y., Sakradzija, M., Lee, S.-S., and Li, Z.: Theoretical Understanding
of the Linear Relationship between Convective Updrafts and Cloud-Base Height
for Shallow Cumulus Clouds. Part II: Continental Conditions, J. Atmos. Sci., 77, 1313–1328, https://doi.org/10.1175/jas-d-19-0301.1, 2020.
Zhu, Y., Rosenfeld, D., Yu, X., Liu, G., Dai, J., and Xu, X.: Satellite
retrieval of convective cloud base temperature based on the NPP/VIIRS
Imager, Geophys. Res. Lett., 41, 1308–1313, 2014.
Zhu, Y., Rosenfeld, D., and Li, Z.: Under what conditions can we trust
retrieved cloud drop concentrations in broken marine stratocumulus?, J. Geophys. Res.-Atmos., 123, 8754–8767, 2018.
Zuidema, P., Painemal, D., De Szoeke, S., and Fairall, C.: Stratocumulus
Cloud-Top Height Estimates and Their Climatic Implications, J. Climate, 22, 4652–4666, 2009.
Short summary
In this paper, a novel method for retrieving cloud base height and geometric thickness is developed and applied to produce a global climatology of boundary layer clouds with a high accuracy. The retrieval is based on the 333 m resolution low-level cloud distribution as obtained from the CALIPSO lidar data. The main part of the study describes the variability of cloud vertical geometrical properties in space, season, and time of the day. Resultant new insights are presented.
In this paper, a novel method for retrieving cloud base height and geometric thickness is...
Altmetrics
Final-revised paper
Preprint