Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 19, issue 21
Atmos. Chem. Phys., 19, 13519–13533, 2019
https://doi.org/10.5194/acp-19-13519-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 13519–13533, 2019
https://doi.org/10.5194/acp-19-13519-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 Nov 2019

Research article | 06 Nov 2019

The control of anthropogenic emissions contributed to 80 % of the decrease in PM2.5 concentrations in Beijing from 2013 to 2017

Ziyue Chen et al.

Related authors

Evaluating the “2+26” regional strategy for air quality improvement during two air pollution alerts in Beijing: variations in PM2.5 concentrations, source apportionment, and the relative contribution of local emission and regional transport
Ziyue Chen, Danlu Chen, Wei Wen, Yan Zhuang, Mei-Po Kwan, Bin Chen, Bo Zhao, Lin Yang, Bingbo Gao, Ruiyuan Li, and Bing Xu
Atmos. Chem. Phys., 19, 6879–6891, https://doi.org/10.5194/acp-19-6879-2019,https://doi.org/10.5194/acp-19-6879-2019, 2019
Short summary
Understanding meteorological influences on PM2.5 concentrations across China: a temporal and spatial perspective
Ziyue Chen, Xiaoming Xie, Jun Cai, Danlu Chen, Bingbo Gao, Bin He, Nianliang Cheng, and Bing Xu
Atmos. Chem. Phys., 18, 5343–5358, https://doi.org/10.5194/acp-18-5343-2018,https://doi.org/10.5194/acp-18-5343-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impacts of future land use and land cover change on mid-21st-century surface ozone air quality: distinguishing between the biogeophysical and biogeochemical effects
Lang Wang, Amos P. K. Tai, Chi-Yung Tam, Mehliyar Sadiq, Peng Wang, and Kevin K. W. Cheung
Atmos. Chem. Phys., 20, 11349–11369, https://doi.org/10.5194/acp-20-11349-2020,https://doi.org/10.5194/acp-20-11349-2020, 2020
Short summary
What have we missed when studying the impact of aerosols on surface ozone via changing photolysis rates?
Jinhui Gao, Ying Li, Bin Zhu, Bo Hu, Lili Wang, and Fangwen Bao
Atmos. Chem. Phys., 20, 10831–10844, https://doi.org/10.5194/acp-20-10831-2020,https://doi.org/10.5194/acp-20-10831-2020, 2020
Short summary
The impact of urban land-surface on extreme air pollution over central Europe
Peter Huszar, Jan Karlický, Jana Ďoubalová, Tereza Nováková, Kateřina Šindelářová, Filip Švábik, Michal Belda, Tomáš Halenka, and Michal Žák
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-399,https://doi.org/10.5194/acp-2020-399, 2020
Revised manuscript accepted for ACP
Short summary
Stratospheric impact on the Northern Hemisphere winter and spring ozone interannual variability in the troposphere
Junhua Liu, Jose M. Rodriguez, Luke D. Oman, Anne R. Douglass, Mark A. Olsen, and Lu Hu
Atmos. Chem. Phys., 20, 6417–6433, https://doi.org/10.5194/acp-20-6417-2020,https://doi.org/10.5194/acp-20-6417-2020, 2020
Short summary
Design and evaluation of CO2 observation network to optimize surface CO2 fluxes in Asia using observation system simulation experiments
Jun Park and Hyun Mee Kim
Atmos. Chem. Phys., 20, 5175–5195, https://doi.org/10.5194/acp-20-5175-2020,https://doi.org/10.5194/acp-20-5175-2020, 2020
Short summary

Cited articles

Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, 2006. 
Brunekreef, B. and Holgate, S.: Air pollution and health Lancet, 360, 1233–1242, 2002. 
Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos. Environ., 42, 1–42, 2008. 
Chen, D., Liu, Z., Fast, J., and Ban, J.: Simulations of sulfate–nitrate–ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014, Atmos. Chem. Phys., 16, 10707–10724, https://doi.org/10.5194/acp-16-10707-2016, 2016. 
Chen, Z., Xie, X., Cai, J., Chen, D., Gao, B., He, B., Cheng, N., and Xu, B.: Understanding meteorological influences on PM2.5 concentrations across China: a temporal and spatial perspective, Atmos. Chem. Phys., 18, 5343–5358, https://doi.org/10.5194/acp-18-5343-2018, 2018. 
Publications Copernicus
Download
Short summary
We employed Kolmogorov–Zurbenko filtering and WRF-CMAQ to quantify the relative contribution of meteorological variations and emission reduction to PM2.5 reduction in Beijing from 2013 to 2017, which is crucial to evaluate the Five-year Clean Air Action Plan. Both models suggested that despite favourable meteorological conditions, the control of anthropogenic emissions accounted for around 80 % of PM2.5 reduction in Beijing. Therefore, such a long-term clean air plan should be continued.
We employed Kolmogorov–Zurbenko filtering and WRF-CMAQ to quantify the relative contribution of...
Citation
Altmetrics
Final-revised paper
Preprint