Articles | Volume 21, issue 15
https://doi.org/10.5194/acp-21-11979-2021
https://doi.org/10.5194/acp-21-11979-2021
Research article
 | 
10 Aug 2021
Research article |  | 10 Aug 2021

Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO

Xin Lu, Feiyue Mao, Daniel Rosenfeld, Yannian Zhu, Zengxin Pan, and Wei Gong

Related authors

Retrieving instantaneous extinction of aerosol undetected by the CALIPSO layer detection algorithm
Feiyue Mao, Ruixing Shi, Daniel Rosenfeld, Zengxin Pan, Lin Zang, Yannian Zhu, and Xin Lu
Atmos. Chem. Phys., 22, 10589–10602, https://doi.org/10.5194/acp-22-10589-2022,https://doi.org/10.5194/acp-22-10589-2022, 2022
Short summary
Estimating the effects of aerosol, cloud, and water vapor on the recent brightening in India during the monsoon season
Feiyue Mao, Zengxin Pan, Wei Wang, Xin Lu, and Wei Gong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-429,https://doi.org/10.5194/acp-2017-429, 2017
Revised manuscript not accepted

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Lightning declines over shipping lanes following regulation of fuel sulfur emissions
Chris J. Wright, Joel A. Thornton, Lyatt Jaeglé, Yang Cao, Yannian Zhu, Jihu Liu, Randall Jones II, Robert Holzworth, Daniel Rosenfeld, Robert Wood, Peter Blossey, and Daehyun Kim
Atmos. Chem. Phys., 25, 2937–2946, https://doi.org/10.5194/acp-25-2937-2025,https://doi.org/10.5194/acp-25-2937-2025, 2025
Short summary
Post-return stroke VHF electromagnetic activity in north-western Mediterranean cloud-to-ground lightning flashes
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
Atmos. Chem. Phys., 25, 1791–1803, https://doi.org/10.5194/acp-25-1791-2025,https://doi.org/10.5194/acp-25-1791-2025, 2025
Short summary
Technical note: Applicability of physics-based and machine-learning-based algorithms of a geostationary satellite in retrieving the diurnal cycle of cloud base height
Mengyuan Wang, Min Min, Jun Li, Han Lin, Yongen Liang, Binlong Chen, Zhigang Yao, Na Xu, and Miao Zhang
Atmos. Chem. Phys., 24, 14239–14256, https://doi.org/10.5194/acp-24-14239-2024,https://doi.org/10.5194/acp-24-14239-2024, 2024
Short summary
Observing convective activities in complex convective organizations and their contributions to precipitation and anvil cloud amounts
Zhenquan Wang and Jian Yuan
Atmos. Chem. Phys., 24, 13811–13831, https://doi.org/10.5194/acp-24-13811-2024,https://doi.org/10.5194/acp-24-13811-2024, 2024
Short summary
Weak liquid water path response in ship tracks
Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith
Atmos. Chem. Phys., 24, 13269–13283, https://doi.org/10.5194/acp-24-13269-2024,https://doi.org/10.5194/acp-24-13269-2024, 2024
Short summary

Cited articles

Adam, O.: Dynamic and energetic constraints on the modality and position of the intertropical convergence zone in an aquaplanet, J. Climate, 34, 527–543, 2021. 
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Andersen, H., Cermak, J., Solodovnik, I., Lelli, L., and Vogt, R.: Spatiotemporal dynamics of fog and low clouds in the Namib unveiled with ground- and space-based observations, Atmos. Chem. Phys., 19, 4383–4392, https://doi.org/10.5194/acp-19-4383-2019, 2019. 
ARM: Ceilometer (CEIL): cloud-base heights, ARM Data Center [data set], Oak Ridge, Tennessee, USA, available at: https://adc.arm.gov/discovery/#/results/site_code::ena/meas_category_code::cloud/meas_subcategory_detail::cloud.macro, last access: 5 August 2021. 
ASOS: Automated Surface Observation System: cloud-base heights, Iowa Environmental Mesonet of Iowa State University [data set], https://mesonet.agron.iastate.edu/request/download.phtml, last access: 5 August 2021. 
Download
Short summary
In this paper, a novel method for retrieving cloud base height and geometric thickness is developed and applied to produce a global climatology of boundary layer clouds with a high accuracy. The retrieval is based on the 333 m resolution low-level cloud distribution as obtained from the CALIPSO lidar data. The main part of the study describes the variability of cloud vertical geometrical properties in space, season, and time of the day. Resultant new insights are presented.
Share
Altmetrics
Final-revised paper
Preprint