Articles | Volume 18, issue 10
Atmos. Chem. Phys., 18, 7573–7593, 2018
https://doi.org/10.5194/acp-18-7573-2018

Special issue: Regional transport and transformation of air pollution in...

Atmos. Chem. Phys., 18, 7573–7593, 2018
https://doi.org/10.5194/acp-18-7573-2018

Research article 31 May 2018

Research article | 31 May 2018

Climatological study of the Boundary-layer air Stagnation Index for China and its relationship with air pollution

Qianqian Huang et al.

Related authors

Air stagnation in China (1985–2014): climatological mean features and trends
Qianqian Huang, Xuhui Cai, Yu Song, and Tong Zhu
Atmos. Chem. Phys., 17, 7793–7805, https://doi.org/10.5194/acp-17-7793-2017,https://doi.org/10.5194/acp-17-7793-2017, 2017
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Turbulent and boundary layer characteristics during VOCALS-REx
Dillon S. Dodson and Jennifer D. Small Griswold
Atmos. Chem. Phys., 21, 1937–1961, https://doi.org/10.5194/acp-21-1937-2021,https://doi.org/10.5194/acp-21-1937-2021, 2021
Short summary
A foehn-induced haze front in Beijing: observations and implications
Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li
Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020,https://doi.org/10.5194/acp-20-15793-2020, 2020
Short summary
The dynamic-thermal structures of the planetary boundary layer dominated by synoptic circulations and the regular effect on air pollution in Beijing
Yunyan Jiang, Jinyuan Xin, Ying Wang, Guiqian Tang, Yuxin Zhao, Danjie Jia, Dandan Zhao, Meng Wang, Lindong Dai, Lili Wang, Tianxue Wen, and Fangkun Wu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1123,https://doi.org/10.5194/acp-2020-1123, 2020
Revised manuscript accepted for ACP
Short summary
Airborne measurements and large-eddy simulations of small-scale gravity waves at the tropopause inversion layer over Scandinavia
Sonja Gisinger, Johannes Wagner, and Benjamin Witschas
Atmos. Chem. Phys., 20, 10091–10109, https://doi.org/10.5194/acp-20-10091-2020,https://doi.org/10.5194/acp-20-10091-2020, 2020
Short summary
Observational analysis of the daily cycle of the planetary boundary layer in the central Amazon during a non-El Niño year and El Niño year (GoAmazon project 2014/5)
Rayonil G. Carneiro and Gilberto Fisch
Atmos. Chem. Phys., 20, 5547–5558, https://doi.org/10.5194/acp-20-5547-2020,https://doi.org/10.5194/acp-20-5547-2020, 2020
Short summary

Cited articles

Ao, C. O., Waliser, D. E., Chan, S. K., Li, J.-L., Tian, B., Xie, F., and Mannucci, A. J.: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles, J. Geophys. Res.-Atmos., 117, D16117, https://doi.org/10.1029/2012jd017598, 2012. 
Beyrich, F.: Mixing height estimation from sodar data – A critical discussion, Atmos. Environ., 31, 3941–3953, https://doi.org/10.1016/s1352-2310(97)00231-8, 1997. 
Bianco, L. and Wilczak, J. M.: Convective boundary layer depth: Improved measurement by Doppler radar wind profiler using fuzzy logic methods, J. Atmos. Ocean. Tech., 19, 1745–1758, 2002. 
Blanchard, D. O.: Assessing the vertical distribution of convective available potential energy, Weather Forecast., 13, 870–877, https://doi.org/10.1175/1520-0434(1998)013<0870:atvdoc>2.0.co;2, 1998. 
Bressi, M., Sciare, J., Ghersi, V., Bonnaire, N., Nicolas, J. B., Petit, J. E., Moukhtar, S., Rosso, A., Mihalopoulos, N., and Feron, A.: A one-year comprehensive chemical characterisation of fine aerosol (PM2.5) at urban, suburban and rural background sites in the region of Paris (France), Atmos. Chem. Phys., 13, 7825–7844, https://doi.org/10.5194/acp-13-7825-2013, 2013. 
Download
Short summary
Air stagnation index is a vital meteorological measure of the atmosphere's ability to dilute air pollutants. We propose a Boundary-layer air Stagnation Index (BSI) based on daily maximal ventilation, real latent instability and precipitation. The BSI is positively correlated with API during 2000–2012, tracks the day-by-day variation of PM2.5 concentration during January 2013 in Beijing well, and successfully represents the improved air quality during November and December in 2017.
Altmetrics
Final-revised paper
Preprint