Articles | Volume 16, issue 4
Atmos. Chem. Phys., 16, 1907–1918, 2016
Atmos. Chem. Phys., 16, 1907–1918, 2016

Research article 19 Feb 2016

Research article | 19 Feb 2016

Sensitivity of simulated CO2 concentration to sub-annual variations in fossil fuel CO2 emissions

Xia Zhang et al.

Related authors

Analysis of 3D cloud effects in OCO-2 XCO2 retrievals
Steven T. Massie, Heather Cronk, Aronne Merrelli, Christopher O'Dell, K. Sebastian Schmidt, Hong Chen, and David Baker
Atmos. Meas. Tech., 14, 1475–1499,,, 2021
Short summary
Was Australia a sink or source of CO2 in 2015? Data assimilation using OCO-2 satellite measurements
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys. Discuss.,,, 2021
Revised manuscript accepted for ACP
Short summary
The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500
Malte Meinshausen, Zebedee R. J. Nicholls, Jared Lewis, Matthew J. Gidden, Elisabeth Vogel, Mandy Freund, Urs Beyerle, Claudia Gessner, Alexander Nauels, Nico Bauer, Josep G. Canadell, John S. Daniel, Andrew John, Paul B. Krummel, Gunnar Luderer, Nicolai Meinshausen, Stephen A. Montzka, Peter J. Rayner, Stefan Reimann, Steven J. Smith, Marten van den Berg, Guus J. M. Velders, Martin K. Vollmer, and Ray H. J. Wang
Geosci. Model Dev., 13, 3571–3605,,, 2020
Short summary
The potential of Orbiting Carbon Observatory-2 data to reduce the uncertainties in CO2 surface fluxes over Australia using a variational assimilation scheme
Yohanna Villalobos, Peter Rayner, Steven Thomas, and Jeremy Silver
Atmos. Chem. Phys., 20, 8473–8500,,, 2020
Short summary
Data assimilation using an ensemble of models: a hierarchical approach
Peter Rayner
Atmos. Chem. Phys., 20, 3725–3737,,, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Technical note: AQMEII4 Activity 1: evaluation of wet and dry deposition schemes as an integral part of regional-scale air quality models
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697,,, 2021
Short summary
Evaluating the impact of storage-and-release on aircraft-based mass-balance methodology using a regional air-quality model
Sepehr Fathi, Mark Gordon, Paul A. Makar, Ayodeji Akingunola, Andrea Darlington, John Liggio, Katherine Hayden, and Shao-Meng Li
Atmos. Chem. Phys., 21, 15461–15491,,, 2021
Short summary
The regional impact of urban emissions on air quality in Europe: the role of the urban canopy effects
Peter Huszar, Jan Karlický, Jana Marková, Tereza Nováková, Marina Liaskoni, and Lukáš Bartík
Atmos. Chem. Phys., 21, 14309–14332,,, 2021
Short summary
A new inverse modeling approach for emission sources based on the DDM-3D and 3DVAR techniques: an application to air quality forecasts in the Beijing–Tianjin–Hebei region
Xinghong Cheng, Zilong Hao, Zengliang Zang, Zhiquan Liu, Xiangde Xu, Shuisheng Wang, Yuelin Liu, Yiwen Hu, and Xiaodan Ma
Atmos. Chem. Phys., 21, 13747–13761,,, 2021
Short summary
Assessing urban methane emissions using column-observing portable Fourier transform infrared (FTIR) spectrometers and a novel Bayesian inversion framework
Taylor S. Jones, Jonathan E. Franklin, Jia Chen, Florian Dietrich, Kristian D. Hajny, Johannes C. Paetzold, Adrian Wenzel, Conor Gately, Elaine Gottlieb, Harrison Parker, Manvendra Dubey, Frank Hase, Paul B. Shepson, Levi H. Mielke, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 13131–13147,,, 2021
Short summary

Cited articles

Andres, R. J., Gregg, J. S., Losey, L., Marland, G., and Boden, T. A.: Monthly , global emissions of carbon dioxide from fossil fuel consumption, Tellus, 63B, 309–327, 2011.
Asefi-Najafabady, S., Rayner, S. P. J., Gurney, K. R., McRobert, K. R. A., Song, Y., Coltin, K., Huang, J., Elvidge, C., and Baugh, K.: A multiyear, global gridded fossil fuel CO2 emissions data product: Evaluation and analysis of results, J. Geophys. Res.-Atmos., 119, 10213–10231,, 2014.
Chan, D., Ishizawa, M., Higuchi, K., Maksyutov, S., and Chen J.:Seasonal CO2 rectifier effect and large-scale extratropical atmospheric transport, J. Geophys. Res.-Atmos., 113, D17309,, 2008.
Chen, B. and Chen, J. M.: A vertical diffusion scheme to estimate the atmospheric rectifier effect, J. Geophys. Res., 109, D04306,, 2004.
Ciais, P., J., Paris, D., Marland, G., Peylin, P., Piao, S. L. , Levin, I., Pregger, T., Scholz, Y., Friedrich, R., Rivier, L., Houwelling, S., Schulze, E. D., and members of the CARBOEUROPE Synthesis Team (1): The European carbon balance revisited. Part 1: fossil fuel emissions, Glob. Change Biol., 16, 1395–1408,, 2009.
Short summary
This study presents a complete exploration of the space/time effect of time variations (diurnal, weekly, monthly) in fossil fuel emission on CO2 concentration. The paper identified rectifier effect at local to regional scale that is expected from fossil fuel emission and compared to biospheric rectification, and then extends the subject to column measurement. This study demonstrates the importance of considering sub-annual fossil fuel emissions on model simulation and related studies.
Final-revised paper