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Abstract. With the completion of the Beijing Five-year
Clean Air Action Plan by the end of 2017, the annual
mean PM2.5 concentration in Beijing dropped dramatically
to 58.0 µg m−3 in 2017 from 89.5 µg m−3 in 2013. However,
controversies exist to argue that favourable meteorological
conditions in 2017 were the major driver for such a rapid
decrease in PM2.5 concentrations. To comprehensively eval-
uate this 5-year plan, we employed a Kolmogorov–Zurbenko
(KZ) filter and WRF-CMAQ (Weather Research and Fore-
casting and the Community Multi-scale Air Quality) to quan-
tify the relative contribution of meteorological conditions
and the control of anthropogenic emissions to PM2.5 reduc-
tion in Beijing from 2013 to 2017. For these 5 years, the rel-
ative contribution of emission reduction to the decrease in
PM2.5 concentrations calculated by KZ filtering and WRF-
CMAQ was 80.6 % and 78.6 % respectively. KZ filtering
suggested that short-term variations in meteorological and
emission conditions contributed majorly to rapid changes in
PM2.5 concentrations in Beijing. WRF-CMAQ revealed that
the relative contribution of local and regional emission reduc-
tion to the PM2.5 decrease in Beijing was 53.7 % and 24.9 %
respectively. For local emission-reduction measures, the reg-
ulation of coal boilers, increasing use of clean fuels for res-

idential use and industrial restructuring contributed 20.1 %,
17.4 % and 10.8 % to PM2.5 reduction respectively. Both
models suggested that the control of anthropogenic emis-
sions accounted for around 80 % of the PM2.5 reduction in
Beijing, indicating that emission reduction was crucial for
air quality enhancement in Beijing from 2013 to 2017. Con-
sequently, such a long-term air quality clean plan should be
continued in the following years to further reduce PM2.5 con-
centrations in Beijing.

1 Introduction

In January 2013, persistent haze episodes occurred in Bei-
jing, during which the highest hourly PM2.5 concentration
once reached 886 µg m−3, a historically high record. High-
concentration PM2.5 led to long-lasting black and thick fogs,
which not only significantly influenced people’s daily life
(low-visibility induced traffic jams), but also posed a severe
threat to public health (Brunekreef et al., 2002; Dominici et
al., 2014; Nel et al., 2005; Zhang et al., 2012; Qiao et al.,
2014). Since then, severe haze episodes have frequently been
observed in Beijing and other regions across China (Chan
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et al., 2008; Huang et al., 2014; Guo et al.,2014; Zheng et
al.,2015), and PM2.5 pollution has become one of the most
concerning environmental issues in China. Consequently, a
national network for monitoring hourly PM2.5 concentra-
tions has been established gradually, including 35 ground ob-
servation stations in Beijing, which provide important sup-
port for better understanding and managing PM2.5 concen-
trations. To effectively mitigate PM2.5 pollution, the Bei-
jing Municipal Government released the Beijing Five-year
Clean Air Action Plan (2013–2017) with a series of long-
term emission-reduction measures, including shutting down
heavily polluting factories, restricting traffic emissions and
replacing coal fuels with clean energies; it also released a
Heavy Air Pollution Contingency Plan with a series of con-
tingent emission-reduction measures during heavy pollution
episodes. By the end of 2017, these long-term and con-
tingent emission-reduction measures worked jointly to re-
duce the annual mean PM2.5 concentration in Beijing from
89.5 µg m−3 in 2013 to 58.0 µg m−3 in 2017, indicating a
great success of PM2.5 management during the past 5 years.
The notable decrease in PM2.5 concentrations attracted na-
tionwide attention, and a growing number of studies has
been conducted to understand spatio-temporal characteris-
tics (Shao et al., 2018; Sun et al., 2019; Wang et al., 2019),
sources (Chen et al., 2019; Xu et al., 2019; J. Cheng et al.,
2019) and health effects (Liang et al., 2019) of PM2.5 vari-
ations in Beijing from 2013 to 2017. These studies revealed
that air quality in Beijing was improved significantly in 2017
in terms of annual mean PM2.5 concentrations, polluted days
and pollution durations. Furthermore, despite different out-
puts, both source apportionment during pollution episodes
based on collected samples (Shao et al., 2019; Xu et al.,
2019; Chen et al., 2019) and long-term model simulation
based on regional and local emission inventories (J. Cheng
et al., 2019) suggested that local and regional anthropogenic
emissions (e.g. coal combustion and vehicle emissions) were
the major influencing factors for long-term and short-term
PM2.5 variations in Beijing.

In addition to anthropogenic emissions, the strong meteo-
rological influence on PM2.5 concentrations in Beijing have
been widely acknowledged (Zhao et al., 2013; Wang et al.,
2014; UNEP, 2016; Chen et al., 2017; Sun et al., 2019). For
instance, for 2014, more than 180 d in Beijing experienced a
dramatic daily AQI (Air Quality Index) change (AQI > 50)
(Z. Y. Chen et al., 2016). Considering that anthropogenic
emissions for a megacity unlikely changed significantly on
a daily basis, rapid variations in meteorological conditions
were one major driver for the dramatic change in daily air
quality in Beijing. In winter 2017, strong northwest winds led
to favourable meteorological conditions for PM2.5 diffusion
and low PM2.5 concentrations in Beijing. This raised the con-
troversy that meteorological conditions, instead of emission
reduction, accounted for the remarkable PM2.5 reduction in
Beijing. In this case, with the completion of the 5-year plan,
it is highly necessary to quantify the relative contribution of

meteorological conditions and emission reduction to the no-
table decrease in PM2.5 concentrations in Beijing from 2013
to 2017.

In recent years, a growing number of studies has been con-
ducted to investigate meteorological and anthropogenic in-
fluence on long-term PM2.5 variations. Based on the God-
dard Earth Observing System (GEOS) chemical transport
model (GEOS-Chem), Yang et al. (2016) revealed that the
relative contribution of meteorological conditions to PM2.5
variations in eastern China from 1985 to 2005 was 12 %.
Based on a multiple general linear model (GLM), Gui
et al. (2019) quantified that meteorological conditions ac-
counted for 48 % of PM2.5 variations in eastern China from
1998 to 2016. Based on a stepwise multiple linear regression
(MLR) model, Zhai et al. (2019) quantified the relative con-
tribution of meteorology to PM2.5 variations from 2013 to
2018 in the Beijing–Tianjin–Hebei region, the Yangtze River
Delta, the Pearl River Delta, and the Sichuan Basin and Fen-
wei plain at 14 %, 3 %, 19 %, 27 % and 23 % respectively.
Through a two-stage hierarchical clustering method, Zhang
et al. (2018) calculated that the relative contribution of me-
teorological conditions to heavy pollution episodes within
the Beijing–Tianjin–Hebei region was larger than 50 % from
2013 to 2017. These studies quantified the overall mete-
orological influence on long-term PM2.5 variations using
different statistical models and chemical transport models
(CTMs). However, due to strong interactions between indi-
vidual meteorological factors, traditional statistical methods
such as correlation analysis and linear regression may be bi-
ased significantly when quantifying meteorological influence
on PM2.5 concentrations (Chen et al., 2017). On the other
hand, the accuracy of CTMs can be influenced largely by the
uncertainty in emission inventories (Xu et al., 2016) and the
deficiency of heterogeneous or aqueous processes (Li et al.,
2011). Therefore, multiple advanced models should be com-
prehensively considered to better quantify meteorological in-
fluence on PM2.5 concentrations (Pearce et al., 2011).

To evaluate this 5-year clean-air plan, we employ an ad-
vanced statistical model, Kolmogorov–Zurbenko (KZ) filter-
ing, which is advantageous for filtering meteorological in-
fluence on long-term time series of airborne pollutants, and a
CTM model, WRF-CMAQ ( Weather Research and Forecast-
ing and the Community Multi-scale Air Quality), which is
advantageous for quantifying the relative contribution of dif-
ferent emission sources, to comprehensively investigate the
relative contribution of meteorological conditions and emis-
sion reduction to PM2.5 reduction in Beijing from 2013 to
2017 respectively. In this light, this research provides impor-
tant insights for better designing and implementing succes-
sive clean-air plans in the future to further mitigate PM2.5
pollution in Beijing.

This paper is structured as follows. Firstly, the major data
sources, including PM2.5 and meteorological data and emis-
sion inventories, employed for this research are briefly in-
troduced. Secondly, the principle and parameter setting of
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two models – KZ filtering and WRF-CMAQ – and model
verification are explained. In the Results section, the relative
contribution of meteorological conditions and anthropogenic
emissions to PM2.5 variations in Beijing from 2013 to 2017
calculated using both models is presented. In the “Discus-
sion” and “Conclusion” parts, implementations of this re-
search and suggestions for further improving air quality in
Beijing are given.

2 Data sources

2.1 PM2.5 and meteorological data

In this study, hourly PM2.5 concentration data were acquired
from the website PM25.in (http://www.PM25.in, last ac-
cess: 18 August 2018), which collects official data provided
by the China National Environmental Monitoring Center
(CNEMC). Beijing has established an advanced air quality
monitoring network with 35 ground stations across the city.
Considering the major contribution of industry and traffic-
induced emissions in urban areas, we selected all 12 urban
stations to analyse spatio-temporal variations in PM2.5 con-
centrations and quantify their influencing factors. In addition
to these urban stations, we selected two background stations,
the Dingling Station located in the suburb and the Miyun
Reservoir Station located in the outer suburb, one transporta-
tion station (the Qianmen station) located close to a main
road, and one rural station (the Yufa Station) that is far away
from central Beijing for the following analysis. The Dingling
and Miyun Reservoir Station were chosen as background sta-
tions by the Ministry of Environmental Protection of China.
These two stations receive limited influence from anthro-
pogenic emissions due to their location in suburban and outer
suburban areas. The Qianmen transportation station received
more influence from vehicle emissions. Long-term variations
in PM2.5 concentrations in different types of stations pro-
vide a useful reference for comprehensively understanding
the effects of emission-reduction measures on the PM2.5 de-
crease in Beijing from 2013 to 2017. Meteorological data for
this research were collected from the Guanxiangtai Station
(GXT; 54511; 39.80◦ N, 116.46◦ E), Beijing and downloaded
from the Department of Atmospheric Science, College of En-
gineering, University of Wyoming (http://weather.uwyo.edu/
upperair/sounding.html, last access: 18 August 2018). Both
PM2.5 and meteorological data were collected from 1 Jan-
uary 2013 to 31 December 2017. The locations of these se-
lected stations are shown in Fig. 1.

2.2 Emission inventories

For this research, we employed both regional and local
emission inventories for running model simulations. The
Multi-resolution Emission Inventory for China, MEIC, (http:
//meicmodel.org/, last access: 16 February 2019) provided by
Tsinghua University, was employed as the regional emission

inventory. MEIC has been widely employed and verified as a
reliable emission inventory by a diversity of studies (Hong et
al., 2017; Saikawa et al., 2017; Zhou et al., 2017; etc.). For
simulating 5-year PM2.5 concentrations, MEIC from 2013
to 2017 is required. Since the official MEIC 2017 has yet
to become available, we employed a strategy from previ-
ous studies (Chen et al., 2019; etc.) and updated MEIC 2016
for simulating emission-reduction scenarios and PM2.5 con-
centrations in 2017 by considering official 2017 emission-
reduction plans (e.g. the target of coal combustion reduction)
required by the local government.

Different from regional emission inventories, local emis-
sion inventories are usually produced independently by lo-
cal institutions. The Beijing local emission inventory em-
ployed for this research was produced and updated by the
Beijing Municipal Research Institute of Environmental pro-
tection, fully according to the requirement of MEP (Min-
istry of Ecology and Environment of the People’s Repub-
lic of China) for the production of local emission invento-
ries within the Beijing–Tianjin–Hebei region. This Beijing
local emission inventory from 2013 to 2017 was produced
by synthesising local environmental statistical data and re-
ported emission data, carrying out field investigations, and
conducting a series of estimations according to the Beijing
Five-year Clean Air Action Plan. As shown in Table 1, it
is highly consistent with other official statistical data, such
as the annual report from National Environmental Statistics
Bulletin (http://www.mee.gov.cn/gzfw_13107/hjtj/qghjtjgb/,
last access: 16 February 2019) and “2+ 26” Center for Air
Pollution Prevention and Control, and has been formally em-
ployed for the implementation of recent 2017 Air Pollution
Prevention and Management Plan for the Beijing-Tianjin-
Hebei Region and its Surrounding Areas (MEP, 2017).

3 Methods

A key step for quantifying the relative contribution of an-
thropogenic emissions to PM2.5 variations is to properly fil-
ter meteorological influence on PM2.5 concentrations, which
is highly challenging and have rarely been investigated by
previous studies. Therefore, we employed both a statistical
method and a CTM to comprehensively evaluate the role of
anthropogenic emissions and meteorological conditions in
the decrease in PM2.5 concentrations in Beijing from 2013
to 2017.

3.1 Kolmogorov–Zurbenko filtering

Since meteorological conditions exert a strong influence on
PM2.5 concentrations in Beijing, the removal of seasonal sig-
nals from time series of meteorological factors produces data
sets suitable for understanding the trend of PM2.5 concentra-
tions mainly influenced by anthropogenic factors (Eskridge
et al., 1997). To better analyse the trend of time series data
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Figure 1. Locations of different ground monitoring stations.

Table 1. The comparison of local environmental statistical data used for this research and other official statistical data in 2017 (unit: 10 kt).
BC: black carbon; OC: organic carbon.

SO2 NOx CO VOC NH3 PM10 PM2.5 BC OC

Statistical data for this research 1.38 10.15 49.54 13.47 3.20 14.74 3.92 0.17 0.44
National Environmental Statistics Bulletin 1.38 12.16 52.03 24.24 3.26 14.68 3.91 0.22 0.41
“2+ 26” Center for Air Pollution 0.89 9.24 48.98 13.93 3.16 13.82 3.72 0.19 0.46
Prevention and Control

without the disturbances from other major influencing vari-
ables, a statistical method, KZ filtering, was proposed by
Rao et al. (1994). The KZ filter is advantageous for remov-
ing high-frequency variations in data sets through an itera-
tive moving average. Eskridge et al. (1997) compared four
major approaches for trend detection, including PEST (po-
litical, economic, technological and social) analysis, anoma-
lies, wavelet transform and the KZ filter, and suggested that
KZ achieved higher confidence in detecting long-term trends
than other models. Due to its reliable performance in trend
detection in complicated ecosystems, the KZ filter has been
increasingly employed to remove seasonal signals of mete-
orological conditions and extract a long-term trend of air-
borne pollutants (Zurbenko, et al., 1996; Eskridge, et al.,
1997; Kang, et al., 2013; Ma et al., 2016; N. Cheng et al.,
2019). One potential limitation of the KZ filter is that an iter-
ative moving average (m) may have an influence on detecting
abrupt variations. Therefore, Zurbenko et al (1996) proposed
an enhanced KZ filter that employed a dynamic variable m
that decreased with the increase in changing rate. For this re-
search, we employed this dynamic m to produce an adjusted
time series of PM2.5 concentrations in Beijing by removing

large inter-annual and seasonal variations in meteorological
conditions. The principle of the KZ filter is briefly introduced
as follows.

The raw time series of airborne pollutants can be decom-
posed as

X(t)= E(t)+ S (t)+W(t), (1)
Xb (t)= E(t)+ S (t) , (2)
E(t)= KZ365,3(X), (3)
S (t)= KZ15,5 (X)−KZ365,3(X), (4)
W (t)=X(t)−KZ15,5(X), (5)

where Xb(t) is the original time series of airborne pollutants,
E(t) is the long-term trend component, S(t) is the seasonal
component and W (t) is the short-term (synoptic-scale) com-
ponent or residue. KZi,j (X) indicates KZ filtering on the
original data set X with a moving window size of i and j
iterations.
Xb(t) stands for the base component, the sum of the long-

term and seasonal component, presenting steady trend vari-
ation. E(t) is mainly affected by long-term anthropogenic
emission and climate change. S(t) is mainly influenced by
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Table 2. Major meteorological factors strongly correlated with sea-
sonal PM2.5 concentrations in Beijing (Chen et al., 2017).

Spring Summer Autumn Winter

RHU∗(0.532) RHU∗(0.648) RHU∗(0.587) RHU∗(0.738)
SSD∗(−0.447) SSD∗(−0.509) SSD∗(−0.715)
TEM∗(0.554) WIN∗(−0.468) WIN∗(−0.558)

∗ Correlation is significant at the 0.01 level (two-tailed). RHU: relative humidity; SSD:
sunshine duration; TEM: temperature; WIN: wind speed.

the seasonal variation in emission and meteorological condi-
tions. W (t) is caused by short-term and small-scale shifts in
emissions and meteorological conditions.

The long-term trend component E(t) processed by KZ fil-
tering still contains the influence of meteorological condi-
tions, which can be removed by multiple regression models.
Multiple linear relationships are established for the residue
and baseline component respectively using meteorological
factors strongly correlated with airborne pollutants.

We examined correlations between seasonal PM2.5 con-
centrations in Beijing and a set of meteorological factors,
including temperature, wind speed, wind direction, precip-
itation, relative humidity, solar radiation, evaporation and air
pressure. Due to limited space, detailed correlations between
PM2.5 concentrations and individual meteorological factors
in Beijing are not presented here and readers can refer to pre-
vious studies for more information (Chen et al., 2017, 2018).
The correlation analysis revealed that wind speed, relative
humidity, temperature and solar radiation were strongly and
significantly correlated with PM2.5 concentrations in Beijing
(as shown in Table 2), which was consistent with findings
from other studies (Sun et al., 2013; Wang et al., 2018).

Therefore, we further established multiple linear regres-
sion equations between PM2.5 concentrations and wind
speed, relative humidity, temperature and solar radiation as
follows.

W (t)= α0+
∑

αiwi (t)+ εw (t) , (6)

Xb (t)= b0+
∑

bixi (t)+ εb(t), (7)

ε (t)= εw (t)+ εb(t), (8)

where wi(t) and xi(t) stand for the different short-term and
baseline components of the ith meteorological factor. εw and
εb are the regression residue of the short-term and base-
line component. ε(t) indicates the total residue, including
the short-term influence of local emission and meteorolog-
ical factors neglected during the regression process and other
noises.

Next, KZ filtering was conducted on the ε(t) for its long-
term component εE(t). After the influence of meteorological
variations was filtered, the reconstructed time series of air-
borne pollutants XLT(t) was calculated as the sum of εE(t)
and the average value of E(t) , E(t).

XLT (t)= E(t)+ εE(t) (9)

After KZ filtering, the relative contribution of meteorological
conditions to PM2.5 variations can be calculated as follows:

Pcontrib =
Korg−K

Korg
× 100%, (10)

where Pcontrib is the relative contribution of meteorological
conditions to PM2.5 variations in Beijing, Korg is the vari-
ation slope of the original PM2.5 time series and K is the
variation slope of adjusted PM2.5 time series with filtered in-
fluence from meteorological variations.

3.2 WRF-CMAQ model

We employed WRF-CMAQ for simulating the effects of
emission reduction on the decrease in PM2.5 concentra-
tions. WRF-CMAQ includes three models: the middle-scale
meteorology model (WRF), the source emission model
(SMOKE) (http://www.cmascenter.org/smoke/, last access:
16 February 2019) and the community multiscale air quality
modelling system (CMAQ) (CMAQ, http://www.cmascenter.
org/, last access: 16 February 2019). The centre of the CMAQ
was set at coordinate 35◦ N, 110◦ E and a bidirectional nested
technology was employed, producing two layers of grids
with a horizontal resolution of 36 and 12 km. The first layer
of grids with a 36 km resolution and 200× 160 cells cov-
ered most areas in East Asia (including China, Japan, North
Korea, South Korea and other countries). The second layer of
grids with a 12 km resolution and 120×102 cells covered the
North China Plain (including the Beijing–Tianjin–Hebei re-
gion, Shandong and Henan provinces). The vertical layer was
divided into 20 unequal layers, eight of which were at less
than 1 km distance to the ground to better feature the struc-
ture of the atmospheric boundary. The height of the ground
layer was 35 m.

We employed ARW-WRF3.2 (Advanced Research
Weather Research and Forecasting) to simulate the me-
teorological field. The setting of the centre and the
bidirectional nest for WRF and CMAQ was similar. There
were 35 vertical layers for WRF, and the outer layer
provided boundary conditions of the inner layer. The
meteorological background field and boundary information
with an FNL (final) resolution of 1◦× 1◦ and temporal
resolution of 6 h were acquired from NCAR (National
Center for Atmospheric Research, https://ncar.ucar.edu/,
last access: 16 February 2019) and NCEP (National
Centers for Environmental Prediction) respectively. The
terrain and underlying surface information was obtained
from the USGS 30 s global DEM (digital elevation model)
(https://earthquake.usgs.gov/, last access: 16 February 2019).
The outputs from WRF were interpolated to the region and
grid of CMAQ using the Meteorology-Chemistry Interface
Processor (MCIP, https://www.cmascenter.org/mcip, last
access: 16 February 2019). The meteorological factors
used for this model included temperature, air pressure,
humidity, geopotential height, zonal wind, meridional
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wind, precipitation, boundary layer heights and so forth.
An estimation model for terrestrial ecosystem, MEGAN
(http://ab.inf.uni-tuebingen.de/software/megan/, last access:
16 February 2019), was employed to process the natural
emissions. MEIC 0.5◦× 0.5◦ (http://www.meicmodel.org/,
last access: 16 February 2019) and the Beijing emission in-
ventory (http://www.cee.cn/, last access: 16 February 2019)
provided anthropogenic emission data. We input the pro-
cessed natural and anthropogenic emission data into the
SMOKE model and acquired comprehensive emission
source files.

Scenario simulation is employed to estimate the contribu-
tion of emission reduction to the variation in PM2.5 concen-
trations.

Pcontrib =
C−Cbase

C
× 100%, (11)

where Pcontrib, C and Cbase are the contribution rate of emis-
sion reduction to PM2.5 concentrations, simulated PM2.5
concentrations under the emission-reduction scenario, and
simulated PM2.5 concentrations under the baseline scenario
respectively.

To evaluate the relative contribution of meteorological
conditions and different emission-reduction measures to the
decrease in PM2.5 concentrations, we designed two baseline
experiments and four sensitivity experiments. For the first
baseline experiment, we employed the actual meteorological
data in 2013. For the second baseline experiment, we em-
ployed the actual meteorological data in 2017 and the emis-
sion inventory in 2017. Since no emission-reduction mea-
sures were conducted in 2013, the first baseline experiment
was used to estimate the relative contribution of meteorolog-
ical conditions to the variation in PM2.5 concentrations. By
comparing the first and second baseline experiment, the rel-
ative contribution of all emission-reduction measures to the
variation in PM2.5 concentrations can be quantified. For the
first sensitivity experiment, we employed the actual meteo-
rological conditions in 2013 and the emission inventory in
2017 and compared the simulation result with the baseline
experiment, which demonstrated the relative contribution of
meteorological concentrations to PM2.5 reduction in Beijing
from 2013 to 2017. Since the WRF-CMAQ simulation sim-
ply considers PM2.5 concentrations and meteorological con-
ditions in 2013 and 2017 without considering their variation
process from 2013 to 2017, KZ filtering may perform bet-
ter in quantifying the relative contribution of meteorological
variations to PM2.5 reduction in Beijing. However, the out-
put from this sensitivity experiment served as a useful refer-
ence for cross-verifying the output from the KZ filtering. For
the remaining three sensitivity-simulation experiments, we
added the reduced emission amount induced by one specific
emission-reduction measure to the actual emission amount
in 2017 and kept other parameters unchanged, and thus we
quantified the relative contribution of one specific emission-
reduction measure to PM2.5 reduction in Beijing from 2013

Figure 2. The long-term, seasonal and short-term components ex-
tracted from the original time series of mean urban PM2.5 concen-
trations in Beijing from 2013 to 2017.

to 2017. Consequently, we quantified the relative contribu-
tion of three major emission-reduction measures to PM2.5
reduction in Beijing (Table 3).

3.3 Model verification

3.3.1 Verification of KZ filtering

For each station, the original time series of PM2.5 data was
processed by the KZ filter and the relative contribution of
the long-term, seasonal and short-term component to the to-
tal variance is shown as Table 4. The sum of the long-term,
seasonal and short-term component contributed 93.6%∼
95.3 % to the total variance at different stations respectively.
The larger the total variance, the more independent the three
components are of each other. The total variance close to
100 % suggests that a majority of meteorological influence
has been considered and effectively removed. As shown in
Table 4, the large value of the total variation in all stations
indicated a satisfactory output from the KZ filtering.

Specifically, the relative contribution of the seasonal com-
ponent (ranging from 9 % to 23.8 %) and short-term com-
ponent (ranging from 66.8 % to 83.8 %) was much larger
than that of the long-term component (ranging from 1.2 %
to 3.5 %), suggesting that seasonal and short-term variations
in meteorological and emission factors exerted a major influ-
ence on the rapid change in PM2.5 concentrations in Beijing.
The decomposed long-term, seasonal and short-term compo-
nent from the original time series of mean urban PM2.5 con-
centrations in Beijing from 2013 to 2017 are demonstrated
as Fig. 2. According to Fig. 2, the notable peaks of decom-
posed seasonal and short-term components were highly con-
sistent with the peaks of PM2.5 concentrations in the original
time series, which further proved the dominant influence of
seasonal and short-term variations in meteorological and an-
thropogenic factors on the temporal changes in PM2.5 con-
centrations in Beijing.
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Table 3. The design and materials for two baseline and four sensitivity experiments using WRF-CMAQ.

ID Meteorological Emission-reduction Simulation Major purposes
data measures year

Baseline experiment 1 2013 No emission-reduction
measures

2013 2013 baseline scenario

Baseline experiment 2 2017 All emission-reduction
measures

2017 2017 baseline scenario

Sensitivity experiment 1 2013 All emission-reduction
measures

2017 The relative contribution of
meteorological variations to the
decrease in PM2.5 concentrations
in Beijing from 2013 to 2017.

Sensitivity experiment 2 2017 All emission-reduction
measures except for industrial
restructuring

2017 The relative contribution of industrial
restructuring to the decrease in PM2.5
concentrations in Beijing from 2013 to
2017.

Sensitivity experiment 3 2017 All emission-reduction
measures except for the
regulation of coal boilers

2017 The relative contribution of the
regulation of coal boilers to the
decrease in PM2.5 concentrations
in Beijing from 2013 to 2017.

Sensitivity experiment 4 2017 All emission-reduction
measures except for increasing
clean fuels for civil use

2017 The relative contribution of increasing
clean fuels for civil use to the
decrease in PM2.5 concentrations
in Beijing from 2013 to 2017.

For emission data, all experiments employed the Beijing local emissions inventory in 2017 for Beijing and the regional emission inventory in 2017 for other regions. MEIC 2017
was acquired based on our update of MEIC 2016 according to official 2017 emission-reduction targets required by the local government.

3.3.2 Verification of WRF-CMAQ

We employed the emission inventory and meteorological
data for 2017 to verify the accuracy of WRF-CMAQ simula-
tion. For six stations of different types (Dingling background
station, Yufa rural station, Olympic centre urban station,
Guanyuan urban station, Dongsi urban station and Agricul-
tural museum urban station), we compared the observed and
estimated PM2.5 concentrations and presented the compari-
son result as Fig. 3. According to Fig. 3, the general trend of
the simulated PM2.5 concentrations was consistent with that
of the observed PM2.5 concentrations. For six stations, the
correlation coefficient R, normalised mean bias (NMB), nor-
malised mean error (NME), mean fractional bias (MFB) and
mean fractional error (MFE) between observed and simu-
lated data were 0.63 %∼ 0.91%,−6%∼ 6%, 26%∼ 40%,
−5%∼ 7% and 27 %∼ 46% respectively, indicating a sat-
isfactory simulation output (EPA, 2005; Boylan et al., 2006).
However, as shown in Fig. 3, WRF-CMAQ may notably
underestimate PM2.5 concentrations during heavy pollution
episodes due to unified parameter setting for long-term simu-
lation, the uncertainty in emission inventories and especially
insufficient chemical reaction mechanisms, which is a com-
mon challenge for CTM-based PM2.5 simulation (Li et al.,
2011). For instance, without considering heterogeneous or
aqueous reactions between multiple precursors, CTMs failed

to approach the maximum PM2.5 concentrations during se-
vere haze episodes and the simulation accuracy was dramati-
cally improved by including proper descriptions of heteroge-
neous or aqueous reactions in CTMs (D. Chen et al., 2016).
With more finer-scale emission inventories and better de-
scriptions of reaction mechanisms between precursors, the
accuracy of PM2.5 simulation can be improved significantly.

4 Results

4.1 The relative contribution of emission reduction and
meteorological variations to the decrease in PM2.5
concentrations in Beijing from 2013 to 2017

4.1.1 Estimation based on KZ filtering

Through KZ filtering, the adjusted time series of PM2.5 con-
centrations with filtered meteorological variations was ac-
quired. Next, for each station, the actual PM2.5 variations and
adjusted PM2.5 variations without the disturbance of meteo-
rological variations from 2013 to 2017 were calculated re-
spectively (as shown in Table 5). Based on this, the relative
contribution of emission reduction and meteorological con-
ditions to PM2.5 reduction in Beijing from 2013 to 2017 can
be quantified.
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Table 4. The relative contribution of different components to the total variance of the original time series of PM2.5 concentrations from 2013
to 2017 at different stations.

Stations Long-term Seasonal Short-term Total
component (%) component (%) component (%) variance (%)

Yufa 2.1 23.8 66.8 94.0
Miyun Reservoir 1.4 9.0 83.8 95.2
Dingling 1.6 11.0 81.3 94.9
Qianmen 2.7 12.7 78.5 95.1
Olympic centre 2.1 11.9 80.0 95.3
Xiangshan 1.2 10.3 83.4 94.9
Huayuan 2.2 15.9 75.6 93.7
Yungang 2.1 15.1 76.5 93.6
Wanshouxigong 1.6 14.2 78.2 94.0
Dongsi 1.6 12.3 80.0 94.0
Tiantan 2.1 13.2 78.6 93.8
Nongzhanguan 1.8 13.7 78.6 94.1
Gucheng 1.8 13.5 78.5 93.7
Guanyuan 1.6 12.6 79.8 94.0
Beibuxinqu 1.7 13.8 78.4 93.9
Wanliu 3.5 11.9 78.2 93.6

Figure 3. The comparison between observed and WRF-CMAQ simulated PM2.5 concentrations in 2017 at six stations across Beijing.
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The original and KZ-processed time series of PM2.5 con-
centrations were illustrated using one background station,
one rural station and four urban stations (Fig. 4). As shown
in Fig 4, most abrupt variations in the original time series of
PM2.5 concentrations have been smoothed through KZ filter-
ing, and the generally decreasing trend of PM2.5 variations
from 2013 to 2017 caused by anthropogenic emissions can
be clearly presented.

According to Table 5, the annual mean PM2.5 concentra-
tion in Beijing in 2017 was 35.6 % lower than that in 2013.
By filtering the influence of meteorological variations, the
adjusted annual mean PM2.5 concentration in Beijing in 2017
decreased by 31.7 % when compared to that in 2013, in-
dicating that the variation in meteorological conditions ex-
erted a moderate influence on PM2.5 reduction from 2013 to
2017. Meteorological conditions in Beijing were generally
favourable for PM2.5 dispersion during the 5-year period, es-
pecially in the latter half of 2017, when there was a high fre-
quency of strong northerly winds and much lower wintertime
PM2.5 concentrations than in previous years.

For the winter of 2017, frequent windy weather and suc-
cessive clean sky had a strong influence on the reduction
of PM2.5 concentrations in Beijing. This led to a hot de-
bate concerning whether the notable decrease in PM2.5 con-
centrations was mainly attributed to the favourable mete-
orological conditions or emission reduction. Table 5 sug-
gests that the control of anthropogenic emissions contributed
75.2%∼ 85.0% to the PM2.5 decrease in the 5-year period,
indicating that emission reduction worked effectively in all
rural, urban and background stations. On average, the relative
contribution of emission reduction and meteorological vari-
ations to PM2.5 reduction in Beijing from 2013 to 2017 was
80.6 % and 19.4 % respectively. Therefore, in spite of more
favourable meteorological conditions, properly designed and
implemented emission-reduction measures were the domi-
nant driver for the remarkable decrease in PM2.5 concentra-
tions in Beijing from 2013 to 2017.

4.1.2 Estimation based on WRF-CMAQ

In addition to the KZ filter, we also employed WRF-CMAQ
to estimate the relative contribution of emission reduction
and meteorological conditions to the decrease in PM2.5 con-
centrations in Beijing. The result is shown in Table 6.

Based on WRF-CMAQ, the relative contribution of mete-
orological variations to the decrease in PM2.5 concentrations
in Beijing ranged from 20.3 % to 22.2 % in different stations,
whilst emission reduction accounted for about four-fifths of
PM2.5 reduction from 2013 to 2017. It is worth mentioning
that WRF-CMAQ is a grid-based model and thus the calcu-
lated contribution of meteorological variations for some sta-
tions located in the same grid was the same. Instead, station-
based KZ filtering led to a more reliable analysis for each sta-
tion and can better distinguish the differences between mul-
tiple stations. Furthermore, WRF-CMAQ simply considered

the differences between meteorological conditions in 2013
and 2017 without considering their variations during the 5-
year period while the KZ filtering analysed the entire time
series of PM2.5 and meteorological data from 2013 to 2017.
The averaged relative contribution of meteorological varia-
tions to PM2.5 reduction in Beijing calculated using WRF-
CMAQ was 21.4 %, very similar to the 19.4 % calculated us-
ing KZ filtering. The slightly larger meteorological contribu-
tion calculated using WRF-CMAQ might be attributed to the
fact that WRF-CMAQ simply considered the favourable me-
teorological conditions in 2017 whilst KZ fully considered
the long-term meteorological variations from 2013 to 2017.

Since KZ filtering is fully based on observed data and sim-
ply considers the influence of time series meteorology data
on PM2.5 variations, less uncertainty is involved. The accu-
racy of KZ filtering is influenced mainly by the variations in
PM2.5–meteorology interactions in different areas and sea-
sons. On the other hand, CTMs (e.g. WRF-CMAQ or WRF-
CAMx, Weather Research and Forecasting-Comprehensive
air quality Model with Extensions) consider both meteoro-
logical conditions (mainly large-scale meteorological data
for model simulation, not as accurate as local observed me-
teorological data) and anthropogenic emissions for estimat-
ing PM2.5 concentrations under different emission scenar-
ios. The accuracy of these models is not only decided by
a proper understanding of PM2.5–meteorology interactions,
but also the reliability of emission inventories and proper de-
scriptions of reaction mechanisms for PM2.5 production, es-
pecially during heavy pollution episodes, which is a major
challenge for the current model simulation. Consequently,
KZ filtering provides a more reliable method for researchers
and decision makers to understand the relative importance
of emission reduction and meteorological conditions in re-
cent PM2.5 reduction in Beijing. Meanwhile, similar outputs
from the WRF-CMAQ simulation provide complementary
evidence for the fact that anthropogenic emissions exerted
a much stronger influence on PM2.5 concentrations than me-
teorological conditions. In addition to the combined effects
of all emission-reduction measures, we further employed
WRF-CMAQ to quantify the relative contribution of differ-
ent emission-reduction measures to the decrease in PM2.5
concentrations in Beijing from 2013 to 2017.

4.2 The relative contribution of different
emission-reduction measures to the decrease in
PM2.5 concentrations in Beijing

The observed annual average PM2.5 concentration in Bei-
jing in 2017 was 58 mg m−3, compared with 89.5 µg m−3

in 2013. Based on WRF-CMAQ simulation, meteorologi-
cal conditions contributed 6.7 µg m−3, whilst the control of
anthropogenic emissions contributed 24.7 µg m−3 to the to-
tal PM2.5 reduction of 31.5 µg m−3 in Beijing from 2013 to
2017. Specifically, local and regional emission reduction ac-
counted for 16.9 and 7.8 µg m−3 of PM2.5 reduction. Local
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Table 5. Estimated relative contribution of emission reduction and meteorological variations to PM2.5 reduction in Beijing from 2013 to
2017 using KZ filter.

Stations PM2.5 PM2.5 Adjusted PM2.5 PM2.5 decrease Adjusted Contribution Contribution
concentrations concentrations concentrations in rate PM2.5 decrease of emission of meteorological

in 2013 (µg m−3) in 2017 (µg m−3) 2017 (µg m−3) (µg m−3 m−1)1 rate (µg m−3 m−1)2 reduction (%)3 variations (%)4

Yufa 111.1 69.7 74.6 −0.78 −0.63 80.4 19.7
Miyun Reservoir 58.8 44.8 47.0 −0.40 −0.33 82.8 17.2
Dingling 69.6 47.1 50.6 −0.54 −0.44 80.8 19.2
Qianmen 103.9 64.0 68.9 −0.81 −0.69 85.0 15.0
Olympic centre 90.4 57.2 61.7 −0.68 −0.55 80.8 19.2
Xiangshan 77.0 59.3 60.3 −0.46 −0.39 83.9 16.1
Huayuan 101.5 64.4 69.2 −0.77 −0.63 81.9 18.1
Yungang 91.8 60.2 64.0 −0.69 −0.55 79.6 20.4
Wanshouxigong 93.7 62.0 66.8 −0.64 −0.50 78.2 21.8
Dongsi 94.9 62.4 67.5 −0.62 −0.49 78.9 21.1
Tiantan 92.3 58.4 64.6 −0.68 −0.55 80.2 19.9
Nongzhanguan 92.2 59.9 65.9 −0.66 −0.53 80.3 19.8
Gucheng 92.7 61.4 65.9 −0.65 −0.50 77.6 22.4
Guanyuan 89.6 59.5 64.6 −0.60 −0.48 79.6 20.4
Beibuxinqu 86.6 59.5 63.3 −0.60 −0.45 75.2 24.8
Wanliu 98.1 56.2 60.4 −0.87 −0.73 84.2 15.8

1 PM2.5 decrease rate: the fitted variation slope of original monthly average PM2.5 time series. 2 Adjusted PM2.5 decrease rate: the fitted variation slope of adjusted monthly average PM2.5 time series.
3 Contribution of emission reduction= 1 – Contribution of meteorological variations. 4 Contribution of meteorological variations= (PM2.5 decrease rate – Adjusted PM2.5 decrease rate) /PM2.5 decrease rate.

Table 6. Estimated relative contribution of emission reduction and
meteorological variations to PM2.5 reduction in Beijing from 2013
to 2017 using WRF-CMAQ.

Stations Contribution of Contribution of
meteorological emission
variations (%) reduction (%)

Yufa 21.9 78.2
Miyun Reservoir 20.8 79.2
Dingling 21.7 78.3
Qianmen 21.2 78.8
Olympic centre 21.2 78.8
Xiangshan 20.3 79.7
Huayuan 21.2 78.8
Yungang 21.2 78.8
Wanshouxigong 21.2 78.8
Dongsi 21.2 78.8
Tiantan 21.2 78.8
Nongzhanguan 21.2 78.8
Gucheng 22.2 77.8
Guanyuan 21.2 78.8
Beibuxinqu 22.2 77.8
Wanliu 22.2 77.8

emissions and regional transport took up 68.4 % and 31.6 %
of total anthropogenic emissions in Beijing. This result is
consistent with our recent study (Chen et al., 2019). Chen et
al. (2019) investigated four pollution episodes in Beijing in
2013, 2016, 2017 and 2018 respectively and found that local
emissions accounted for 69.3 %, 76.8 %, 49.5 % and 88.4 %
of total emissions in Beijing respectively. Except for the
moderate pollution episode in 2017, local emissions caused

more than two-thirds of anthropogenic emissions in Beijing.
Therefore, local emissions played a dominant role for PM2.5
variations in Beijing in both the long-term run and heavy pol-
lution episodes. According to three emission-reduction sce-
narios designed, the regulation of coal boilers had the most
significant effect on PM2.5 reduction in Beijing and resulted
in a decrease of 6.3 µg m−3. Meanwhile, increasing clean fu-
els for residential use and industrial restructuring also exerted
a strong influence on PM2.5 reduction and contributed to a
decrease of 5.5 and 3.4 µg m−3 respectively. The three ma-
jor strategies accounted for around half of the total effects of
emission reduction on PM2.5 variations in Beijing.

5 Discussion

By the end of 2017, the Beijing Five-year Clean Air Ac-
tion Plan (2013–2017) was completed and achieved its pri-
mary goal of reducing the annual average PM2.5 concentra-
tion to less than 60 µg m−3. Meanwhile, in November 2017,
strong northerly winds in Beijing resulted in the cleanest
winter in the past 5 years, raising arguments of whether the
favourable meteorological conditions were primarily respon-
sible for PM2.5 reduction or whether the significant improve-
ment in air quality in Beijing was mainly attributed to the
control of anthropogenic emissions. In this case, a quanti-
tative comparison between the influence of meteorological
conditions and emission reduction on PM2.5 reduction is nec-
essary for comprehensively evaluating the Five-year Clean
Air Action Plan. Based on two different approaches, this
research revealed that the control of anthropogenic emis-
sions contributed around 80 % to PM2.5 reductions in Bei-
jing from 2013 to 2017, indicating that the Five-Year Clean
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Figure 4. The comparison of original and KZ processed time series of PM2.5 concentrations at six stations from 2013 to 2017.

Air Action Plan exerted a dominant influence on air qual-
ity enhancement in Beijing. The large contribution of some
specific emission-reduction measures may be obscured in
the presence of favourable meteorological conditions. For
instance, many residents may attribute the clean winter of
2017 to the notable strong winds without noticing some of
major emission-reduction strategies implemented during this
period. A large-scale replacement of coal boilers with gas
boilers has been conducted in Beijing and its neighbouring
areas since 2013. As quantified by WRF-CMAQ, the regula-
tion of coal boilers and increasing use of clean fuels for res-
idential use jointly contributed to an 11.8 µg m−3 decrease
in PM2.5 concentrations, much (almost twice) larger than
the 6.7 µg m−3 decrease caused by favourable meteorologi-
cal conditions. In general, although favourable meteorolog-
ical conditions (e.g. strong winds) may lead to an instant
improvement of air quality, regular emission-reduction mea-
sures exert a reliable and consistent influence on the long-
term reduction of PM2.5 concentrations in Beijing. Given

the satisfactory performance of the Five-year Clean Air Ac-
tion Plan in PM2.5 reduction, such a long-term clean-air plan
should be further designed and implemented in Beijing and
other megacities with heavy PM2.5 pollution.

Recently, with growing attention to the completion of the
Five-year Clean Air Action Plan, some other studies have
also been conducted to evaluate this 5-year plan. J. Cheng
et al. (2019) employed a finer-scale and more detailed local
emission inventory and quantified the relative contribution
of multiple emission-reduction strategies, including the con-
trol of coal-fired boilers, increasing use of clean fuels, opti-
misation of industrial structure, fugitive dust control, vehi-
cle emission control, improved end-of-pipe control and in-
tegrated treatment of VOCs (volatile organic compounds).
The relative contribution of these emission-reduction mea-
sures to PM2.5 reduction in Beijing from 2013 to 2017 was
18.7 %, 16.8 %, 10.2 %, 7.3 %, 6.0 %, 5.7 % and 0.6 % re-
spectively. By contrast, our research revealed that three ma-
jor emission-reduction measures (the regulation of coal-fired
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Figure 5. The relative contribution of different influencing factors to the decrease in PM2.5 concentrations in Beijing from 2013 to 2017.

boiler, increasing use of clean fuels and industrial restructur-
ing) contributed 20.1 %, 17.4 % and 10.8 % of total PM2.5 re-
duction in Beijing from 2013 to 2017, which was very close
to J. Cheng et al.’s (2019) findings. Based on finer-scale lo-
cal emission-inventories with more field-collected emission
data, J. Cheng et al. (2019) provided a comprehensive and
reliable understanding of the effects of multiple emission-
reduction measures on PM2.5 reduction in Beijing. The sim-
ilar outputs from the two studies further proved the relia-
bility of WRF-CMAQ simulation. Meanwhile, J. Cheng et
al. (2019) and UNEP (2019) jointly quantified that the total
amount of reduction in SO2, NOx , VOCs and direct PM2.5 in-
duced by the control of anthropogenic emissions was 79 420,
93 522, 115 752 and 44 307 t respectively, which was the ma-
jor driver for the notable PM2.5 reduction in Beijing from
2013 to 2017.

Although the “2+26” regional strategy for air quality im-
provement in Beijing has become a hotly debated issue and
growing emphasis has been placed on the proper design and
implementation of regional emission-reduction strategies in
Beijing and its surrounding cities, previous studies (Chen et
al., 2019; J. Cheng et al., 2019) and this research proved that
local emissions played a dominant role in affecting PM2.5
concentrations in Beijing. Specifically, Chen et al. (2019)
pointed out that with the intensive reduction of coal-fired
boilers in the Beijing–Tianjin–Hebei region, the relative con-
tribution of vehicle emissions to PM2.5 concentrations in Bei-
jing, especially during heavy pollution episodes, could be up
to 50 %. To further improve air quality in Beijing, stricter
regulations on local vehicle emissions, including contingent
strategies during pollution episodes (e.g. odd-even license
plate policy) and long-term policies (e.g. increasing avail-
ability of public transit systems and electric cars) should be
a major priority for the next stage clean-air actions.

Based on KZ filtering, N. Cheng et al. (2019) and Ma
et al. (2016) suggested the seasonal component contributed
dominantly to O3 variations in Beijing. By comparison, this
research revealed that the short-term component contributed

dominantly to PM2.5 variations in Beijing. These findings ex-
plained the phenomenon well that ground ozone pollution
in Beijing, controlled by seasonal variations in emission and
meteorological conditions (especially high temperature and
low humidity), simply occurred in summer, whilst PM2.5 pol-
lution in Beijing, controlled by short-term variations in me-
teorological and emission factors might occur in all seasons.
Consequently, contingent emission-reduction measures dur-
ing heavy pollution episodes are an effective approach to off-
set the short-term deterioration of meteorological conditions
and improve local air quality.

Despite the major contribution of emission-reduction mea-
sures to PM2.5 reduction in Beijing, meteorological influ-
ence, which contributed 20 % to PM2.5 reduction, should also
be considered in a balanced way. In addition to the control of
anthropogenic emissions, PM2.5 reduction may be realised
through meteorological means. For the winter of 2017, strong
northwesterly winds led to instant improvement in air quality,
suggesting wind was a dominant meteorological factor for
the accumulation or dispersion of PM2.5 in Beijing. Mean-
while, previous studies (Chen et al., 2017) suggested that in-
creasing wind speeds led to increased evaporation, increased
sunshine duration (SSD) and reduced humidity, which fur-
ther reduced local PM2.5 concentrations. In other words,
strong winds help reduce PM2.5 concentrations through di-
rect and indirect measures. In this light, the forthcoming Bei-
jing Wind-corridor Project, which includes five 500 m width
corridors and more than ten 80 m width corridors to bring in
stronger wintertime northwesterly winds, can be a promising
approach for promoting a long-term favourable meteorolog-
ical influence on PM2.5 reduction in Beijing.

6 Conclusions

To comprehensively evaluate the effect of the Beijing Five-
year Clean Air Action Plan (2013–2017), we quantified the
relative contribution of meteorological conditions and the
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control of anthropogenic emissions to the notable decrease
in PM2.5 concentrations in Beijing from 2013 to 2017. Based
on KZ filtering, we found that meteorological conditions
and emission reduction accounted for 19.4 % and 80.6 % of
the PM2.5 reduction in Beijing respectively. The large short-
term component suggested that short-term variations in me-
teorological and emission factors exerted a dominant influ-
ence on the rapid variation in PM2.5 concentrations in Bei-
jing. Meanwhile, WRF-CMAQ revealed that meteorological
conditions and emission reduction contributed 21.4 % and
78.6 % to PM2.5 variations. Specifically, local and regional
emission-reduction measures contributed 53.7 % and 24.9 %
to PM2.5 reduction. For three major emission-reduction mea-
sures, the regulation of coal boilers, increasing use of clean
fuels for residential use and industrial restructuring con-
tributed 20.1 %, 17.4 % and 10.8 % to PM2.5 reduction re-
spectively. Similar outputs from two models suggested that
the control of anthropogenic emissions contributed around
80 % to the total decrease in PM2.5 concentrations in Bei-
jing from 2013 to 2017, indicating that the Five-year Clean
Air Action Plan worked effectively and that such a long-term
clean-air plan should be continued in the following years to
further reduce PM2.5 concentrations in Beijing.

Data availability. The PM2.5 data used for this research are avail-
able at http://pm25.in/ (China National Environmental Monitoring
Center, 2017, last access: 18 August 2018), whilst meteorological
data are available at http://www.cma.gov.cn/2011qxfw/2011qsjgx/
(China Meteorological Data Sharing Service System, 2017, last ac-
cess: 18 August 2018).

Author contributions. ZC, BG and BX designed this research. ZC
wrote this paper. DC, YZ, BG and RL conducted data analysis. DC
and YZ produced the figures. MK and BC helped revise this paper.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Sincere gratitude goes to Tsinghua University,
which produced the Multi-resolution Emission Inventory for China
(http://meicmodel.org/, last access: 16 February 2019) and the Re-
search Center for Air Quality Simulation and Forecast, Chinese
Research Academy of Environmental Sciences (http://106.38.83.6/,
last access: 16 February 2019), which supported the model sim-
ulation in this research. This research is supported by the Na-
tional Key Research and Development Program of China (no.
2016YFA0600104) and National Natural Science Foundation of
China (grant no. 41601447).

Financial support. This research has been supported by the
National Key Research and Development Program of China

(no. 2016YFA0600104), and the State Key Laboratory of Earth Sur-
face Processes and Resource Ecology (grant no. 2017-KF-22).

Review statement. This paper was edited by Yves Balkanski and
reviewed by two anonymous referees.

References

Boylan, J. W. and Russell, A. G.: PM and light extinction model
performance metrics, goals and criteria for three-dimensional air
quality models, Atmos. Environ., 40, 4946–4959, 2006.

Brunekreef, B. and Holgate, S.: Air pollution and health Lancet,
360, 1233–1242, 2002.

Chan, C. K. and Yao, X.: Air pollution in mega cities in China,
Atmos. Environ., 42, 1–42, 2008.

Chen, D., Liu, Z., Fast, J., and Ban, J.: Simulations of sulfate–
nitrate–ammonium (SNA) aerosols during the extreme haze
events over northern China in October 2014, Atmos. Chem.
Phys., 16, 10707–10724, https://doi.org/10.5194/acp-16-10707-
2016, 2016.

Chen, Z., Xie, X., Cai, J., Chen, D., Gao, B., He, B., Cheng, N., and
Xu, B.: Understanding meteorological influences on PM2.5 con-
centrations across China: a temporal and spatial perspective, At-
mos. Chem. Phys., 18, 5343–5358, https://doi.org/10.5194/acp-
18-5343-2018, 2018.

Chen, Z. Chen, D., Wen, W., Zhuang, Y., Kwan, M., Chen, B., Zhao,
B., Yang, L., Gao, B., Li, R., and Xu, B.: Evaluating the “2+26”
Regional Strategy for Air Quality Improvement During Two Air
Pollution Alerts in Beijing: variations of PM2.5 concentrations,
source apportionment, and the relative contribution of local emis-
sion and regional transport, 19, 6879–6891, 2019.

Chen, Z. Y., Xu, B., Cai, J., and Gao, B. B.: Understanding temporal
patterns and characteristics of air quality in Beijing: A local and
regional perspective, Atmos. Environ., 127, 303–315, 2016.

Chen, Z. Y., Cai, J., Gao, B. B., Xu, B., Dai, S., He, B., and Xie,
X. M.: Detecting the causality influence of individual meteoro-
logical factors on local PM2.5 concentrations in the Jing-Jin-Ji
region, Sci. Rep., 7, 40735, https://doi.org/10.1038/srep40735,
2017.

Cheng, J., Su, J., Cui, T., Li, X., Dong, X., Sun, F., Yang, Y.,
Tong, D., Zheng, Y., Li, Y., Li, J., Zhang, Q., and He, K.:
Dominant role of emission reduction in PM2.5 air quality im-
provement in Beijing during 2013–2017: a model-based de-
composition analysis, Atmos. Chem. Phys., 19, 6125–6146,
https://doi.org/10.5194/acp-19-6125-2019, 2019.

Cheng, N., Li, R., Xu, C., Chen, Z., Chen, D., Meng, F., Cheng,
B., Ma, Z., Zhuang, Y., He, B., and Gao, B.: Ground ozone vari-
ations at an urban and a rural station in Beijing from 2006 to
2017: Trend, meteorological influences and formation regimes,
J. Clean. Prod., 235, 11–20, 2019.

Cheng, N., Zhang, D., Li, Y., Xie, X., Chen, Z., Meng, F., Gao,
B., and He, B.: Spatio-temporal variations of PM2.5 concentra-
tions and the evaluation of emission reduction measures dur-
ing two red air pollution alerts in Beijing, Sci. Rep., 7, 8220,
https://doi.org/10.1038/s41598-017-08895-x, 2017

Dominici, F., Greenstone, M., and Sunstein, C.: Particulate matter
matters, Science, 344, 257–259, 2014.

www.atmos-chem-phys.net/19/13519/2019/ Atmos. Chem. Phys., 19, 13519–13533, 2019

http://pm25.in/
http://www.cma.gov.cn/2011qxfw/2011qsjgx/
http://meicmodel.org/
http://106.38.83.6/
https://doi.org/10.5194/acp-16-10707-2016
https://doi.org/10.5194/acp-16-10707-2016
https://doi.org/10.5194/acp-18-5343-2018
https://doi.org/10.5194/acp-18-5343-2018
https://doi.org/10.1038/srep40735
https://doi.org/10.5194/acp-19-6125-2019
https://doi.org/10.1038/s41598-017-08895-x


13532 Z. Chen et al.: The control of anthropogenic emissions

Eskridge, R. E., Ku, J. Y., and Rao, S. T.: Separating Different
Scales of Motion in Time Series of Meteorological Variables, B.
Am. Meteorol. Soc., 78, 1473–1483, 1997.

Gui, K., Che, H., Wang, Y., Wang, H., Zhang, L., Zhao, H., Zheng,
Y., Sun, T., and Zhang, X.: Satellite-derived PM2.5 concentration
trends over Eastern China from 1998 to 2016: Relationships to
emissions and meteorological parameters, Environ. Pollut., 247,
1125–1133, 2019.

Guo, S., Hu, M., and Zamora, M. L.: Elucidating severe urban haze
formation in China, P. Natl. Acad. Sci. USA, 1, 17373–17378,
2014.

Hong, C., Zhang, Q., He, K., Guan, D., Li, M., Liu, F., and Zheng,
B.: Variations of China’s emission estimates: response to uncer-
tainties in energy statistics, Atmos. Chem. Phys., 17, 1227–1239,
https://doi.org/10.5194/acp-17-1227-2017, 2017.

Huang, R., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., and Han,
Y.: High secondary aerosol contribution to particulate pollution
during haze events in China, Nature, 514, 218–222, 2014.

Kang, D., Hogrefe, C., Foley, K. L., Napelenok, S. L., Mathur, R.,
and Rao, S. T.: Application of the kolmogorov–zurbenko filter
and the decoupled direct 3d method for the dynamic evaluation of
a regional air quality model, Atmos. Environ., 80, 58–69, 2013.

Li, G., Zavala, M., Lei, W., Tsimpidi, A. P., Karydis, V.
A., Pandis, S. N., Canagaratna, M. R., and Molina, L.
T.: Simulations of organic aerosol concentrations in Mex-
ico City using the WRF-CHEM model during the MCMA-
2006/MILAGRO campaign, Atmos. Chem. Phys., 11, 3789–
3809, https://doi.org/10.5194/acp-11-3789-2011, 2011.

Liang, L., Cai, Y., Barratt, B., Lyu, B., Chan, Q., Hansell, A. L., Xie,
W., Zhang, D., Kelly, F. J., and Tong, Z.: Associations between
daily air quality and hospitalisations for acute exacerbation of
chronic obstructive pulmonary disease in Beijing, 2013–17: an
ecological analysis, Lancet Planet. Health, 3, 270–279, 2019.

Ma, Z., Xu, J., Quan, W., Zhang, Z., Lin, W., and Xu,
X.: Significant increase of surface ozone at a rural site,
north of eastern China, Atmos. Chem. Phys., 16, 3969–3977,
https://doi.org/10.5194/acp-16-3969-2016, 2016.

MEP: 2017 air pollution prevention and management plan for the
Beijing-Tianjin-Hebei region and its surrounding areas, avail-
able at: http://dqhj.mee.gov.cn/dtxx/201703/t20170323_408663.
shtml (last access: 18 August 2018), 2017.

Nel, A.: Air pollution-related illness effects of particles Science,
308, 804–806, 2015.

Pearce, J. L., Beringer, J., Nicholls, N., Hyndman, R. J., and Tap-
per, N. J.: Quantifying the influence of local meteorology on air
quality using generalized additive models, Atmos. Environ., 45,
1328–1336, 2011.

Qiao, L. P., Cai, J., Wang, H. L., Wang, W. L., Zhou, M., Lou, S.
R., Chen, R. J., Dai, H. X., Chen, C. H., and Kan, H. D.: PM2.5
Constituents and Hospital Emergency-Room Visits in Shanghai,
China, Environ. Sci. Technol., 48, 10406–10414, 2014.

Rao, S. T. and Zurbenko, I. G.: Detecting and Tracking
Changes in Ozone Air Quality, Air Waste, 44, 1089–1092,
https://doi.org/10.1080/10473289.1994.10467303, 1994.

Saikawa, E., Kim, H., Zhong, M., Avramov, A., Zhao, Y., Janssens-
Maenhout, G., Kurokawa, J.-I., Klimont, Z., Wagner, F., Naik,
V., Horowitz, L. W., and Zhang, Q.: Comparison of emis-
sions inventories of anthropogenic air pollutants and green-

house gases in China, Atmos. Chem. Phys., 17, 6393–6421,
https://doi.org/10.5194/acp-17-6393-2017, 2017.

Shao, P., Tian, H., Sun, Y., Liu, H., Wu, B., Liu, S., Liu, X., Wu, Y.,
Liang, W., Wang, Y., Gao, J., Xue, Y., Bai, X., Liu, W., Lin, S.,
and Hu, G.: Characterizing remarkable changes of severe haze
events and chemical compositions in multi-size airborne parti-
cles (PM1, PM2.5 and PM10) from January 2013 to 2016–2017
winter in Beijing, China, Atmos. Environ., 189, 133–144, 2018.

Sun, J., Gong, J., Zhou, J., Liu, J., and Liang, J.: Analysis of PM2.5
pollution episodes in Beijing from 2014 to 2017: Classification,
interannual variations and associations with meteorological fea-
tures, Atmos. Environ., 213, 384–394, 2019.

Sun, Y., Song, T., and Tang, G.: The vertical distribution of PM2.5,
and boundary-layer structure during summer haze in Beijing, At-
mos. Environ., 74, 413–421, 2013.

UNEP: A Review of Air Pollution Control in Beijing: 1998–2013,
United Nations Environment Programme (UNEP), Nairobi,
Kenya, 9–23, available at: http://www.unep.org/publications (last
access: 16 February 2019), 2016.

UNEP: A Review of Air Pollution Control in Beijing: 1998–2017,
United Nations Environment Programme (UNEP), Nairobi,
Kenya, 9–23, available at: http://www.unep.org/publications (last
access: 16 February 2019), 2019.

Wang, S., Xing, J., Zhao, B., Jang, C., and Hao, J.: Effectiveness
of national air pollution control policies on the air quality in
metropolitan areas of China, J. Environ. Sci., 26, 13–22, 2014.

Wang, T., Du, Z., Tan, T., Xu, N., Hu, M., Hu, J., and Guo, S.: Mea-
surement of aerosol optical properties and their potential source
origin in urban Beijing from 2013–2017, Atmos. Environ., 206,
293–302, 2019.

Wang, X., Wei, W., and Cheng, S.: Characteristics and classification
of PM2.5 pollution episodes in Beijing from 2013 to 2015, Sci.
Total Environ., 612, 170–179, 2018.

Xu, H., Xiao, Z., Chen, K., Tang, M., Zheng, N., Li, P., Yang, N.,
Yang, W., and Deng, X.: Spatial and temporal distribution, chem-
ical characteristics, and sources of ambient particulate matter in
the Beijing-Tianjin-Hebei region, Sci. Total Environ., 658, 280–
293, 2019.

Xu, J., Chang, L., Qu, Y., Yan, F., Wang, F., and Fu, Q.: The me-
teorological modulation on PM2.5 interannual oscillation during
2013 to 2015 in Shanghai, China, Sci. Total Environ., 572, 1138–
1149, 2016.

Yang, Y., Liao, H., and Lou, S.: Increase in winter haze over eastern
china in recent decades: roles of variations in meteorological pa-
rameters and anthropogenic emissions, J. Geophys. Res.-Atmos.,
121, 13050–13065, 2016.

Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K.,
Zhao, T., and Liao, H.: Fine particulate matter (PM2.5) trends in
China, 2013–2018: separating contributions from anthropogenic
emissions and meteorology, Atmos. Chem. Phys., 19, 11031–
11041, https://doi.org/10.5194/acp-19-11031-2019, 2019.

Zhang, H., Yuan, H., Liu, X., Yu, J., and Jiao, Y.: Impact of synop-
tic weather patterns on 24 h-average PM2.5 concentrations in the
North China Plain during 2013–2017, Sci. Total Environ., 627,
200–210, 2018.

Zhang, Q., He, K., and Huo, H.: Cleaning China’s air, Nature, 484,
161–162, 2012.

Zhao, B., Wang, S. X., Wang, J. D., Fu, J., Liu, T. H., Xu, J. Y.,
Fu, X., and Hao, J. M.: Impact of national NOX and SO2 control

Atmos. Chem. Phys., 19, 13519–13533, 2019 www.atmos-chem-phys.net/19/13519/2019/

https://doi.org/10.5194/acp-17-1227-2017
https://doi.org/10.5194/acp-11-3789-2011
https://doi.org/10.5194/acp-16-3969-2016
http://dqhj.mee.gov.cn/dtxx/201703/t20170323_408663.shtml
http://dqhj.mee.gov.cn/dtxx/201703/t20170323_408663.shtml
https://doi.org/10.1080/10473289.1994.10467303
https://doi.org/10.5194/acp-17-6393-2017
http://www.unep.org/publications
http://www.unep.org/publications
https://doi.org/10.5194/acp-19-11031-2019


Z. Chen et al.: The control of anthropogenic emissions 13533

policies on particulate matter pollution in China, Atmos. Envi-
ron., 77, 453–463, 2013.

Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y.,
and Zheng, B.: Exploring the severe winter haze in Beijing:
the impact of synoptic weather, regional transport and het-
erogeneous reactions, Atmos. Chem. Phys., 15, 2969–2983,
https://doi.org/10.5194/acp-15-2969-2015, 2015.

Zhou, Y., Zhao, Y., Mao, P., Zhang, Q., Zhang, J., Qiu, L., and
Yang, Y.: Development of a high-resolution emission inventory
and its evaluation and application through air quality modeling
for Jiangsu Province, China, Atmos. Chem. Phys., 17, 211–233,
https://doi.org/10.5194/acp-17-211-2017, 2017.

Zurbenko, I., Chen, J., and Rao, S. T.: Detecting discontinuities in
time series of upper air data: Demonstration of an adaptive filter
technique, J. Clim., 9, 3548–3560, 1996.

www.atmos-chem-phys.net/19/13519/2019/ Atmos. Chem. Phys., 19, 13519–13533, 2019

https://doi.org/10.5194/acp-15-2969-2015
https://doi.org/10.5194/acp-17-211-2017

	Abstract
	Introduction
	Data sources
	PM2.5 and meteorological data
	Emission inventories

	Methods
	Kolmogorov--Zurbenko filtering
	WRF-CMAQ model
	Model verification
	Verification of KZ filtering
	Verification of WRF-CMAQ


	Results
	The relative contribution of emission reduction and meteorological variations to the decrease in PM2.5 concentrations in Beijing from 2013 to 2017
	Estimation based on KZ filtering
	Estimation based on WRF-CMAQ

	The relative contribution of different emission-reduction measures to the decrease in PM2.5 concentrations in Beijing

	Discussion
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

